

Adversarial examples and stability of neural networks

SITE Conference: Long Time Behavior and Singularity Formation in PDEs-Part III (June 13-17, 2021) New York University Abu Dhabi

Hatem Hajri

IRT SystemX

Neural networks

Ounstability of NN

•Towards stabilising NN

Neural networks

Some key events:

Perceptrons:

• An artificial neuron is a function fof the input $x = (x_1, ..., x_N)$ weighted by a vector of connection weights $w = (w_1, ..., w_N)$, completed by a neuron bias b, and associated to an activation function ϕ , namely $y = \sigma(\langle x, w \rangle + b)$

- Several activation functions can be considered:
- Id: $\sigma(x)=x$, Sigmoid: $\sigma(x)=1/(1+e^{-x})$, Tan: $\sigma(x)=tanh(x)$, ReLu: $\sigma(x)=max(x,o)$

 A multilayer perceptron is a structure composed by several hidden layers of neurons where the output of a neuron of a layer becomes the input of a neuron of the next layer.

output layer of dimension 1

Neural network classifiers:

• NN classifiers are used to predict the class of an input x among a family of given possible classes c₁,..., c_k.

Neural network classifiers:

• NN classifiers are used to predict the class of an input x among a family of given possible classes c1, ..., ck.

• They are given by the succession of hidden layers and the last layer is normalized using the transformation

 $p_i = \operatorname{softmax}_i(z) = \exp(z_i) / \sum_j \exp(z_j) \in [0, 1]$

Neural network classifiers:

• NN classifiers are used to predict the class of an input x among a family of given possible classes c₁,..., c_k.

• They are given by the succession of hidden layers and the last layer is normalized using the transformation

 $p_i = \operatorname{softmax}_i(z) = \exp(z_i) / \sum_j \exp(z_j) \in [0, 1]$

• The final outputs are K probabilities p_1, \dots, p_K and the predicted class is Class(x) = argmax_i $p_i(x)$

Convolutional neural networks:

Matrix multiplications are replaced with convolutions:

Input a b c d Kernel a b c d w x y z i j k l y z Output aw + bx + ey + fz + bw + cx + fy + yz + cw + dx gy + hz cw + hx ky + lz gw + hx ky + lz gw + hx

Convolution by a small kernels

Convolution by a kernel

• Extract specific features from each image by compressing them to reduce their initial size

Pooling operations

Max pooling operations

- Summarize data and reduce complexity
- Less sensitivity to small translations

Input/output of a convolutional layer

8

4

Training Neural networks (Back-propagation):

Problem: Given a family of training data (x_i,c_i), find the optimal weights (matrices for multiplayer perceptron NN) or kernels for convolutional NN that give the highest prediction (accuracy) : c_i is the class of x_i.

Training Neural networks (Back-propagation):

- Problem: Given a family of training data (x_{i,i}c_i), find the optimal weights (matrices for multiplayer perceptron NN) or kernels for convolutional NN that give the highest prediction (accuracy) : c_i is the class of x_i.
- Solution (BP algorithm):
 - Choose an architecture
 - Initialize weights/kernels W
 - For every $(x_{,c})$, make a small update on W (in the direction to maximize p_{c}):

 $\boldsymbol{W} \longleftarrow \boldsymbol{W} + \boldsymbol{\epsilon} \cdot \operatorname{sign}(\nabla_{W} \boldsymbol{p}_{c}(\boldsymbol{x}, \boldsymbol{W}))$

Datasets

MNIST

70 000 images of 28x28 pixel handwritten digits

CIFAR-10

60000 RGB images 32x32x3 in 10 classes

IMAGENET

More than 14 million high-resolution and hand-annotated images into 1000 classes

The challenge of training NN:

State-of-the-art performances on IMAGENET

Unstability of NN

• Are neural networks stable?

• Are neural networks stable?

• Problem formulation: Given (x, c) solve $Min_r \varepsilon //r//_2 + p_c(x + r)$ (simultaneously decrease p_c and $//r //_2$)

• Are neural networks stable?

