

Adversarial examples and stability of neural networks

SITE Conference: Long Time Behavior and Singularity Formation in PDEs-Part III (June 13-17, 2021) New York University Abu Dhabi

Hatem Hajri

IRT SystemX H

<u>ONeural networks</u>

Unstability of NN

OTowards stabilising NN

Neural networks

Some key events:

Perceptrons:

An artificial neuron is a function f of the input $x = (x_1, ..., x_N)$ weighted by a vector of connection weights *w* = (*w¹* ,…, *w^N*), completed by a neuron bias *b* , and associated to an activation function ϕ , namely $y = \sigma(\ll x, w> + b)$

- Several activation functions can be considered:
- Id: σ(x)=x, Sigmoid: σ(x)=1/(1+ e^{-x}), Tan: σ(x)=tanh(x), ReLu: σ(x)=max(x,o)

A multilayer perceptron is a structure composed by several hidden layers of neurons where the output of a neuron of a layer becomes the input of a neuron of the next layer.

output layer of dimension 1

Neural network classifiers:

• NN classifiers are used to predict the class of an input *x* among a **family of given possible classes** *c1 ,…., cK* **.**

Neural network classifiers:

• NN classifiers are used to predict the class of an input x among a family of given possible classes *c1 ,…., cK* **.**

They are given by the succession of hidden layers and the last layer is normalized using the transformation

 p_i = softmax_{*i*}(z)=exp(z_{*i*})/ $\sum_j \exp(z_j) \in [o,1]$

Neural network classifiers:

NN classifiers are used to predict the class of an input among a family of given possible classes *c1 ,…., cK* **.**

They are given by the succession of hidden layers and the last layer is normalized using the transformation

 p_i = softmax_{*i*}(z)=exp(z_{*j*})/ $\sum_j \exp(z_j) \in$ [0,1]

The final outputs are K probabilities p_1 , p_K and the predicted class is Class(x)= argmax*ⁱ pi (x)*

Convolutional neural networks:

Matrix multiplications are replaced with convolutions:

Input Kernel Output bw $+$ cx $\begin{array}{ccc} cw&+&dx\\ gy&+&hz \end{array}$ $ey + fz$ f_y $+$ gz $\begin{array}{rcl}ew&+&fx&+\\ iy&+&jz \end{array}$ $\begin{array}{ccc} fw & + & g x \\ jy & + & kz \end{array}$ $\begin{array}{ccc} gw & + & hx \\ ky & + & tz \end{array}$

Convolution by a kernel

• Extract specific features from each image by compressing them to reduce their initial size

Convolution by a small kernels **Pooling operations**

 6

3

8

 $\overline{4}$

Max pooling operations

- Summarize data and reduce complexity
- Less sensitivity to small translations

Input/output of a convolutional layer

Training Neural networks (Back-propagation):

Problem: Given a family of training data **(** *i,*c*ⁱ), find the optimal weights (matrices for multiplayer perceptron NN) or kernels for convolutional NN that give the highest prediction (accuracy) :* c*ⁱ is the class of ⁱ .*

Training Neural networks (Back-propagation):

- *Problem: Given a family of training data (* $x_{i,j}$ *, c_i), find the optimal weights (matrices for multiplayer perceptron NN) or kernels for convolutional NN that give the highest prediction (accuracy) :* c*ⁱ is the class of ⁱ .*
- **Solution (BP algorithm):**
	- Choose an architecture
	- **Initialize weights/kernels W**
	- For every (x_,c), make a small update on W (in the direction to maximize p_c):

 $W \longleftarrow W + \epsilon \cdot \text{sign}(\nabla_W \, \boldsymbol{p}_c(x, W))$

Datasets

 0_o 0000000000 222 F 7 7 7 7 888 88888 8888888 9999999999999999

70 000 images of 28x28 pixel handwritten digits

MNIST CIFAR-10

60000 RGB images 32x32x3 in 10 classes

IMAGENET

More than 14 million high-resolution and hand-annotated images into 1000 classes

The challenge of training NN:

State-of-the-art performances on IMAGENET

Are neural networks stable?

Are neural networks stable?

