
Adversarial examples and stability of neural networks
SITE Conference: Long Time Behavior and Singularity Formation in PDEs-Part III (June 13-17, 2021)

New York University Abu Dhabi

Hatem Hajri

IRT SystemX

15/06/2021

H

1



Plan

Neural networks

Unstability of NN

Towards stabilising NN

15/06/2021 2



Neural networks

3



Some key events: 

1940: Introduction of 
NN

1957: Perceptron

1986: Back-propagation

1998: Convolutional 
neural networks

2009: Imagenet dataset

2012: Alexnet on 
Imagenet trained with 
GPU

Ongoing stability and 
unstability works 



An artificial neuron is a function 𝑓

of the input x = (x1,…, xN) weighted 

by a vector of connection weights w = (w1 ,…, wN ), 

completed by a neuron bias b , and associated to 

an activation function φ , namely 

y = 𝛔(<x, w > + b )

Several activation functions can be considered: 

 Id: 𝛔(x)=x, Sigmoid: 𝛔(x)=1/(1+𝑒−𝑥), Tan: 𝛔(x)=tanh(x), ReLu: 𝛔(x)=max(x,0)

Perceptrons: 



A multilayer perceptron is a structure composed by several hidden 
layers of neurons where the output of a neuron of a layer becomes 
the input of a neuron of the next layer. 

Neural networks: 

A NN with two hidden layers and an 
output layer of dimension 1



NN classifiers are used to predict the class of an input 𝑥 among a 
family of given possible classes c1  ,….,cK.
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They are given by the succession of hidden layers and the last 
layer is normalized using the transformation 

pi = softmaxi(z)=exp zi / 𝒋 exp zj Є [0,1]
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NN classifiers are used to predict the class of an input 𝑥 among a 
family of given possible classes c1  ,….,cK.

They are given by the succession of hidden layers and the last layer is 
normalized using the transformation 

pi =  softmaxi(z)=exp zi / 𝒋 exp zj Є [0,1]

The final outputs are K probabilities p1  ,….,pK and the predicted class is 

Class(x)= argmaxi pi (x)

Neural network classifiers: 



Matrix multiplications are replaced with convolutions:

Convolutional neural networks: 

Convolution by a kernel            

• Extract specific features from 
each image by compressing them 
to reduce their initial size

Max pooling operations 

• Summarize data and 
reduce complexity 

• Less sensitivity to 
small translations

Convolution by a small kernels            Pooling operations            

Input/output of a convolutional layer            



Problem: Given a family of training data ( 𝑥i,ci ), find the optimal 
weights (matrices for multiplayer perceptron NN) or kernels for 
convolutional NN that give the highest prediction (accuracy) : ci is 
the class of 𝑥i.  

Training Neural networks (Back-propagation): 



Problem: Given a family of training data (𝑥i,,ci ), find the optimal 
weights (matrices for multiplayer perceptron NN) or kernels for 
convolutional NN that give the highest prediction (accuracy) : ci is 
the class of 𝑥i.  

Solution (BP algorithm): 
Choose an architecture

Initialize weights/kernels W

For every (𝑥,c ), make a small update on W (in the direction to maximize pc):

W W+𝜖 ∙ sign 𝛻𝑊 p𝒄(𝑥,𝑊)

Training Neural networks (Back-propagation): 



Datasets 

70 000 images of 28x28 pixel 
handwritten digits

60000 RGB images 
32x32x3 in 10 classes

MNIST            CIFAR-10            
IMAGENET            

More than 14 
million high-resolution 
and hand-annotated 
images into 1000 classes



The challenge of training NN: 

State-of-the-art performances on IMAGENET



Unstability of NN
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Are neural networks stable?

Intriguing properties of neural networks (Szegedy et al. 
December 2013):
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Are neural networks stable?

