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Introduction

Introduction (summary)

Damped nonlinear Klein-Gordon equation

Consider the equation for u(t, x), t ≥ 0, x ∈ R,

(DNKG) ü + αu̇ − uxx + u = up, (α > 0, p > 2 : constants)

Ultimate goal: global behavior of solutions ↔ initial data

Structure and relations of solution sets of different global behavior.

Main result

Description for all initial data in a small neighborhood of any 2-soliton, in
terms of the 1-soliton manifold and the 2-soliton manifold.

around 1-soliton: known (easy)

around 2-soliton: energy transfer between 2 solitons (non-trivial)

around 3-soliton: soliton merger (much harder)
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Introduction

Types of solutions

(DNKG) is well-posed in the energy space

~u(t) := (u(t), u̇(t)) ∈ H := H1(R)× L2(R),

where the energy is decreasing by

E (~u) :=

∫
R

|u̇|2 + |ux |2 + |u|2

2
− |u|

p+1

p + 1
dx , ∂tE (~u) = −α‖u̇‖22.

The focusing nonlinearity produces various types of solutions.
1 Global and decaying solutions ‖~u(t)‖H → 0 (t →∞)
2 Blow-up solutions ∃T ∈ (0,∞), ‖~u(t)‖H →∞ (t → T − 0)

3 Stationary solution u = Q(x) :=
{

p+1
2 sech2(p−12 x)

} 1
p−1

4 (Asymptotic) multi-solitons (N-solitons)

~u(t) =
∑N−1

j=0
(−1)j ~Q(x − cj(t)) + o(1) in H (t →∞)
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Introduction

Soliton resolution by Côte-Martel-Yuan (ARMA 2021)

established that the 3 types (decaying, blow-up and multi-solitons) exhaust
all solutions, as well as existence and detailed behavior of N-solitons

cj+1(t)− cj(t) ∼ log t (t →∞).

Soliton resolution along a time sequence was by Feireisl (’98). In the radial
3D case, the resolution for all time was by Burq-Schlag-Rougel (’17).
The soliton resolution conjecture is for (undamped) nonlinear dispersive
equations. So far, there are essentially only two types of equations where
the resolution is known without size restriction or sequence in time:

1 Completely integrable systems: needs decay in x and generic spectra.

2 Energy-critical wave equation (Duyckaerts-Kenig-Merle ’13), etc.:
needs symmetry or obstacle, fixing soliton positions.

Côte-Martel-Yuan [CMY] is apparently the only result with moving solitons
and for all initial data in the energy space.
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Introduction

Instability of the solitons

The two types of soliton resolutions have distinctive character: either the
solitons are very stable (integrable case) or unstable (energy-critical wave).
In this respect, (DNKG) belongs to the latter: Q is unstable, so are
N-solitons. Indeed, Q has exactly one unstable direction, namely the
unique negative eigenvalue of the linearized operator

L := −∂2x + 1− pQp−1, Lρ = −κρ, (κ := (p+3)(p−1)
4 , ρ := Q

p+1
2 )

which produces a growing solution to the linearized evolution:

u := e±ν±tρ, ν± :=

√
4κ+ α2 ± α

2
> 0

=⇒ ü + αu̇ − uxx + u = pQp−1u.

Qx is the unique kernel of L coming from the translation invariance.
All the other directions are damped for α > 0.
Hence N-solitons have exactly N unstable directions.
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Introduction

Manifold of 2-solitons by Côte-Martel-Yuan-Zhao (arxiv)

One can expect that the set of N-solitons forms a manifold of codim= N.
This was proven for N = 2 by Côte-Martel-Yuan-Zhao (arxiv’19) in general
dimensions.
Let ~u∗ ∈ C ([0,∞);H) be a 2-soliton of (DKG) with

~u∗(t) =
∑1

j=0
(−1)j ~Q(x − cj(t)) + γ(t), ‖γ(0)‖H � 1� |c0(0)− c1(0)|.

Denote the unstable directions and the orthogonal compliment by

Yj := (−1)j(1, ν+)ρ(x − cj(0)), Y †j := (−1)j(ν−, 1)ρ(x − cj(0)),

Y⊥δ := {ϕ ∈ H | ϕ ⊥ Y †0 ,Y
†
1 , ‖ϕ‖H < δ},

where the orthogonality is in L2x . Then ∃δ > 0 and ∃G : Y⊥δ → [−δ, δ]2

Lipschitz continuous, s.t. the solution u of (DKG) with

~u(0) = ~u∗(0) + ϕ+ a0Y0 + a1Y1, ϕ ∈ Y⊥δ , aj ∈ [−δ, δ]

is a 2-soliton iff a = G (ϕ). Our question: What happens for a 6= G (ϕ)?
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Main result

Main result: Global dynamics around 2-solitons

As above, let u∗ be the 2-soliton, Yj be the unstable directions, Y⊥δ be the
compliment, and G = (G0,G1) be the graph of the 2-soliton manifold.
Then ∃F = (F0,F1) : Y⊥δ × [−δ, δ]→ [−δ, δ] Lipschitz continuous s.t. the
solution u of (DKG) with

~u(0) = ~u∗(0) + ϕ+ a0Y0 + a1Y1, ϕ ∈ Y⊥δ , aj ∈ [−δ, δ]

1 is a 2-soliton iff a = G (ϕ) [CMYZ].

