Dyadic models for MHD

SITE Conference

Mimi Dai, University of Illinois at Chicago

June 17, 2021

Long Time Behaviour and Singularity Formation in PDEs

K ロ ▶ K 倒 ▶

೧೦೧

メイヨメ

[Overview](#page-2-0)

[History of dyadic models](#page-15-0)

[MHD dyadic models](#page-17-0)

[Main results](#page-22-0)

[Outlook](#page-28-0)

 290

É

→ す唐→

 \prec 画

K ロ ▶ K (伊) .

MHD system

Incompressible magnetohydrodynamics (MHD) with Hall effect:

$$
u_t + u \cdot \nabla u - B \cdot \nabla B + \nabla p = \nu \Delta u,
$$

\n
$$
B_t + u \cdot \nabla B - B \cdot \nabla u + d_i \nabla \times ((\nabla \times B) \times B) = \mu \Delta B,
$$

\n
$$
\nabla \cdot u = 0,
$$

\n(1)

on $\Omega \times [0,\infty)$ with $\Omega = \mathbb{R}^3$ or $\Omega = \mathbb{T}^3$. $u : \Omega \times [0, \infty) \to \mathbb{R}^3$, fluid velocity, $B: \Omega \times [0, \infty) \to \mathbb{R}^3$, magnetic field, $p : \Omega \times [0, \infty) \rightarrow \mathbb{R}$, fluid pressure, ν : kinematic viscosity, μ : resistivity ~ 1 /conductivity, d_i : ion inertial length.

Subsystems and scalings

 $B \equiv 0$: [\(1\)](#page-2-1) \Longrightarrow Navier-Stokes equation

scaling: $u_{\lambda} = \lambda u(\lambda x, \lambda^2 t)$

 \triangleright $u \equiv 0$: [\(1\)](#page-2-1) \Longrightarrow Electron MHD:

 $B_t + d_i \nabla \times ((\nabla \times B) \times B) = \mu \Delta B$, $\nabla \cdot B = 0$ (2)

scaling: $B_{\lambda} = B(\lambda x, \lambda^2 t)$

 \blacktriangleright d_i \equiv 0: [\(1\)](#page-2-1) \Longrightarrow Usual MHD

scaling: $u_{\lambda} = \lambda u(\lambda x, \lambda^2 t)$, $B_{\lambda} = \lambda B(\lambda x, \lambda^2 t)$

 $2Q$

メロメ メ御 メメ ヨメ メヨメー

Subsystems and scalings

 \blacktriangleright d_i $>$ 0: Hall MHD, no natural scaling

 \blacktriangleright Two nonlinear structures:

$$
\nabla \times ((\nabla \times B) \times B) = \nabla \times \nabla \cdot (B \otimes B)
$$

$$
(u\cdot\nabla)\cdot u=\nabla\cdot(u\otimes u)
$$

different scalings; different "degrees of singular effect"; different geometry properties

 \blacktriangleright MHD and Hall MHD obey the same energy law:

$$
\frac{1}{2}\frac{d}{dt}\left(\|u\|_{L^2}^2 + \|B\|_{L^2}^2\right) + \nu \|\nabla u\|_{L^2}^2 + \mu \|\nabla B\|_{L^2}^2 = 0
$$

4 0 8 1

Unanswered Questions (perspective of mathematics)

- (i) Global regularity / finite time singularity
	- (ii) Uniqueness / non-uniqueness of Leray-Hopf solution
- (iii) Stability / instability
- (iv) Turbulence related questions: anomalous dissipation...

4日)

Unanswered Questions (perspective of mathematics)

- (i) Global regularity / finite time singularity
	- (ii) Uniqueness / non-uniqueness of Leray-Hopf solution
	- (iii) Stability / instability
- (iv) Turbulence related questions: anomalous dissipation...
- Pure fluid VS MHD: similarity $+$ complexity

interactions of u and $B+$ Hall nonlinearity

↓

Unanswered Questions (perspective of mathematics)

- (i) Global regularity / finite time singularity
	- (ii) Uniqueness / non-uniqueness of Leray-Hopf solution
	- (iii) Stability / instability
- (iv) Turbulence related questions: anomalous dissipation...
- \blacktriangleright Pure fluid VS MHD: similarity $+$ complexity

interactions of u and $B+$ Hall nonlinearity

↓

 \triangleright Toy models to gain insights towards understanding the questions above: 1D models, dyadic models, ...