• Problem formulation: Given (x, c) solve

 $\operatorname{Min}_{r} \boldsymbol{\varepsilon} / / r / /_{2} + p_{c}(x + r)$ (simultaneously decrease p_{c} and $/ / r / /_{2}$)

This is the notion of an adversarial attack: The attack is successful if and only if

 $x_{adv} := x + r_{optimal}$ changes the class of x.

• Are neural networks stable?

• Problem formulation: Given (x, c) solve

 $\operatorname{Min}_{r} \boldsymbol{\varepsilon} / |r|/_{2} + p_{c}(x + r)$ (simultaneously decrease p_{c} and $||r|/_{2}$)

• This is the notion of an adversarial attack: The attack is successful if and only if

 $x_{adv} := x + r_{optimal}$

changes the class of *x*.

• The problem is solved by stochastic gradient descent

- Loupp - Libity

- overes	in a complete appropriate							
	FC10(10 ⁻⁴)	FC10(10 ⁻²)	FC10(1)	FC100-100-10	FC200-200-10	AE400-10	Av. distortion	
FC10(10 ⁻⁴)	(100%))//	11.7%	22.7%	2%	3.9%	2.7%	0.062	
FC10(10 ⁻²)	87.1%	100%	35.2%	35.9%	27.3%	9.8%	0.1	
FC10(1)	71.9%	76.2%	100%	48.1%	47%	34.4%	0.14	
FC100-100-10	28.9%	13.7%	21.1%	100%	6.6%	2%	0.058	
FC200-200-10	38.2%	14%	23.8%	20.3%	100%	2.79	0.065	
AE400-10	23.4%	16%	24.8%	9.4%	6.6%	100%	0.086	
Gaussian noise, stddev=0.1	5.0%	10.1%	18.3%	0%	0%	0.8%	0.1	
Gaussian noise, stddev=0.3	15.6%	11.3%	22.7%	5%	4.3%	3.1%	0.3	

Surfice anta

hand life

	FC10(10 ⁻⁴)	FC10(10 ⁻²)	FC10(1)	FC100-100-10	FC200-200-10	AE400-10	Av. distortion
FC10(10 ⁻⁴)	(100%))//	11.7%	22.7%	2%	3.9%	2.7%	0.062
FC10(10 ⁻²)	87.1%	(100%)	35.2%	35.9%	27.3%	9.8%	0.1
FC10(1)	71.9%	76.2%	100%	48.1%	47%	34.4%	0.14
FC100-100-10	28.9%	13.7%	21.1%	100%	6.6%	2%	0.058
FC200-200-10	38.2%	14%	23.8%	20.3%	100%	2.79	0.065
AE400-10	23.4%	16%	24.8%	9.4%	6.6%	100%	0.086
Gaussian noise, stddev=0.1	5.0%	10.1%	18.3%	0%	0%	0.8%	0.1
Gaussian noise, stddev=0.3	15.6%	11.3%	22.7%	5%	4.3%	3.1%	0.3

Adversarial examples are imperceptible to humans.

Surlas anta

Schoolbus

Perturbation (rescaled for visualization)

Ostrich

Explaining and Harnessing adversarial examples (Goodfellow et al. December 2014):

Adversarial attacks are much easier to construct: After training the network, for each (x,c), do one gradient step to decrease p_c:

 $x_{adv} := x - \epsilon \cdot \operatorname{sign}(\nabla_x \, \boldsymbol{p}_c(x, W)) \, (\text{minimize } \boldsymbol{p}_c)$

Explaining and Harnessing adversarial examples (Goodfellow et al. December 2014):

Adversarial attacks are much easier to construct: After training the network, for each (x,c), do one gradient step to decrease p_c:

 $x_{adv} := x - \epsilon \cdot \operatorname{sign}(\nabla_x p_c(x, W))$

• This method is called Fast gradient sign method: FGSM. It is 100% successful on IMAGENET even for small ϵ .