2 is a 1-soliton of the form (−1)j ~Q(x − cj(t)) + o(1) (t →∞),
iff aj = Fj(ϕ, a1−j) and a1−j < G1−j(ϕ).

3 is global decaying iff aj < Fj(ϕ, a1−j) for both j = 0, 1.

4 blows up otherwise.

In short, Fj is the graph of the 1-soliton manifold of (−1)jQ, and the
2-soliton graph G is the corner joining them. The rest is separated by
them into two open sets corresponding to the decay and the blow-up.
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Main result

Graphs of soliton manifolds

Around a given 2-soliton u∗ (with sufficient separation), consider

~u(0) = ~u∗(0) + ϕ+ a0Y0 + a1Y1

=
∑1

j=0
(−1)j( ~Q + ajY )(x − cj(0)) + γ(0) + ϕ

2-solitons: (a0, a1) = (G0(ϕ),G1(ϕ)) [CMYZ].
1-solitons: aj = Fj(ϕ, a1−j), a1−j < G1−j(ϕ).
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Remarks

Comparison among N-solitons (1,2,3)

One may expect similar structures around N-solitons for every N ∈ N.
However, the difficulty of proof, as well as complication of dynamics, is
quite different among N = (0, )1, 2, 3.

Below solitons E (u) < E (Q) In this case, there are only decaying and
blow-up solutions. Splitting into those two regions is general and classical
(cf. Payne-Sattinger ’75). Even without damping for nonlinear dispersive
equations, the splitting into scattering and blow-up is standard since
Kenig-Merle ’06 (at least for high powers p > 5).

Around 1-solitons The codim-1 instability of the ground state is also
classical. The key observation for classification is that the solution loses
energy to E (u) < E (Q) when it gets away from the soliton Q, so that we
can reduce it to the above case. Even without the damping, as soon as one
can preclude orbits returning close to Q, a similar classification is proved,
e.g. for p > 5 in the even symmetric case (Krieger-N.-Schlag ’12).
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Remarks

2-soliton: energy transfer between the 2 solitons

This is more difficult than a mere superposition of the 1-soliton instability,
due to soliton interactions of O(1/t) that is not integrable in time.
The issue is possible energy transfer between the two growing modes. The
solution may be decomposed as long as it stays close to 2-solitons

~u(t) =
∑1

j=0
(−1)j( ~Q + aj(t)Y )(x − cj(t)) + γ(t)

so that |a(t)|+ ‖γ(t)‖ ∼ the distance of ~u(t) and 2-solitons. For generic
choice of a(0), it grows exponentially by

d

dt

[
a0
a1

]
= ν+

[
a0
a1

]
+

[
M00(t) M01(t)
M10(t) M11(t)

] [
a0
a1

]
+ · · ·

where M(t) ∼ 1/t 6∈ L1(1,∞) due to the soliton interactions.
It changes the growth rate from eν+t such as tδeν+t , even for a single
mode. In the case of two modes, it can even change “the direction”.
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Remarks

2-soliton: energy transfer between the 2 solitons

To prove the corner-like structure, we need: if one of the unstable modes
is bigger (in the difference of two solutions), it will grow dominantly.
But the O(1/t) interactions could possibly transfer the growth from one
to the other. A simple example:

M(t) = δ

[
0 e−t

e−t 1
1+t

]
,

[
a0(0)
a1(0)

]
=

[
1
0

]
=⇒

[
a0(t)
a1(t)

]
∼ tδeν+t

[
0
1

]
(t →∞)

The key observation to preclude such phenomena is

∃µ(t) ∼ 1/t,

[
M00(t) M01(t)
M10(t) M11(t)

]
= µ(t)

[
1 0
0 1

]
+ L1t (1,∞).

µ(t) depends entirely on the remainder component of u, whose behavior
differs within the neighborhood of 2-soliton u∗. This is a difference from
the explicit ODE system for the motion of centers cj(t) given by [CMY].
Still, M00(t)−M11(t) is controlled thank to the symmetry of (DKG).
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Remarks

3-soliton: soliton merger

One may expect the same result and proof for N ≥ 3, but actually one
needs to treat a much harder phenomenon: soliton merger.
This comes from the fact that the soliton interaction is repulsive because
of the sign alternating structure. Indeed, [CMY] also prove that solitons of
the same sign cannot survive because of attractive interactions.
In the proof around 2-solitons, it is essential that the solitons stay away
from each other. This is violated if we start near 3-solitons and the middle
soliton is destroyed by instability, since the other two have the same sign.
So we must consider initial data around 2-solitons with the same sign, e.g.

~u(0) = ( ~Q + aY )(x + c) + ( ~Q + aY )(x − c), |c | � 1� |a|,

By the soliton resolution [CMY], as well as stability of decay and blow-up,
we deduce that u must become 1-soliton for some a ∈ R. Then the
symmetry implies that such ~u has to stay away from both 2-solitons and
1-solitons for some time, where the behavior must be something like 2
solitons merging into 1, but describing it seems difficult.