Problem formulation: Given (𝑥, 𝑐) solve

𝐌𝐢𝐧𝒓 𝛆 ||r||𝟐 +p𝒄(𝑥 + 𝑟) (simultaneously decrease p𝒄 and ||𝑟||𝟐)

This is the notion of an adversarial attack: The attack is 
successful if and only if 

𝑥𝒂𝒅𝒗 := 𝑥 + 𝒓𝒐𝒑𝒕𝒊𝒎𝒂𝒍
changes the class of 𝑥. 

The problem is solved by stochastic gradient descent

Intriguing properties of neural networks (Szegedy et al. 
December 2013):



Adversarial attacks as previously formulated are 100% successful. 
Adversarial examples constructed on one Neural network tend to be  
successful on other architectures Adversarial examples transfer well.
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Adversarial attacks as previously formulated are 100% successful. 
Adversarial examples constructed on one Neural network tend to be  
successful on other architectures Adversarial examples transfer well.

Adversarial examples are imperceptible to humans.

Intriguing properties of neural networks (Szegedy et al. 
December 2013): Results



Adversarial attacks are much easier to construct: After training the 
network, for each (x,c), do one gradient step to decrease p𝒄 :

𝑥𝒂𝒅𝒗 := 𝑥 − 𝜖 ∙ sign 𝛻𝑥 p𝒄(𝑥,𝑊) (minimize pc )

Explaining and Harnessing adversarial examples (Goodfellow 
et al. December 2014):
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Adversarial attacks are much easier to construct: After training the 
network, for each (x,c), do one gradient step to decrease p𝒄 :

𝑥𝒂𝒅𝒗 := 𝑥 − 𝜖 ∙ sign 𝛻𝑥 p𝒄(𝑥,𝑊)

This method is called Fast gradient sign method: FGSM. It is 100% 
successful on IMAGENET even for small 𝜖.

The famous Panda example on IMAGENET:

Explaining and Harnessing adversarial examples (Goodfellow 
et al. December 2014):



Distance metrics between 𝑥 and 𝑥𝑎𝑑𝑣: 𝐷 𝑥, 𝑥𝑎𝑑𝑣
𝐿0 norm: the number of elements in 𝑥𝑎𝑑𝑣 such that 𝑥𝑖 ≠ 𝑥𝑎𝑑𝑣
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A terminology related to attacks :
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𝐿0 norm: the number of elements in 𝑥𝑎𝑑𝑣 such that 𝑥𝑖 ≠ 𝑥𝑎𝑑𝑣

𝑖

𝐿2 , 𝐿∞ norms

Attack 1 is stronger than Attack 2 in the 𝑳𝒑 distance if it has more ability to 
generate successful 𝑥𝒂𝒅𝒗Є B𝒑(𝑥,𝜖)

Attacks can be targeted or untargeted (the class of 𝑥𝑎𝑑𝑣 is given or not)

What are the best attacks? Hope: The attack is unsuccessful is equivalent 
to the model is robust.           

A terminology related to attacks :



Carlini-Wagner (CW) attacks are the best 𝐿0, 𝐿2, 𝐿∞ attacks (in 2016).  
By considering the outputs of the last-to-one layer one can decrease/increase more 
efficiently p𝒄 .

𝐿2 attacks are generated following Szegedy et al. 

𝐿∞ and 𝐿0 attacks are generated using approximations by differentiable functions of the 
𝐿∞ and 𝐿0 norms.

Examples of CW targeted attacks on MNIST:

Towards Evaluating the Robustness of Neural Networks 
(Carlini et al. August 2016)

𝐿∞ attack 𝐿2 attack 𝐿0 attack



Towards Deep Learning Models Resistant to Adversarial
Attacks (Madry et al. June 2017)

Projected gradient descent (PGD) attack is an extension of 
FGSM, where after each step of perturbation, the adversarial 
example is projected back onto the 𝜖-ball of 𝑥 using a projection 
function Π

𝑥𝑎𝑑𝑣
𝑡 = Π𝜖 𝑥

𝑡−1 − 𝛼 ∙ sign 𝛻𝑥 p𝒄(𝑥
𝑡−1,𝑊)