Explaining and Harnessing adversarial examples (Goodfellow et al. December 2014):

Adversarial attacks are much easier to construct: After training the network, for each (x,c), do one gradient step to decrease p_c:

 $x_{adv} := x - \epsilon \cdot \operatorname{sign}(\nabla_x \, \boldsymbol{p}_c(x, W))$

- This method is called Fast gradient sign method: FGSM. It is 100% successful on IMAGENET even for small ϵ .
- The famous Panda example on IMAGENET:

Distance metrics between x and x_{adv}: D(x, x_{adv}) L₀ norm: the number of elements in x_{adv} such that xⁱ ≠ xⁱ_{adv} L₂, L_∞ norms

- Distance metrics between x and x_{adv}: D(x, x_{adv})
 L₀ norm: the number of elements in x_{adv} such that xⁱ ≠ xⁱ_{adv}
 L₂, L_∞ norms
- Attack 1 is stronger than Attack 2 in the L_p distance if it has more ability to generate successful $x_{adv} \in B_p(x_l \epsilon)$

- Distance metrics between x and x_{adv}: D(x, x_{adv})
 L₀ norm: the number of elements in x_{adv} such that xⁱ ≠ xⁱ_{adv}
 - L_2 , L_∞ norms
- Attack 1 is stronger than Attack 2 in the L_p distance if it has more ability to generate successful $x_{adv} \in B_p(x_l \epsilon)$
- Attacks can be targeted or untargeted (the class of x_{adv} is given or not)

- Distance metrics between x and x_{adv} : $D(x, x_{adv})$
 - L_0 norm: the number of elements in x_{adv} such that $x^i \neq x^i_{adv}$
 - L_2 , L_∞ norms
- Attack 1 is stronger than Attack 2 in the L_p distance if it has more ability to generate successful $x_{adv} \in B_p(x_l \epsilon)$
- Attacks can be targeted or untargeted (the class of x_{adv} is given or not)
- What are the best attacks? Hope: The attack is unsuccessful is equivalent to the model is robust.

Towards Evaluating the Robustness of Neural Networks (Carlini et al. August 2016)

• Carlini-Wagner (CW) attacks are the best L_0 , L_2 , L_∞ attacks (in 2016).

- By considering the outputs of the last-to-one layer one can decrease/increase more efficiently p_c.
- L_2 attacks are generated following Szegedy et al.
- L_{∞} and L_0 attacks are generated using approximations by differentiable functions of the L_{∞} and L_0 norms.
- Examples of CW targeted attacks on MNIST:

 Projected gradient descent (PGD) attack is an extension of FGSM, where after each step of perturbation, the adversarial example is projected back onto the ε-ball of x using a projection function Π

$$x_{adv}^{t} = \Pi_{\epsilon} \left(x^{t-1} - \alpha \cdot \operatorname{sign}(\nabla_{x} \, \boldsymbol{p}_{c}(x^{t-1}, W)) \right)$$

 Projected gradient descent (PGD) attack is an extension of FGSM, where after each step of perturbation, the adversarial example is projected back onto the ε-ball of x using a projection function Π

$$x_{adv}^{t} = \Pi_{\epsilon} \left(x^{t-1} - \alpha \cdot \operatorname{sign}(\nabla_{x} \, \boldsymbol{p}_{c}(x^{t-1}, W)) \right)$$

• PGD is regarded as the strongest L_{∞} attack

One Pixel Attack for Fooling Deep Neural Networks (Su et al. October 2017)

- One pixel attacks are more spectacular: only one pixel is allowed to be changed.
- Inspired from genetic algorithms:
 - Randomly fix candidate pixels $\{X_i\}$
 - Mutate each X_i as follows: mutation $(X_i) = X_i + \lambda(X_k X_l)$ (k and l are random candidate indices)
 - Choose between X_i and mutation(X_i) according to which pixel decreases the most the current probability.

DOG(86.4%)

BIRD(66.2%)

AIRPLANE(82.4%)

Adversarial attacks papers

Key takeaways:

- CW, PGD are the most powerful attacks. There has been very slight improvements since then.
- L_0, L_2, L_∞ are generally imperceptible.
- More perceptible attacks have also been studied: e.g. attacks by adding foreign objects (patches, stickers), by changing the background of the image (semantic) etc.