Kenji Nakanishi (RIMS) Global dynamics around 2-solitons June 15, 2021 12 / 17



Proof

Difference estimate around 1-solitons

The main ingredient of proof is the difference estimate for two solutions
starting from the neighborhood of the 2-soliton. In the construction of
2-soliton manifold, we may assume that one of them is 2-soliton [CMYZ].
For our result, we need to extend it to the case of 1-solitons.
Let u(0), u(1) be two solutions starting near the 2-soliton u∗:

~u(k)(0) = ~u∗(0) + ϕ(k) + a
(k)
0 Y0 + a

(k)
1 Y1,

such that ~u(0)(t) = ~Q(x − c(t)) + o(1) as t →∞. Then

|a(0)0 − a
(1)
0 | ∼ ‖~u

(0)(0)− ~u(1)(0)‖H
=⇒ 〈~u(0)(t)− ~u(1)(t)|Y †(x − c(t))〉 & (a

(0)
0 − a

(1)
0 )eν+t/2,

as long as the difference remains small (for appropriate c(t)).
This implies the uniqueness as well as Lipschitz continuity of the Q0-soliton
graph F0. The existence, as well as the remaining dynamics, follows from
the stability of decay and blow-up around Q, and superposition of them.
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Proof

Construction of the 1-soliton manifolds (near 2-solitons)

The graphs aj = Fj(ϕ, a1−j) of 1-solitons are constructed using the above
difference estimate, together with the stability of decay and blow-up.
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Proof

All-time dynamics around 2-solitons

For the difference estimate around the solution ~u(0), which goes from
2-soliton to 1-soliton, we need to know its behavior for all t > 0. This
description may be of independent interest. It is more involved than
starting with 1-solitons, due to the soliton interactions.
Let u be any solution starting near the 2-soliton. Then we can decompose

~u(t) =
∑1

j=0
(−1)j( ~Q + aj(t)Y )(x − cj(t)) + γ(t)

and 0 ≤ ∃T1 ≤ ∃T2 ≤ ∃T3 ≤ T∗: maximal existence, with
F (t) := exp(−|c0(t)− c1(t)|) measuring the soliton interactions,

1 0 ≤ t < T1 =⇒ |a| . ‖γ‖2H + F (unstable mode a is sleeping)

2 T1 ≤ t < T2 =⇒ ‖γ‖2H + F . |a| . ‖γ‖H + F 1/2 (rise of a)

3 T2 ≤ t < T3 =⇒ ‖γ‖H + F 1/2 . |a| < δ∗ (dominance by a)

for some absolute δ∗ > 0 (determining the neighborhood of 2-solitons),
provided that |a(0)|+ ‖γ(0)‖+ F (0)1/2 � δ∗.
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Proof

All-time dynamics around 2-solitons (continued)

~u(t) =
∑1

j=0
(−1)j( ~Q + aj(t)Y )(x − cj(t)) + γ(t),

with F (t) := exp(−|c0(t)− c1(t)|),
1 0 ≤ t < T1 =⇒ |a| . ‖γ‖2H + F .
2 T1 ≤ t < T2 =⇒ ‖γ‖2H + F . |a| . ‖γ‖H + F 1/2.
3 T2 ≤ t < T3 =⇒ ‖γ‖H + F 1/2 . |a| < δ∗.

Moreover, ∃Ts ∈ [0,T2] s.t. for 0 < t < Ts , we have separate dynamics

|∂tc|+ |(∂t − ν+)a| . ‖γ‖2H, ‖γ‖H . e−µt‖γ(0)‖H,

for some constant µ > 0. For Ts < t < T2, we have soliton interactions

|(∂t − ν+)aj − F (t)C0| � F ∼ [t − Ts + 1/F (Ts)]−1,

‖γ‖H . e−µ(t−Ts)‖γ(Ts)‖H + F ,

for some constant C0 > 0. They are not bounded in L1t (Ts ,T2).
(For T2 < t < T3, exponential growth implies L1t bound.)
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Proof

Key estimate to preclude growth transfer

In the difference estimate, the key point is to preclude the possibility of
growth transfer from a0 to a1 through O(1/t) soliton interactions. The
main estimate is on the linearized equation around the solution u(0) during
it is still around 2-solitons. For the (difference of) unstable modes it is

ȧj(t) =
∑1

k=0
Mjk(t)ak(t) + · · ·

with M(t) depending on u(0)(t). By symmetry of (DKG), we obtain

|M00(t)−M11(t)| . ‖v(t) + v †(t)‖H + ‖v(t)‖2H + F (t)2 ∈ L1t ,

where F (t) = O(1/t) contribution is cancelled in the “even” part v + v †,

v(t) := ~u(0)(t)−
∑1

j=0
(−1)j ~Q(x − cj(t)) =: v †(t,−x + c0(T2) + c1(T2)).

The proof relies on the complete description of u(0) for 0 < t < T3.
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