● *Problem formulation: Given (* $*x*$ *,* $*c*$ *) solve* \mathbf{Min}_r $\boldsymbol{\varepsilon}$ //r//₂ + $p_c(x + r)$ (simultaneously decrease p_c and //r//₂)

Are neural networks stable?

● Problem formulation: Given (*x*, *c*) solve \mathbf{Min}_r $\boldsymbol{\varepsilon}$ //r//₂ + $p_c(x + r)$ (simultaneously decrease p_c and //r//₂) **This is the notion of an adversarial attack: The attack is successful if and only if**

 $x_{adv} := x + r_{optimal}$ *changes the class of .*

Are neural networks stable?

● Problem formulation: Given (*x*, *c*) solve

 \mathbf{Min}_r $\boldsymbol{\varepsilon}$ //r//₂ + $p_c(x + r)$ (simultaneously decrease p_c and //r//₂)

This is the notion of an adversarial attack: The attack is successful if and only if

 $x_{adv} := x + r_{optimal}$

changes the class of .

The problem is solved by stochastic gradient descent

Adversarial attacks as previously formulated are 100% successful. Adversarial examples constructed on one Neural network tend to be successful on other architectures \longrightarrow Adversarial examples transfer well.

Suppose α to α if α

Adversarial attacks as previously formulated are 100% successful. Adversarial examples constructed on one Neural network tend to be successful on other architectures **Adversarial examples transfer well.**

Suppose α to α is β if β is α

Adversarial examples are imperceptible to humans.

Schoolbus

Perturbation (rescaled for visualization)

Ostrich

Explaining and Harnessing adversarial examples (Goodfellow et al. December 2014):

Adversarial attacks are much easier to construct: After training the network, for each (x,c), do one gradient step to decrease *p* **:**

 $x_{adv} := x - \epsilon \cdot \text{sign}(\nabla_x \, \boldsymbol{p}_c(x, W))$ (minimize \boldsymbol{p}_c)

Explaining and Harnessing adversarial examples (Goodfellow et al. December 2014):

Adversarial attacks are much easier to construct: After training the network, for each (x,c), do one gradient step to decrease *p* **:**

 $x_{adv} := x - \epsilon \cdot \text{sign}(V_x \, \mathbf{p}_c(x, W))$

This method is called Fast gradient sign method: FGSM. It is 100% successful on IMAGENET even for small .

Explaining and Harnessing adversarial examples (Goodfellow et al. December 2014):

Adversarial attacks are much easier to construct: After training the network, for each (x,c), do one gradient step to decrease *p* **:**

 $x_{adv} := x - \epsilon \cdot \text{sign}(V_x \, \mathbf{p}_c(x, W))$

- **This method is called Fast gradient sign method: FGSM. It is 100% successful on IMAGENET even for small .**
- *The famous Panda example on IMAGENET:*

\bullet Distance metrics between x and x_{adv} : $D(x, x_{adv})$ L_0 norm: the number of elements in x_{adv} such that $x^i \neq x_{adv}^i$ \bullet L_2 , L_{∞} norms

- \bullet Distance metrics between x and x_{adv} : $D(x, x_{adv})$ L_0 norm: the number of elements in x_{adv} such that $x^i \neq x_{adv}^i$ \bullet L_2 , L_{∞} norms
- Attack $\boldsymbol{\mathtt{i}}$ is stronger than Attack $\boldsymbol{\mathtt{2}}$ in the L_p distance if it has more ability to **generate successful** $x_{adv} \in B_p(x, \epsilon)$

- \bullet Distance metrics between x and x_{adv} : $D(x, x_{adv})$ L_0 norm: the number of elements in x_{adv} such that $x^i \neq x_{adv}^i$ \bullet L_2 , L_{∞} norms
- Attack 1 is stronger than Attack 2 in the L_p distance if it has more ability to **generate successful** $x_{adv} \in B_p(x, \epsilon)$
- **Attacks can be targeted or untargeted (the class of is given or not)**

- \bullet Distance metrics between x and x_{adv} : $D(x, x_{adv})$
	- L_0 norm: the number of elements in x_{adv} such that $x^i \neq x_{adv}^i$
	- \bullet L_2 , L_{∞} norms
- Attack 1 is stronger than Attack 2 in the L_p distance if it has more ability to \mathbf{g} enerate successful x_{adv} \in B $_p(x, \epsilon)$
- **Attacks can be targeted or untargeted (the class of is given or not)**
- **What are the best attacks? Hope: The attack is unsuccessful is equivalent to the model is robust.**

Towards Evaluating the Robustness of Neural Networks (Carlini et al. August 2016)

Carlini-Wagner (CW) attacks are the best L_0 , L_2 , L_{∞} attacks (in 2016).