An attack by adding stickers: picture from Robust physical world attacks on deep learning models

Towards stabilising NN

• The accuracy of a model is the fraction of inputs which are correctly classified

- The accuracy of a model is the fraction of inputs which are correctly classified
- The ϵ -robustness score (also depending on the L_p norm) is the faction of inputs x such that class(x)=class(y) for all $y \in B_p(x,\epsilon)$

- The accuracy of a model is the fraction of inputs which are correctly classified
- The ϵ -robustness score (also depending on the L_p norm) is the faction of inputs x such that class(x)=class(y) for all $y \in B_p(x, \epsilon)$
- Adversarial examples have shown that highly accurate models may have zero robustness scores.

• Classical training tries to solve for each (x,c):

 $Max_W p_c(x, W)$ (weights maximising p_c)

• Classical training tries to solve for each (x,c) :

 $Max_W p_c(x, W)$ (weights maximising p_c)

• To target ϵ -robust networks, Madry et al. proposes to solve:

 $Max_W Min\{ p_c(y, W), y \in B_p(x, \epsilon) \}$ (weights maximising p_c uniformly)

• Classical training tries to solve for each (x,c):

 $Max_W p_c(x, W)$ (weights maximising p_c)

• To target ϵ -robust networks, Madry et al. proposes to solve:

 $Max_W Min\{ p_c(y, W), y \in B_p(x, \epsilon) \}$ (weights maximising p_c uniformly)

• Problem: How to compute Min{ $p_c(y, W), y \in B_p(x, \epsilon)$ }?

• Solution: Adversarial training: for each (x,c)

- Find a good $x_{adv} \coloneqq Min\{ p_c(y, W), y \in B_p(x, \epsilon) \}$ by gradient ascent using PGD.
- Once x_{adv} is found, update W by gradient ascent solving Max_W $p_c(x_{adv}, W)$

Solution: Adversarial training: for each (x,c)

- Find a good $x_{adv} \coloneqq Min\{ p_c(y, W), y \in B_p(x, \epsilon) \}$ by gradient ascent using PGD.
- Once x_{adv} is found, update W by gradient ascent solving $Max_W p_c(x_{adv}, W)$
- Validation (empirically):
- By showing that PGD and CW
- are significantly less successful
- on adversarially trained networks

(for the first time)

Since 2017 no attack has been able to find

adversarial examples

for the 45.8 robust samples inside the L_{∞} ball of radius $\epsilon = 0.031$.

model

Method	Steps	Source	Accuracy
Natural	-	-	87.3%
FGSM	-	A	56.1%
PGD	7	A	50.0%
PGD	20	A	45.8%
CW	30	A	46.8%

A	cur	-0-	y-	N I
0	Jom	an	ce	ale
	8-0	.0	31	

Empirical defense techniques

- Adversarial training is an empirical defense technique.
- Many empirical defense techniques have been presented but either they were completely broken or shown to be less efficient than adversarial training.

Break defenses: Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples (Athalye et al. Feb 2018)

Many defense techniques rely on obfuscated gradients: gradients are incorrect as a consequence of non differentiable operations or unstable. Break defenses: Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples (Athalye et al. Feb 2018)

- Many defense techniques rely on obfuscated gradients: gradients are incorrect as a consequence of non differentiable operations or unstable.
- Due to obfuscated gradients, many defense techniques provide apparent robustness against powerful attacks such as PGD, CW etc.

An illustration of obfuscated gradients

Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples (Athalye et al. Feb 2018)

• Solution: use smoothed gradients in attacking:

Results: Seven defense techniques
 (already published) are broken:

	Defense	Dataset	Distance	Accuracy
	/ Buckman et al. (2018)	CIFAR	$0.031 (\ell_{\infty})$	0%*
0	Ma et al. (2018)	CIFAR	$0.031 (\ell_{\infty})$	5%
1	Guo et al. (2018)	ImageNet	$0.005(\ell_2)$	0%*
roven	Dhillon et al. (2018)	CIFAR	$0.031 (\ell_{\infty})$	0%
	Xie et al. (2018)	ImageNet	$0.031 (\ell_{\infty})$	0%*
	Song et al. (2018)	CIFAR	$0.031 (\ell_{\infty})$	9%*
200	Samangouei et al.	MNIST	$0.005(\ell_2)$	55%**
LENS	\(2018)	cm	anoth	crpan
7	- Madry et al. (2018)	CIFAR	$0.031 (\ell_{\infty})$	47%
(Na et al. (2018)	CIFAR	$0.015(\ell_{\infty})$	15%

NATTACK: Learning the Distributions of Adversarial Examples for an Improved Black-Box Attack on Deep Neural Networks(Li et al. May 2019): A simple way to break obfuscated gradient defenses

• Apply attacks that do not rely on the gradient of the NN.

• Fix ϵ and minimize F(μ)= E[$p_c(x + \mu + \epsilon \mathcal{N}(0,I)$] over μ by gradient descent.

NATTACK: Learning the Distributions of Adversarial Examples for an Improved Black-Box Attack on Deep Neural Networks(Li et al. May 2019): A simple way to break obfuscated gradient defenses

• Apply attacks that do not rely on the gradient of the NN.

- Fix ϵ and minimize F(μ)= E[$p_c(x + \mu + \epsilon \mathcal{N}(0,I)$] over μ by gradient descent.
- Once μ is found, sample many $x_{adv} := x + \mu + \epsilon \mathcal{N}(0,I)$ and choose the best x_{adv} .

NATTACK: Learning the Distributions of Adversarial Examples for an Improved Black-Box Attack on Deep Neural Networks(Li et al. May 2019): A simple way to break obfuscated gradient defenses

• Apply attacks that do not rely on the gradient of the NN.

- Fix ϵ and minimize F(μ)= E[$p_c(x + \mu + \epsilon \mathcal{N}(0,I)$] over μ by gradient descent.
- Once μ is found, sample many $x_{adv} := x + \mu + \epsilon \mathcal{N}(0,I)$ and choose the best x_{adv} .
- An important point: The gradient $\nabla_{\mu}F(\mu)$ does not require to compute $\nabla_{\mu}p_c$ but only ∇_{μ} of the Gaussian kernel.

- Can we develop defense techniques that have provable robustness properties (theoretical guarantees that any attack will not be successful)?
- Define the polytope for a given (x,c) as $\mathcal{P} = \mathbb{N}(B_{\infty}(x,\epsilon))$ the image by the network.

- Can we develop defense techniques that have provable robustness properties (theoretical guarantees that any attack will not be successful)?
- Define the polytope for a given (x,c) as $\mathcal{P} = \mathbb{N}(B_{\infty}(x,\epsilon))$ the image by the network.
- \mathcal{P} is a geometrically complicated space. The idea is to find a convex set \mathcal{C} such that $\mathcal{P} \subseteq \mathcal{C}$ and then provide a condition under which \mathcal{C} will not contain adversarial examples (in the image space).
- For ReLu(x)=max(x,0), we use

the convex relaxation:

• Can we develop defense techniques that have provable robustness properties (theoretical guarantees that any attack will not be successful)?

- Define the polytope for a given (x,c) as $\mathcal{P} = \mathbb{N}(B_{\infty}(x,\epsilon))$ the image by the network.
- \mathcal{P} is a geometrically complicated space. The idea is to find a convex set \mathcal{C} such that $\mathcal{P} \subseteq \mathcal{C}$ and then provide a condition under which \mathcal{C} will not contain adversarial examples (in the image space).
- For ReLu(x) = max(x,0), we use

the convex relaxation:

 $\hat{z} \xleftarrow[\ell]{l} \hat{z} i i \hat{z} \xleftarrow[\ell]{l} \hat{z} i i \hat{z} \xleftarrow[\ell]{l} \hat{z} i i \hat{z} i i \hat{z} i i \hat{z} i$

• This gives an outer convex bound:

Figure 1. Conceptual illustration of the (non-convex) adversarial polytope, and an outer convex bound.