1D models for Euler

- ▶ Constantin-Lax-Majda model, De Gregorio model, Cordoba-Cordoba-Fontelos model, Okamoto-Sakajo-Wunsch model
- ▶ Hou-Li-Shi-Wang-Yu model
- ▶ Elgindi-Jeong (2017): "On the Effects of Advection and Vortex Stretching"
- \blacktriangleright Elgindi-Ghoul-Masmoudi (2019): "Stable self-similar blowup for a family of nonlocal transport equations"

Dyadic Euler/NSE models

- ▶ Gledzer, Ohkitani-Yamada, Desnyanskiy-Novikov, Obukhov, Dinaburg-Sinai, Katz-Pavlović, Kiselev-Zlatoš, etc.
- ▶ Cheskidov, Friedlander, Pavlović, 2005-2008: well-posedness, smooth solutions, blow-up, anomalous dissipation, etc.
- \blacktriangleright Barbato, Flandoli, Romito, etc: dyadic models, stochastic dyadic models, ...

Dyadic Euler/NSE models

Very well-understood! It did give some insights for the real dynamics, for instance, on the problem of Onsager's conjecture.

"Susan Friedlander's contributions in mathematical fluid dynamics" - Cheskidov-Glatt-Holtz-Pavlović-Shvydkoy-Vicol

Legacy of Kolmogorov

Highlights of Kolmogorov's classical phenomenological theory of turbulence for hydrodynamics (1941):

- \triangleright Assumptions on the flow: homogeneity, isotropy, self-similarity
- \triangleright Conjecture on dissipation wavenumber: There exists a critical wavenumber

$$
\kappa_{\rm d} = \left(\frac{\varepsilon}{\nu^3}\right)^{\frac{1}{4}}, \quad \varepsilon = \nu \left\langle \|\nabla u\|_2^2 \right\rangle
$$

such that the dynamics above the wavenumber κ_d is dominated by the linear dissipative term.

Energy spectrum below κ_d **(the inertial range):**

$$
\mathcal{E}(k) \sim \varepsilon^{\frac{2}{3}} k^{-\frac{5}{3}}
$$

 $\liminf_{\nu\to 0} \varepsilon > 0$

Legacy of Kolmogorov

Deviation from 1941's classical theory:

- \blacktriangleright Landau, 1942: fully developed turbulent flow may be spatially and temporally inhomogeneous
- \triangleright Experimental evidences show discrepancy from the $-5/3$ law, small scales have fractal properties
- \triangleright Kolmogorov, 1962: concept of intermittency was introduced to describe the deviation; K41 was updated to K62, in which intermittency was studied via a fractal dimension parameter D and included in κ_d and $\mathcal{E}(k)$ (statistical tools and scaling analysis)

Intermittency dimension: towards more precisely mathematical characterization

- \triangleright Cheskidov-Shvydkoy, 2012: intermittency dimension based on Littlewood-Paley theory; active volume, region, eddy, etc, reformulated in mathematical language
- \triangleright Cheskidov-Dai, 2015: intermittency dimension through the saturation level of Bernstein's inequality
- \blacktriangleright Cheskidov-Dai, 2015-2016: wavenumber splitting approach, low modes regularity criteria for dissipative systems, determining wavenumber for supercritical systems, number of degrees of freedom

Intermittency dimension parameter: saturation of Bernstein's inequality

▶ Bernstein's inequality in 3D: $||v_j||_{L^{\infty}} \le c \lambda_j^{3/2}$ $||y_j||_{L^2}, \lambda_j = 2^j$ Intermittency dimension (Cheskidov-D., 2015):

$$
\delta_{v} := \sup \left\{ s \in \mathbb{R} : \left\langle \sum_{j} \lambda_{j}^{-1+s} ||v_{j}||_{L^{\infty}}^{2} \right\rangle \leq c \left\langle \sum_{j} \lambda_{j}^{2} ||v_{j}||_{L^{2}}^{2} \right\rangle \right\}
$$