- By considering the outputs of the last-to-one layer one can decrease/increase more efficiently *p* .
- \bullet L_2 attacks are generated following Szegedy et al.
- L_{∞} and L_0 attacks are generated using approximations by differentiable functions of the L_{∞} and L_0 *norms.*
- *Examples of CW targeted attacks on MNIST:*

Projected gradient descent (PGD) attack **is an extension of FGSM, where after each step of perturbation, the adversarial example is projected back onto the** ϵ **-ball of x using a projection function Π**

$$
x_{adv}^t = \Pi_{\epsilon}(x^{t-1} - \alpha \cdot sign(\nabla_x \, \mathbf{p}_c(x^{t-1}, W)))
$$

Projected gradient descent (PGD) attack **is an extension of FGSM, where after each step of perturbation, the adversarial example is projected back onto the** ϵ **-ball of x using a projection function Π**

$$
x_{adv}^t = \Pi_{\epsilon}(x^{t-1} - \alpha \cdot sign(\nabla_x \, \mathbf{p}_c(x^{t-1}, W)))
$$

PGD is regarded as the strongest ∞**attack**

One Pixel Attack for Fooling Deep Neural Networks (Su et al. October 2017)

- **One pixel attacks are more spectacular: only one pixel is allowed to be changed.**
- **Inspired from genetic algorithms:**
	- Randomly fix candidate pixels $\{X_i\}$
	- Mutate each X_i as follows: mutation (X_i) = $X_i + \lambda(X_k X_l)$ (k and l are random candidate indices)
	- Choose between X_i and mutation (X_i) according to which pixel decreases the most the current probability.

Adversarial attacks papers

Key takeaways:

- **CW, PGD are the most powerful attacks. There has been very slight improvements since then.**
- L_0 , L_2 , L_{∞} are generally imperceptible.
- **More perceptible attacks have also been studied: e.g. attacks by adding foreign objects (patches, stickers), by changing the background of the image (semantic) etc.**

An attack by adding stickers: picture from Robust physical world attacks on deep learning models

Towards stabilising NN

The accuracy of a model is the fraction of inputs which are correctly classified

- **The accuracy of a model is the fraction of inputs which are correctly classified**
- **•** The ϵ -robustness score (also depending on the L_p norm) is the **faction of inputs** x such that class(x)=class(y) for all $y \in B_p(x, \epsilon)$

- **The accuracy of a model is the fraction of inputs which are correctly classified**
- **The** ϵ **-robustness score (also depending on the** L_p **norm) is the faction of inputs** x such that $\text{class}(x) = \text{class}(y)$ for all $y \in B_p(x, \epsilon)$
- **Adversarial examples have shown that highly accurate models may have zero robustness scores.**

● Classical training tries to solve for each (x, c) :

 $\mathbf{Max}_W \, \boldsymbol{p}_c \left(x , W \right)$ (weights maximising \boldsymbol{p}_c)

Classical training tries to solve for each (x,c) :

 \mathbf{Max}_{W} $\boldsymbol{p}_{c}(x,W)$ (weights maximising \boldsymbol{p}_{c})

To target -robust networks, Madry et al. proposes to solve:

 ${\bf Max}_{W}$ ${\bf Min}$ { ${\bf p}_c$ (y, W), y $\in {\bf B}_{p}$ (x, \in) } (weights maximising ${\bf p}_c$ uniformly)

Classical training tries to solve for each (x, c) **:**

 $\mathbf{Max}_W \, \boldsymbol{p}_c \left(x , W \right)$ (weights maximising \boldsymbol{p}_c)

To target -robust networks, Madry et al. proposes to solve:

 ${\bf Max}_{\bf W}$ ${\bf Min}$ { ${\bf p}_c$ (y, W), $y \in {\bf B}_{\bf p}(x_{\bf p} \infty)$ } (weights maximising ${\bf p}_c$ uniformly)

Problem: How to compute Min{ $p_c(y, W)$, $y \in B_p(x, \epsilon)$ }?