Towards Deep Learning Models Resistant to Adversarial
Attacks (Madry et al. June 2017)

Projected gradient descent (PGD) attack is an extension of 
FGSM, where after each step of perturbation, the adversarial 
example is projected back onto the 𝜖-ball of 𝑥 using a projection 
function Π

𝑥𝑎𝑑𝑣
𝑡 = Π𝜖 𝑥

𝑡−1 − 𝛼 ∙ sign 𝛻𝑥 p𝒄(𝑥
𝑡−1,𝑊)

PGD is regarded as the strongest 𝐿∞attack



One pixel attacks are more spectacular: only one pixel is allowed to be 
changed. 

Inspired from genetic algorithms:
Randomly fix candidate pixels {𝑋𝑖}

Mutate each 𝑋𝑖 as follows:mutation(𝑋𝑖)= 𝑋𝑖+𝜆(𝑋𝑘-𝑋𝑙)

(k and l are random candidate indices)

Choose between 𝑋𝑖 and mutation(𝑋𝑖) according to 

which pixel decreases the most the current probability.

One Pixel Attack for Fooling Deep Neural Networks (Su et al. October
2017)



Adversarial attacks papers



CW, PGD are the most powerful attacks. There has been very slight improvements since then.

𝐿0, 𝐿2, 𝐿∞ are generally imperceptible.

More perceptible attacks have also been studied: e.g. attacks by adding foreign objects (patches, 
stickers),  by changing the background of the image (semantic) etc. 

Key takeaways:

An attack by adding stickers: 
picture from Robust physical 
world attacks on deep learning 
models
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The accuracy of a model is the fraction of inputs which are 
correctly classified

First:
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The accuracy of a model is the fraction of inputs which are 
correctly classified

The 𝜖-robustness score (also depending on the 𝐿𝒑 norm) is the 
faction of inputs 𝑥 such that class(𝑥)=class(𝑦) for all y Є B𝒑(𝑥,𝜖)
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The accuracy of a model is the fraction of inputs which are 
correctly classified

The 𝜖-robustness score (also depending on the 𝐿𝒑 norm) is the 
faction of inputs 𝑥 such that class(𝑥)=class(𝑦) for all y Є B𝒑(𝑥, 𝜖)

Adversarial examples have shown that highly accurate models 
may have zero robustness scores. 

First:
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Classical training tries to solve for each (𝑥,c) :

𝐌𝐚𝐱𝑾p𝒄 𝑥,𝑊 (weights maximising p𝒄)

Towards Deep Learning Models Resistant to Adversarial
Attacks (Madry et al. June 2017)
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To target 𝜖-robust networks, Madry et al. proposes to solve:
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Classical training tries to solve for each (𝑥,c) :

𝐌𝐚𝐱𝑾p𝒄 𝑥,𝑊 (weights maximising p𝒄)

To target 𝜖-robust networks, Madry et al. proposes to solve:

𝐌𝐚𝐱𝑾 𝐌𝐢𝐧{ p𝒄 𝑦,𝑊 , 𝑦 Є B𝒑(𝑥,𝜖)} (weights maximising p𝒄uniformly)

Problem: How to compute 𝐌𝐢𝐧{ p𝒄 𝑦,𝑊 , 𝑦 Є B𝒑(𝑥,𝜖)} ?

Towards Deep Learning Models Resistant to Adversarial
Attacks (Madry et al. June 2017)



Solution: Adversarial training: for each (x,c) 
Find a good 𝑥𝑎𝑑𝑣≔ 𝐌in{ p𝒄 𝑦,𝑊 , 𝑦 Є B𝒑(𝑥,𝜖)} by gradient ascent using 
PGD.