- \blacktriangleright $\delta_{\nu} \in [0, 3]$
- Extreme intermittency: $\delta_{\nu} = 0$, e.g., Dirac delta function;
- **I** Kolmogorov's regime: $\delta_v = 3$, e.g., sin(λx);
- **IDED** Bernstein's relationship with correction of $\delta_{\mathbf{v}}$:

$$
||v_j||_{L^q} \sim \lambda_j^{(3-\delta_v)(\frac{1}{p}-\frac{1}{q})} ||v_j||_{L^p}, \quad q \geq p
$$

Principles of proposing dyadic models

 \triangleright Assume local interactions: only the nearest shells interact with each other

4 0 8

- \blacktriangleright Preserve invariant quantities: energy, helicity, ...
- \blacktriangleright Energy balance through each shell

- \triangleright PDE \rightarrow ODE with infinitely many equations
- \blacktriangleright Spatial structure is over simplified
- \blacktriangleright Geometry features are not preserved

つくい

3 □ ト

 \leftarrow \overline{m} \rightarrow

Dyadic MHD

- \triangleright δ_{μ} : intermittency dimension for the velocity field u
- \triangleright δ_b : intermittency dimension for the magnetic field B
- Energy balance at i -th shell

$$
\frac{1}{2}\frac{d}{dt}\|u_j\|_{L^2}^2 + \int_{\mathbb{R}^3} (u \cdot \nabla u)_j \cdot u_j \, dx - \int_{\mathbb{R}^3} (B \cdot \nabla B)_j \cdot u_j \, dx + \nu \|\nabla u_j\|_{L^2}^2 \n\frac{1}{2}\frac{d}{dt}\|B_j\|_{L^2}^2 + \int_{\mathbb{R}^3} (u \cdot \nabla B)_j \cdot B_j \, dx - \int_{\mathbb{R}^3} (B \cdot \nabla u)_j \cdot B_j \, dx \n+ d_i \int_{\mathbb{R}^3} ((\nabla \times B) \times B)_j \cdot \nabla \times B_j \, dx + \mu \|\nabla B_j\|_{L^2}^2 = 0.
$$

←ロ ▶ → 伊 ▶

 \mathcal{A} .

ふくぼう

つくい

Dyadic MHD: $a_j = ||u_j||_{L^2}, b_j = ||B_j||_{L^2}$

$$
\frac{d}{dt}a_j + \alpha_1 \left(\lambda_j^{\frac{5-\delta_y}{2}} a_j a_{j+1} - \lambda_{j-1}^{\frac{5-\delta_y}{2}} a_{j-1}^2 \right) + \beta_1 \left(\lambda_j^{\frac{5-\delta_y}{2}} a_{j+1}^2 - \lambda_{j-1}^{\frac{5-\delta_y}{2}} a_{j-1} a_j \right) \n+ \alpha_3 \left(\lambda_j^{\frac{5-\delta_b}{2}} b_j b_{j+1} - \lambda_{j-1}^{\frac{5-\delta_b}{2}} b_{j-1}^2 \right) + \beta_3 \left(\lambda_{j+1}^{\frac{5-\delta_b}{2}} b_{j+1}^2 - \lambda_j^{\frac{5-\delta_b}{2}} b_{j-1} b_j \right) \n+ \nu \lambda_j^2 a_j = 0, \n\frac{d}{dt}b_j + \alpha_2 \left(\lambda_j^{\frac{5-\delta_b}{2}} a_j b_{j+1} - \lambda_{j-1}^{\frac{5-\delta_b}{2}} a_{j-1} b_{j-1} \right) + \beta_2 \left(\lambda_{j+1}^{\frac{5-\delta_b}{2}} a_{j+1} b_{j+1} - \lambda_j^{\frac{5-\delta_b}{2}} + \alpha_3 \left(\lambda_j^{\frac{5-\delta_b}{2}} b_j a_{j+1} - \lambda_{j-1}^{\frac{5-\delta_b}{2}} a_{j-1} b_{j-1} \right) + \beta_3 \left(\lambda_{j+1}^{\frac{5-\delta_b}{2}} b_{j+1} a_{j+1} - \lambda_j^{\frac{5-\delta_b}{2}} a_{j+1} a_{j+1} \right) \n+ d_i \alpha_4 \left(\lambda_j^{\frac{7-\delta_b}{2}} b_j b_{j+1} - \lambda_{j-1}^{\frac{7-\delta_b}{2}} b_{j-1}^2 \right) + d_i \beta_4 \left(\lambda_j^{\frac{7-\delta_b}{2}} b_{j+1}^2 - \lambda_{j-1}^{\frac{7-\delta_b}{2}} b_j b_{j+1}^2 + 1 \right)
$$