● Solution: Adversarial training: for each (x,c)

- \bullet Find a good x_{adv} = Min{ $p_c(y, W)$, $y \in B_p(x, \epsilon)$ } by gradient ascent using PGD.
- \bullet Once x_{adv} is found, update W by gradient ascent solving $\mathbf{Max}_W p_c(x_{adv}, W)$

Solution: **Adversarial training: for each (x,c)**

- \bullet Find a good x_{adv} = Min{ $p_c(y, W)$, $y \in B_p(x, \epsilon)$ } by gradient ascent using PGD.
	- Once x_{adv} is found, update W by gradient ascent solving $Max_W p_c(x_{adv}, W)$
- **Validation (empirically):**
- **By showing that PGD and CW**
- **are significantly less successful**
- **on adversarially trained networks**

(for the first time)

Since 2017 no attack has been able to find

adversarial examples

for the 45.8 robust samples inside the L_{∞} **ball of radius** $\epsilon = 0.031$ **.**

model

Empirical defense techniques

- Adversarial training is an empirical defense technique.
- **Many empirical defense techniques have been presented but either they were completely broken or shown to be less efficient than adversarial training.**

Break defenses: Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples (Athalye et al. Feb 2018)

Many defense techniques rely on obfuscated gradients: gradients are incorrect as a consequence of non differentiable operations or unstable. Break defenses: Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples (Athalye et al. Feb 2018)

- **Many defense techniques rely on obfuscated gradients: gradients are incorrect as a consequence of non differentiable operations or unstable.**
- **Due to obfuscated gradients, many defense techniques provide apparent robustness against powerful attacks such as PGD, CW etc.**

An illustration of obfuscated gradients

Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples (Athalye et al. Feb 2018)

 Ω

Solution: **use smoothed gradients in attacking:**

Results: **Seven defense techniques (already published) are broken:**

NATTACK: Learning the Distributions of Adversarial Examples for an Improved Black-Box Attack on Deep Neural Networks(Li et al. May 2019): A simple way to break obfuscated gradient defenses

Apply attacks that do not rely on the gradient of the NN.

Fix ϵ and minimize $F(\mu)$ = $E[p_c(x + \mu + \epsilon N(0,I)]$ over μ by gradient descent.

NATTACK: Learning the Distributions of Adversarial Examples for an Improved Black-Box Attack on Deep Neural Networks(Li et al. May 2019): A simple way to break obfuscated gradient defenses

Apply attacks that do not rely on the gradient of the NN.

- Fix ϵ and minimize $F(\mu)$ = $E[p_c(x + \mu + \epsilon N(0,I)]$ over μ by gradient descent.
- O Once μ is found, sample many $x_{adv} := x + \mu + \epsilon \mathcal{N}(0,I)$ and choose the best x_{adv} .

NATTACK: Learning the Distributions of Adversarial Examples for an Improved Black-Box Attack on Deep Neural Networks(Li et al. May 2019): A simple way to break obfuscated gradient defenses

Apply attacks that do not rely on the gradient of the NN.

- Fix ϵ and minimize $F(\mu)$ = $E[p_c(x+\mu+\epsilon N(0,I)]$ over μ by gradient descent.
- O Once μ is found, sample many $x_{adv} := x + \mu + \epsilon \mathcal{N}(0,I)$ and choose the best x_{adv} .
- An important point: The gradient $\nabla_{\mu}F(\mu)$ does not require to compute $\nabla_{\mu}p_{\mu}$ but only ∇_{μ} of the Gaussian kernel.

- Can we develop defense techniques that have provable robustness properties (theoretical guarantees that any attack will not be successful)?
- Define the polytope for a given (x,c) as $\mathbf{P} = \mathbf{N}(\mathbf{B}_{\infty}(\mathbf{x}, \epsilon))$ the image by the network.

