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MHD system

Incompressible magnetohydrodynamics (MHD) with Hall effect:

ut + u · ∇u − B · ∇B +∇p = ν∆u,

Bt + u · ∇B − B · ∇u + di∇× ((∇× B)× B) = µ∆B,

∇ · u = 0,

(1)

on Ω× [0,∞) with Ω = R3 or Ω = T3.
u : Ω× [0,∞)→ R3, fluid velocity,
B : Ω× [0,∞)→ R3, magnetic field,
p : Ω× [0,∞)→ R, fluid pressure,
ν : kinematic viscosity,
µ : resistivity ∼ 1/conductivity,
di : ion inertial length.
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Subsystems and scalings

I B ≡ 0: (1) =⇒ Navier-Stokes equation

scaling: uλ = λu(λx , λ2t)

I u ≡ 0: (1) =⇒ Electron MHD:

Bt + di∇× ((∇× B)× B) = µ∆B, ∇ · B = 0 (2)

scaling: Bλ = B(λx , λ2t)

I di ≡ 0: (1) =⇒ Usual MHD

scaling: uλ = λu(λx , λ2t), Bλ = λB(λx , λ2t)
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Subsystems and scalings

I di > 0: Hall MHD, no natural scaling

I Two nonlinear structures:

∇× ((∇× B)× B) = ∇×∇ · (B ⊗ B)

(u · ∇) · u = ∇ · (u ⊗ u)

different scalings; different “degrees of singular effect”;
different geometry properties

I MHD and Hall MHD obey the same energy law:

1

2

d

dt

(
‖u‖2L2 + ‖B‖2L2

)
+ ν‖∇u‖2L2 + µ‖∇B‖2L2 = 0
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Unanswered Questions (perspective of mathematics)

I (i) Global regularity / finite time singularity
(ii) Uniqueness / non-uniqueness of Leray-Hopf solution
(iii) Stability / instability
(iv) Turbulence related questions: anomalous dissipation...

I Pure fluid VS MHD: similarity + complexity

↓

interactions of u and B+ Hall nonlinearity

I Toy models to gain insights towards understanding the
questions above: 1D models, dyadic models, ...
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1D models for Euler

I Constantin-Lax-Majda model, De Gregorio model,
Cordoba-Cordoba-Fontelos model, Okamoto-Sakajo-Wunsch
model

I Hou-Li-Shi-Wang-Yu model

I Elgindi-Jeong (2017): “On the Effects of Advection and
Vortex Stretching”

I Elgindi-Ghoul-Masmoudi (2019): “Stable self-similar blowup
for a family of nonlocal transport equations”
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Dyadic Euler/NSE models

I Gledzer, Ohkitani-Yamada, Desnyanskiy-Novikov, Obukhov,
Dinaburg-Sinai, Katz-Pavlović, Kiselev-Zlatoš, etc.

I Cheskidov, Friedlander, Pavlović, 2005-2008: well-posedness,
smooth solutions, blow-up, anomalous dissipation, etc.

I Barbato, Flandoli, Romito, etc: dyadic models, stochastic
dyadic models, ...
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Dyadic Euler/NSE models

Very well-understood! It did give some insights for the real
dynamics, for instance, on the problem of Onsager’s conjecture.

“Susan Friedlander’s contributions in mathematical fluid
dynamics” - Cheskidov-Glatt-Holtz-Pavlović-Shvydkoy-Vicol
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Legacy of Kolmogorov

Highlights of Kolmogorov’s classical phenomenological theory of
turbulence for hydrodynamics (1941):
I Assumptions on the flow: homogeneity, isotropy, self-similarity
I Conjecture on dissipation wavenumber: There exists a critical

wavenumber

κd =
( ε
ν3

) 1
4
, ε = ν

〈
‖∇u‖22

〉
such that the dynamics above the wavenumber κd is
dominated by the linear dissipative term.