Once 𝑥𝑎𝑑𝑣 is found, update W by gradient ascent solving 
𝐌𝐚𝐱𝑾 p𝒄( 𝑥𝑎𝑑𝑣 ,𝑊)

Towards Deep Learning Models Resistant to Adversarial
Attacks (Madry et al. June 2017)



Solution: Adversarial training: for each (x,c) 
Find a good 𝑥𝑎𝑑𝑣≔ 𝐌in{ p𝒄 𝑦,𝑊 , 𝑦 Є B𝒑(𝑥,𝜖)} by gradient ascent using PGD.
Once 𝑥𝑎𝑑𝑣 is found, update W by gradient ascent solving 𝐌𝐚𝐱𝑾p𝒄( 𝑥𝑎𝑑𝑣 ,𝑊)

Validation (empirically): 

By showing that PGD and CW 

are significantly less successful 

on adversarially trained networks 

(for the first time)

Since 2017 no attack has been able to find 

adversarial examples

for the 45.8 robust samples inside the 𝐿∞ ball of radius 𝜖 =0.031.

Towards Deep Learning Models Resistant to Adversarial
Attacks (Madry et al. June 2017)



Adversarial training is an empirical defense technique. 

Many empirical defense techniques have been presented but 
either they were completely broken or shown to be less efficient 
than adversarial training.

Empirical defense techniques



Many defense techniques rely on obfuscated gradients: gradients are 
incorrect as a consequence of non differentiable operations or unstable. 

Break defenses: Obfuscated Gradients Give a False Sense of Security:
Circumventing Defenses to Adversarial Examples (Athalye et al. Feb 2018)



Many defense techniques rely on obfuscated gradients: gradients are 
incorrect as a consequence of non differentiable operations or unstable. 

Due to obfuscated gradients, many defense techniques provide apparent 
robustness against powerful attacks such as PGD, CW etc.

Break defenses: Obfuscated Gradients Give a False Sense of Security:
Circumventing Defenses to Adversarial Examples (Athalye et al. Feb 2018)

An illustration 
of obfuscated gradients



Solution: use smoothed gradients in attacking:

Results: Seven defense techniques

(already published) are broken:

Obfuscated Gradients Give a False Sense of Security:
Circumventing Defenses to Adversarial Examples (Athalye et al. Feb 2018)



Apply attacks that do not rely on the gradient of the NN.
Fix 𝜖 and minimize F(µ)= E[p𝒄 (𝑥+ µ + 𝜖𝒩(0,I)] over µ by gradient 
descent.

NATTACK: Learning the Distributions of Adversarial Examples for an Improved Black-Box Attack on 
Deep Neural Networks(Li et al. May 2019): A simple way to break obfuscated gradient defenses
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descent.
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best 𝑥𝑎𝑑𝑣 .
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Apply attacks that do not rely on the gradient of the NN.
Fix 𝜖 and minimize F(µ)= E[p𝒄 (x+ µ + 𝜖 𝒩(0,I)] over µ by gradient 
descent.

Once µ is found, sample many 𝑥𝑎𝑑𝑣:= 𝑥+ µ + 𝜖𝒩(0,I) and choose the 
best 𝑥𝑎𝑑𝑣 .

An important point: The gradient 𝛻µF(µ) does not require to compute 𝛻µp𝒄
but only 𝛻µof the Gaussian kernel.

NATTACK: Learning the Distributions of Adversarial Examples for an Improved Black-Box Attack on 
Deep Neural Networks(Li et al. May 2019): A simple way to break obfuscated gradient defenses



Can we develop defense techniques that have provable robustness properties 
(theoretical guarantees that any attack will not be successful)?

Define the polytope for a given (x,c) as 𝓟= 𝐍(B∞(x,𝜖)) the image by the network.

Provable Defenses against Adversarial Examples
via the Convex Outer Adversarial Polytope (Wong et al.Nov 2017)
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image space). 
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Can we develop defense techniques that have provable robustness properties 
(theoretical guarantees that any attack will not be successful)?

Define the polytope for a given (x,c) as 𝓟= 𝐍(B∞(x,𝜖)) the image by the network.

𝓟 is a geometrically complicated space. The idea is to find a convex set 𝓒 such that 𝓟 ⊆ 𝓒
and then provide a condition under which 𝓒 will not contain adversarial examples (in the 
image space). 