- Can we develop defense techniques that have provable robustness properties (theoretical guarantees that any attack will not be successful)?
- Define the polytope for a given (x,c) as $\mathbf{P} = \mathbf{N}(\mathbf{B}_{\infty}(\mathbf{x}, \epsilon))$ the image by the network.
- P is a geometrically complicated space. The idea is to find a convex set C such that $P \subseteq C$ and then provide a condition under which \boldsymbol{c} will not contain adversarial examples (in the image space).
- For $Relu(x)=max(x,0)$, we use the convex relaxation:

Can we develop defense techniques that have provable robustness properties (theoretical guarantees that any attack will not be successful)?

- Define the polytope for a given (x,c) as $\mathbf{P} = \mathbf{N}(\mathbf{B}_{\infty}(\mathbf{x}, \epsilon))$ the image by the network.
- P is a geometrically complicated space. The idea is to find a convex set C such that $P \subseteq C$ and then provide a condition under which $\mathcal C$ will not contain adversarial examples (in the image space).
- For $Relu(x)=max(x,0)$, we use

the convex relaxation:

This gives an outer convex bound:

Figure 1. Conceptual illustration of the (non-convex) adversarial polytope, and an outer convex bound.

We deduce the bound:

 $p_c(y_*, W) \leq \text{Min}\{p_c(y, W): y \in \mathcal{C}\} \leq \text{Min}\{p_c(y, W): y \in B_{\infty}(x, \epsilon)\}$

y[∗] **Є** is a worst case point which can be found by convex optimisation.

- Following adversarial training, a neural network can be trained by solving for each (x,c): $\mathbf{Max}_W \bm{p}_c\left(\mathbf{y}_*, W\right)$
- In addition, Under some analytic condition involving \mathbf{y}_* , there does not exist any x_{adv} \in B $_{\infty}$ (x , ϵ).

scalabity to large datasets.

Certified Adversarial Robustness via Randomized Smoothing (Cohen et al. Feb 2019)

The smoothing of a classifier F is:

 $g(x) = \mathop{\rm argmax}_{i} P(C(x + \varepsilon) = i), \varepsilon \sim \mathcal{N}(0, \sigma^2 I)$

Certified Adversarial Robustness via Randomized Smoothing (Cohen et al. Feb 2019)

Main result: Let p_i be the output probabilities of a neural network classifier and $C(x)$ = $argmax_i p_i(x)$. Define, as before: $g(x) = \mathop{\rm argmax}_{i} P(C(x + \varepsilon) = i), \varepsilon \sim \mathcal{N}(0, \sigma^2 I)$

Let x be an input, $C_4 = g(x)$, $P_4 = P(C(x + \varepsilon) = C_4)$ and P_B =argmax_i $P(C(x + \varepsilon) = i)$; i≠C_A.

 \mathbf{W} e have $\mathbf{g}(\mathbf{y})$ = \mathbf{C}_A for all $y \in \mathbf{B}_2(x,R)$ with: **R**= (σ/2) $(\Phi^{-1}(P_A) - \Phi^{-1}(P_B))$ Certified Adversarial Robustness via Randomized Smoothing (Cohen et al. Feb 2019)

In Practice:

- The smoothed classifier g is estimated with Monte-Carlo.
- Since the estimations of \mathbf{P}_A and \mathbf{P}_B may not be accurate, we rather use an upper and lower bounds of these quantities in the previous theorem (which still holds).
- To improve the results, we also add the Gaussian noise in training.

Results:

State-of-the-art results on IMAGENET: 49% of samples are certified robust in the L_2 ball of radius 0.5. Accurcay is lower than standard training without smoothing.

Randomised smoothing certifies better than provable defense techniques on CIFAR.

Key takeaways:

- **Adversarial training, provable defenses and randomized smoothing are the only known and efficient defense methods.**
- **Adversarial training is not provably but only empirically robust .**
- **Provable defenses techniques work well for small architectures but scale very poorly to large architectures: The outer convex domain becomes much larger than the reachable domain.**
- **Randomized smoothing is the best defense method up to now. Moreover it is very simple to put in place.**
- **Although these methods are the best existing ones, they still certify on only very small/negligible domains.**

Thanks for your attention