I Energy spectrum below κd (the inertial range):

E(k) ∼ ε
2
3 k−

5
3

I lim infν→0 ε > 0
SITE Conference
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Legacy of Kolmogorov

Deviation from 1941’s classical theory:

I Landau, 1942: fully developed turbulent flow may be spatially
and temporally inhomogeneous

I Experimental evidences show discrepancy from the −5/3 law,
small scales have fractal properties

I Kolmogorov, 1962: concept of intermittency was introduced
to describe the deviation; K41 was updated to K62, in which
intermittency was studied via a fractal dimension parameter D
and included in κd and E(k) (statistical tools and scaling
analysis)
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Intermittency dimension: towards more precisely
mathematical characterization

I Cheskidov-Shvydkoy, 2012: intermittency dimension based on
Littlewood-Paley theory; active volume, region, eddy, etc,
reformulated in mathematical language

I Cheskidov-Dai, 2015: intermittency dimension through the
saturation level of Bernstein’s inequality

I Cheskidov-Dai, 2015-2016: wavenumber splitting approach,
low modes regularity criteria for dissipative systems,
determining wavenumber for supercritical systems, number of
degrees of freedom
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Intermittency dimension parameter: saturation of
Bernstein’s inequality

I Bernstein’s inequality in 3D: ‖vj‖L∞≤cλ
3/2
j ‖vj‖L2 , λj = 2j

I Intermittency dimension (Cheskidov-D., 2015):

δv := sup

s ∈ R :

〈∑
j

λ−1+s
j ‖vj‖2L∞

〉
≤ c

〈∑
j

λ2j ‖vj‖2L2

〉
I δv ∈ [0, 3]
I Extreme intermittency: δv = 0, e.g., Dirac delta function;
I Kolmogorov’s regime: δv = 3, e.g., sin(λx);
I Bernstein’s relationship with correction of δv :

‖vj‖Lq∼λ
(3−δv )( 1p−

1
q
)

j ‖vj‖Lp , q ≥ p
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Principles of proposing dyadic models

I Assume local interactions: only the nearest shells interact with
each other

I Preserve invariant quantities: energy, helicity, ...

I Energy balance through each shell
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Remarks

I PDE → ODE with infinitely many equations

I Spatial structure is over simplified

I Geometry features are not preserved
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Dyadic MHD

I δu: intermittency dimension for the velocity field u

I δb: intermittency dimension for the magnetic field B

I Energy balance at j-th shell

1

2

d

dt
‖uj‖2L2 +

∫
R3

(u · ∇u)j · uj dx −
∫
R3

(B · ∇B)j · uj dx + ν‖∇uj‖2L2 = 0,

1

2

d

dt
‖Bj‖2L2 +

∫
R3

(u · ∇B)j · Bj dx −
∫
R3

(B · ∇u)j · Bj dx

aaaaaaaaaa + di

∫
R3

((∇× B)× B)j · ∇ × Bj dx + µ‖∇Bj‖2L2 = 0.
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Dyadic MHD: aj = ‖uj‖L2, bj = ‖Bj‖L2

d

dt
aj + α1

(
λ

5−δu
2

j ajaj+1 − λ
5−δu

2
j−1 a2j−1

)
+ β1

(
λ

5−δu
2

j a2j+1 − λ
5−δu

2
j−1 aj−1aj

)
+α3

(
λ

5−δb
2

j bjbj+1 − λ
5−δb

2
j−1 b2j−1

)
+ β3

(
λ

5−δb
2

j+1 b2j+1 − λ
5−δb

2
j bj−1bj

)
+νλ2j aj = 0,

d

dt
bj + α2

(
λ

5−δb
2

j ajbj+1 − λ
5−δb

2
j−1 aj−1bj−1

)
+ β2

(
λ

5−δb
2

j+1 aj+1bj+1 − λ
5−δb

2
j ajbj−1

)
+α3

(
λ

5−δb
2

j bjaj+1 − λ
5−δb

2
j−1 aj−1bj−1

)
+ β3

(
λ

5−δb
2

j+1 bj+1aj+1 − λ
5−δb

2
j aj−1bj

)
+diα4

(
λ

7−δb
2

j bjbj+1 − λ
7−δb

2
j−1 b2j−1

)
+ diβ4

(
λ

7−δb
2

j b2j+1 − λ
7−δb

2
j−1 bjbj−1

)
+ µλ2j bj = 0
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Remark

The sign of the parameters α’s and β’s indicates the direction of
energy transfer:

I Positive sign: forward energy cascade

I Negative sign: backward energy cascade

Remarks:

I Consistent with dyadic models introduced by physicists

I Energy is conserved for any coefficient parameters α’s and β’s

I With particular choice of parameters, cross helicity is
conserved
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Special case I: both forward and backward energy cascade