• We deduce the bound:

 $\boldsymbol{p}_{c}(\mathbf{y}_{*}, W) \leq \operatorname{Min}\{ \boldsymbol{p}_{c}(y, W) : y \in \boldsymbol{C}\} \leq \operatorname{Min}\{ \boldsymbol{p}_{c}(y, W) : y \in \mathbf{B}_{\infty}(\mathbf{x}, \epsilon)\}$

 $\mathbf{y}_* \in \mathbf{C}$ is a worst case point which can be found by convex optimisation.

- Following adversarial training, a neural network can be trained by solving for each (x,c): $Max_W p_c(y_*, W)$
- In addition, Under some analytic condition involving y_* , there does not exist any $x_{adv} \in B_{\infty}(x,\epsilon)$.

	PROBLEM	ROBUST	ϵ	TEST ERROR	FGSM ERROR	PGD ERROR	ROBUST ERROR BOUND	mart
	MNIST	×	0.1	1.07%	50.01%	81.68%	100%) adre
	MNIST	\checkmark	0.1	1.80%	3.93%	4.11%	5.82% - Sonly 5	.82% of 0
	FASHION-MNIST	×	0.1	9.36%	77.98%	81.85%	100% m	an contai
	FASHION-MNIST	\checkmark	0.1	21.73%	31.25%	31.63%	34.53%	i sil a
	HAR	×	0.05	4.95%	60.57%	63.82%	81.56%	4.441. 0
	HAR	\checkmark	0.05	7.80%	21.49%	21.52%	21.90%	BULE
	SVHN	×	0.01	16.01%	62.21%	83.43%	100%	
Vicadovantago	SVHN	V	0.01	20.38%	33.28%	33.74%	40.67%	

scalabity to large datasets.

Certified Adversarial Robustness via Randomized Smoothing (Cohen et al. Feb 2019)

• The smoothing of a classifier F is:

 $g(x) = \operatorname{argmax}_{i} P(C(x + \varepsilon) = i), \quad \varepsilon \sim \mathcal{N}(0, \sigma^{2}I)$

Certified Adversarial Robustness via Randomized Smoothing (Cohen et al. Feb 2019)

Main result: Let p_i be the output probabilities of a neural network classifier and C(x)=argmax_i $p_i(x)$. Define, as before: $g(x) = \operatorname{argmax}_i P(C(x + \varepsilon) = i), \quad \varepsilon \sim \mathcal{N}(0, \sigma^2 I)$

Let x be an input, $C_A = g(x)$, $P_A = P(C(x + \varepsilon) = C_A)$ and $P_B = \operatorname{argmax}_i P(C(x + \varepsilon) = i)$; $i \neq C_A$.

We have $g(y) = C_A$ for all $y \in B_2(x, \mathbb{R})$ with: $\mathbb{R} = (\sigma/2) (\Phi^{-1}(\mathbb{P}_A) - \Phi^{-1}(\mathbb{P}_B))$ Certified Adversarial Robustness via Randomized Smoothing (Cohen et al. Feb 2019)

In Practice:

- The smoothed classifier g is estimated with Monte-Carlo.
- Since the estimations of P_A and P_B may not be accurate, we rather use an upper and lower bounds of these quantities in the previous theorem (which still holds).
- To improve the results, we also add the Gaussian noise in training.

Results:

ℓ_2 RADIUS	BEST σ	CERT. ACC (%)	STD. ACC(%)
0.5	0.25	49	67

State-of-the-art results on IMAGENET: 49% of samples are certified robust in the L_2 ball of radius 0.5. Accurcay is lower than standard training without smoothing.

Randomised smoothing certifies better than provable defense techniques on CIFAR.

Key takeaways:

- Adversarial training, provable defenses and randomized smoothing are the only known and efficient defense methods.
- Adversarial training is not provably but only empirically robust .
- Provable defenses techniques work well for small architectures but scale very poorly to large architectures: The outer convex domain becomes much larger than the reachable domain.
- Randomized smoothing is the best defense method up to now. Moreover it is very simple to put in place.
- Although these methods are the best existing ones, they still certify on only very small/negligible domains.

Thanks for your attention