SITE Conference

Remark

The sign of the parameters α 's and β 's indicates the direction of energy transfer:

- \blacktriangleright Positive sign: forward energy cascade
- \blacktriangleright Negative sign: backward energy cascade

Remarks:

- \triangleright Consistent with dyadic models introduced by physicists
- **Energy is conserved for any coefficient parameters** α **'s and** β **'s**
- \triangleright With particular choice of parameters, cross helicity is conserved

Special case I: both forward and backward energy cascade

$$
\alpha_1 = \alpha_2 = \alpha_4 = 1, \ \alpha_3 = -1; \ \beta_k = 0 \text{ for } 1 \le k \le 4; \ \delta_u = \delta_b =: \delta;
$$

$$
\theta = \frac{5-\delta}{2}
$$

$$
\frac{d}{dt}a_j = -\nu \lambda_j^2 a_j - \lambda_j^{\theta} a_j a_{j+1} + \lambda_{j-1}^{\theta} a_{j-1}^2 + \lambda_j^{\theta} b_j b_{j+1} - \lambda_{j-1}^{\theta} b_{j-1}^2,
$$
\n
$$
\frac{d}{dt}b_j = -\mu \lambda_j^2 b_j - \lambda_j^{\theta} a_j b_{j+1} + \lambda_j^{\theta} b_j a_{j+1} - d_j \left(\lambda_j^{\theta+1} b_j b_{j+1} - \lambda_{j-1}^{\theta+1} b_{j-1}^2 \right)
$$
\n(3)

$$
\cdots \longrightarrow a_{j-1} \longrightarrow a_j \longrightarrow a_{j+1} \longrightarrow \cdots
$$

$$
\uparrow \swarrow \uparrow \swarrow \uparrow
$$

$$
\cdots \longrightarrow b_{j-1} \longrightarrow b_j \longrightarrow b_{j+1} \longrightarrow \cdots
$$

 Ω

Total energy and cross helicity are conserved [if](#page-19-0) $\nu = \mu = 0$ $\nu = \mu = 0$ $\nu = \mu = 0$.

SITE Conference

Special case II: only forward energy cascade

$$
\alpha_k = 1 \text{ for } 1 \le 4;\ \beta_k = 0 \text{ for } 1 \le k \le 4;\ \delta_u = \delta_b =: \delta;\ \theta = \frac{5-\delta}{2}:
$$

$$
\frac{d}{dt}a_j = -\nu \lambda_j^2 a_j - \lambda_j^{\theta} a_j a_{j+1} + \lambda_{j-1}^{\theta} a_{j-1}^2 - \lambda_j^{\theta} b_j b_{j+1} + \lambda_{j-1}^{\theta} b_{j-1}^2,
$$
\n
$$
\frac{d}{dt}b_j = -\mu \lambda_j^2 b_j + \lambda_j^{\theta} a_j b_{j+1} - \lambda_j^{\theta} b_j a_{j+1} - d_i \left(\lambda_j^{\theta+1} b_j b_{j+1} - \lambda_{j-1}^{\theta+1} b_{j-1}^2 \right)
$$
\n(4)

$$
\cdots \longrightarrow a_{j-1} \longrightarrow a_j \longrightarrow a_{j+1} \longrightarrow \cdots
$$

$$
\downarrow \nearrow \downarrow \nearrow \downarrow
$$

 $\cdots \longrightarrow b_{i-1} \longrightarrow b_i \longrightarrow b_{i+1} \longrightarrow \cdots$

Total energy is conserved; cross helicity is not conserved.