α1 = α2 = α4 = 1, α3 = −1; βk = 0 for 1 ≤ k ≤ 4; δu = δb =: δ;
θ = 5−δ

2 :

d

dt
aj =− νλ2j aj − λθj ajaj+1 + λθj−1a

2
j−1 + λθj bjbj+1 − λθj−1b2j−1,

d

dt
bj =− µλ2j bj − λθj ajbj+1 + λθj bjaj+1 − di

(
λθ+1
j bjbj+1 − λθ+1

j−1 b
2
j−1

)
(3)

· · · −→ aj−1 −→ aj −→ aj+1 −→ · · ·

↑ ↙ ↑ ↙ ↑

· · · −→ bj−1 −→ bj −→ bj+1 −→ · · ·

Total energy and cross helicity are conserved if ν = µ = di = 0.
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Special case II: only forward energy cascade

αk = 1 for 1 ≤ 4; βk = 0 for 1 ≤ k ≤ 4; δu = δb =: δ; θ = 5−δ
2 :

d

dt
aj =− νλ2j aj − λθj ajaj+1 + λθj−1a

2
j−1 − λθj bjbj+1 + λθj−1b

2
j−1,

d

dt
bj =− µλ2j bj + λθj ajbj+1 − λθj bjaj+1 − di

(
λθ+1
j bjbj+1 − λθ+1

j−1 b
2
j−1

)
(4)

· · · −→ aj−1 −→ aj −→ aj+1 −→ · · ·

↓ ↗ ↓ ↗ ↓

· · · −→ bj−1 −→ bj −→ bj+1 −→ · · ·

Total energy is conserved; cross helicity is not conserved.
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Notions of solutions

I Weak solution: (aj(t), bj(t)) satisfies (3), ∀j ≥ 0;
(a(t), b(t)) ∈ `2 × `2; (aj , bj) ∈ C 1([t0,∞)), ∀j ≥ 0.

I Strong solution: (aj(t), bj(t)) is a (weak) solution; ‖a(t)‖H1

and ‖b(t)‖H1 are bounded.
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Main results: viscous case

Model (3) with di > 0, both forward and backward energy cascade,
(M.D. 2020):

I δ = 3⇔ θ = 5−δ
2 = 1: global strong solution

I δ ∈ (1, 3)⇔ θ ∈ (1, 2): local strong solution

I δ ∈ [−1, 1]⇔ θ ∈ [2, 3]: Not much is known; anything could
happen...

I δ < −1⇔ θ > 3: positive solutions with large initial data
develops blow-up

larger δ ∼ more regular u and B ∼ weaker nonlinearity ∼ smaller θ
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Main results: viscous case

Model (3) with di = 0, i.e. dyadic model of usual MHD with
forward and backward energy cascade (M.D. 2020):

I δ ∈ [1, 3]⇔ θ ∈ [1, 2]: global strong solution

I δ ∈ [0, 1)⇔ θ ∈ (2, 52 ]: local strong solution

I δ < 0⇔ θ > 5
2 : gap...

Model (4) with di = 0, i.e. dyadic model of usual MHD with
forward energy cascade, (M.D. 2021):

I δ < −1⇔ θ > 3: blow-up for positive solutions with large
initial data

SITE Conference



Overview
History of dyadic models

MHD dyadic models
Main results

Outlook

Main results: inviscid case

Model (4) with ν = µ = di = 0 and forcing f0 on the first model of
a0, i.e. dyadic model of usual MHD with forward energy cascade:
(M.D. - S. Friedlander, 2021):

I Fixed points: ā2j + b̄2j = λ
1
3
θf0λ

− 2
3
θ

j , “circle”, Onsager scaling

I Stability of fixed points

I Finite-time blow-up

I Solutions attracted by a fixed point dissipates energy
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Contrasts

I Fixed point of dyadic Euler: a unique fixed point → strong
global attractor, Cheskidov-Friedlander-Pavlovć

I Stability/instability of the original MHD: interesting +
challenging, vast literature in both mathematics + physics
communities: Liu-Masmoudi-Zhai-Zhao, Ren-Wei-Zhang,
Ren-Zhao, ...
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Ongoing and future work

I Energy transfer from fluid to magnetic field and vice versa

I Attractor

I Vanishing viscosity limit

I Anomalous dissipation

I Models with different energy cascade scenarios

I Models with δu 6= δb, ....
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THANK YOU!
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