For ReLu(x)=max(x,0), we use 

the convex relaxation:

This gives an outer convex bound:

Provable Defenses against Adversarial Examples
via the Convex Outer Adversarial Polytope (Wong et al.Nov 2017)



We deduce the bound:

p𝒄 y∗,𝑊 ≤𝐌𝐢𝐧{ p𝒄 (𝑦,𝑊): 𝑦 Є 𝓒}≤𝐌𝐢𝐧{ p𝒄 (𝑦,𝑊): 𝑦 Є B∞(x,𝜖)}

y∗ Є 𝓒 is a worst case point which can be found by convex optimisation.

Following adversarial training, a neural network can be trained by solving for each (x,c): 
𝐌𝐚𝐱𝑾p𝒄 y∗,𝑊

In addition, Under some analytic condition involving y∗, there does not exist any 𝑥𝑎𝑑𝑣 Є B∞(𝑥,𝜖).

Results:

Disadavantage: 

scalabity to large datasets.

Provable Defenses against Adversarial Examples
via the Convex Outer Adversarial Polytope (Wong et al.Nov 2017)



The smoothing of a classifier F is:

𝑔 𝑥 = 𝐚𝐫𝐠𝐦𝐚𝐱𝒊 𝑃 𝐶 𝑥 + ε = 𝑖 , ε∼𝒩(0, 𝛔𝟐𝑰)

Certified Adversarial Robustness via Randomized Smoothing 
(Cohen et al. Feb 2019)

Before
After



Main result: Let p𝒊be the output probabilities of a neural network 
classifier and C(x)=𝐚𝐫𝐠𝐦𝐚𝐱𝒊 p𝒊 (𝑥) . Define, as before: 

𝑔 𝑥 = 𝐚𝐫𝐠𝐦𝐚𝐱𝒊 𝑃 𝐶 𝑥 + ε = 𝑖 , ε∼𝒩(0, 𝛔𝟐𝑰)

Let 𝑥 be an input, 𝐂𝑨= 𝑔 𝑥 , 𝐏𝑨=𝑃 𝐶 𝑥 + ε = 𝐂𝑨 and 

𝐏𝑩=𝐚𝐫𝐠𝐦𝐚𝐱𝒊𝑃 𝐶 𝑥 + ε = 𝑖 ; 𝐢≠𝐂𝑨. 

We have g(y)= 𝐂𝑨 for all 𝑦 Є B𝟐(𝑥,R) 𝑤𝑖𝑡ℎ:

R= (𝛔/2) (Ф−𝟏(𝐏𝑨)-Ф−𝟏(𝐏𝑩))

Certified Adversarial Robustness via Randomized Smoothing 
(Cohen et al. Feb 2019)



In Practice: 
The smoothed classifier g is estimated with Monte-Carlo.  

Since the estimations of 𝐏𝑨 and 𝐏𝐵 may not be accurate, we rather use an upper and 
lower bounds of these quantities in the previous theorem (which still holds).

To improve the results, we also add the Gaussian noise in training.

Certified Adversarial Robustness via Randomized Smoothing 
(Cohen et al. Feb 2019)

Results: 

State-of-the-art results on IMAGENET: 49% of samples are 
certified robust in the L𝟐 ball of radius 0.5. Accurcay is lower 
than standard training without smoothing.

Randomised smoothing certifies better than provable 
defense techniques on CIFAR.



Adversarial training, provable defenses and randomized smoothing are the 
only known and efficient defense methods.

Adversarial training is not provably but only empirically robust .

Provable defenses techniques work well for small architectures but scale 
very poorly to large architectures: The outer convex domain becomes much 
larger than the reachable domain.

Randomized smoothing is the best defense method up to now. Moreover it 
is very simple to put in place.

Although these methods are the best existing ones, they still certify on  
only very small/negligible domains.   

Key takeaways:



Thanks for your attention
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