 $2Q$

重

イロメ イ母メ イヨメ イヨメー

Notions of solutions

- \triangleright Weak solution: $(a_i(t), b_i(t))$ satisfies [\(3\)](#page-20-1), $\forall j \geq 0;$ $(\mathsf{a}(t),\mathsf{b}(t)) \in \ell^2 \times \ell^2; \, (\mathsf{a}_j,\mathsf{b}_j) \in \mathsf{C}^1([t_0,\infty)), \, \forall j \geq 0.$
- Strong solution: $(a_i(t), b_i(t))$ is a (weak) solution; $||a(t)||_{H_1}$ and $||b(t)||_{H_1}$ are bounded.

へのへ

4 m * 4 m * 4 m

Main results: viscous case

Model [\(3\)](#page-20-1) with $d_i > 0$, both forward and backward energy cascade, (M.D. 2020):

$$
\blacktriangleright \delta = 3 \Leftrightarrow \theta = \frac{5-\delta}{2} = 1
$$
: global strong solution

$$
\blacktriangleright \delta \in (1,3) \Leftrightarrow \theta \in (1,2): \text{ local strong solution}
$$

- \triangleright $\delta \in [-1,1] \Leftrightarrow \theta \in [2,3]$: Not much is known; anything could happen...
- \triangleright δ \lt $-1 \Leftrightarrow \theta$ $>$ 3: positive solutions with large initial data develops blow-up

larger $\delta \sim$ more regular u and B \sim weaker nonlinearity \sim smaller θ

Main results: viscous case

Model [\(3\)](#page-20-1) with $d_i = 0$, i.e. dyadic model of usual MHD with forward and backward energy cascade (M.D. 2020):

$$
\blacktriangleright \delta \in [1,3] \Leftrightarrow \theta \in [1,2] \colon \text{global strong solution}
$$

$$
\blacktriangleright \delta \in [0,1) \Leftrightarrow \theta \in (2,\tfrac{5}{2}]: \text{ local strong solution}
$$

$$
\blacktriangleright \; \delta < 0 \Leftrightarrow \theta > \tfrac{5}{2} \text{: gap...}
$$

Model [\(4\)](#page-21-1) with $d_i = 0$, i.e. dyadic model of usual MHD with forward energy cascade, (M.D. 2021):

 \triangleright δ < $-1 \Leftrightarrow \theta$ > 3: blow-up for positive solutions with large initial data

Main results: inviscid case

Model [\(4\)](#page-21-1) with $\nu = \mu = d_i = 0$ and forcing f_0 on the first model of $a₀$, i.e. dyadic model of usual MHD with forward energy cascade: (M.D. - S. Friedlander, 2021):

- Fixed points: $\bar{a}_j^2 + \bar{b}_j^2 = \lambda^{\frac{1}{3} \theta} f_0 \lambda_j^{-\frac{2}{3} \theta}$ $_j$ \degree , "circle", Onsager scaling
- \blacktriangleright Stability of fixed points
- \blacktriangleright Finite-time blow-up
- \triangleright Solutions attracted by a fixed point dissipates energy

 \triangleright Fixed point of dyadic Euler: a unique fixed point \rightarrow strong global attractor, Cheskidov-Friedlander-Pavlovć

へのへ

K 로)

(□) (@)

SITE Conference

- \triangleright Fixed point of dyadic Euler: a unique fixed point \rightarrow strong global attractor, Cheskidov-Friedlander-Pavlovć
- \triangleright Stability/instability of the original MHD: interesting $+$ challenging, vast literature in both mathematics $+$ physics communities: Liu-Masmoudi-Zhai-Zhao, Ren-Wei-Zhang, Ren-Zhao, ...

Ongoing and future work

- \blacktriangleright Energy transfer from fluid to magnetic field and vice versa
- \blacktriangleright Attractor
- \blacktriangleright Vanishing viscosity limit
- \blacktriangleright Anomalous dissipation
- \triangleright Models with different energy cascade scenarios
- \blacktriangleright Models with $\delta_{\mu} \neq \delta_{b}$,

ה מר

 $4.17 \times$

THANK YOU!

È

メロメメ 御 メメ きょくきょ

 299

SITE Conference