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Consider the viscous Hamilton-Jacobi eq.

uy — Au = |VulP, reQ, t>0,
(P) 4 u=0, €N, t>0,
u(z,0) = ¢(z), z € €, /\
where p > 2, O c RY and =

o eW = {UO c Wl’oo(ﬂ); ug > 0, ug =0 on 6’Q}

Since ||u(t)]|co < ||P|loo, t > 0 by the maximum principle,

ublowsupatt =T < oo < limsup|Vu(t)|e = co.
ur — Au = ul b=
gradient blowup (GBU)

[Barles - Da Lio (2004)]
(P) admits a unique global (generalized) viscosity solution u s.t.
- u coincides with the classical sol. in (0,7,
-u € C(Q x [0,00)) NCH2(Q x (0,00)), u >0
- u solves the PDE in € x (0, 00).



[Porretta - Souplet(2017), Quaas - Rodriguez(2018)] r\

¢ is suitably large, 9

= u exhibits a loss of boundary condition (LBC) at 3t > T'(¢).
[Porretta - Souplet(2017, 2020)] .

there is a GBU sol. without LBC, [\

Q

which is a separatrix between global sols. and GBU sols. with LBC.

[Porretta - Zuazua(2012)]
u € C%1(Q x (T,00)) with u =0 on 9Q x [T, 00) for 3T > T
and u — 0 in CY(Q) as t — oo.

[M.-Souplet(2020)](N = 1)
There is a viscosity sol. with arbitrary combination of GBU and RBC.

/\ /\u Mz 00 ) /\1/\ . /\
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Rate of gadient blow-up (GBU)
[Porretta - Souplet(2020)]
IVu(t)lloo > C(T —t)"72, te(0,T)  typell
faster than (T — t)_ﬁ (type I)

[Attouchi - Souplet(2020)]
If a sol. is increasing in time in a nbhd. of 0f2, then

CUT — )77 < |[Vu(t) oo < Co(T —t)"72, te (0,T)
for some C1,C5 > 0.

[Porretta - Souplet(2020)] (N = 1)
If u is a separatrix between global sol. and GBU sol. with LBC,

|t ()]|oo = C(T —t)"72, te(0,T)
for some C' > 0.



Denote by z the number of sign changes on [0, R], i.e.,

z(v:[0,R])=sup{m eN:dzg < - <xy € (0, R) s.t.
v(x;—1)v(x;) <0,e=1,...,m}

v(x)
/ N[N\~
O/\/\ /\/R 0 D4 N\ =R

Rate of rocovery of boundary condition (RBC)

[Porretta - Souplet(2020)] (N = 1)
Under z(u; : [0,1]) = 2 and some assumptions,
if u recoveries BC at (x,t) = (0,7), then
Ci(t —t) <u(0,t) < Cy(t—1t), te(0,7)
for some C'1,C5 > 0.



Let 0 < R < oo and Consider

( Up = Upr + |Uuz|?, reQ:=(0,R), t>0,
< ’U,:O, ZEE@Q,t>O,
| u(@,0) = uo(a). reQ,

Let

B::LG(O,l), k= 22

p—1 2(p—1)

The singular and regular steady-states are respectively given by
U(:IZ’) = Cpxl—ﬂj T > 07 where Cp = (1 . 5)_165

K U

0

and for a > 0,
Uy(x) =U(a+2x)—U(a), x>0.



Theorem 1

(i) Suppose that u undergoes GBU at (z,t) = (0, 7).
Let n be the number of vanishing intersetions
between v and U at (x,t) = (0,T).
Then there exists C' > 0 s.t.

U
lim (T —t)72u,(0,t) = C /ﬁu
t—1T— >

and
w(z,t) = Uy (z) + O(27), uy(,t) = C’L(t)(a:) + O(x)

p—1

as t — T_ with a(t) := SC*P(T —t)r—2",

(ii) For each n > 1, there exists a sol. that behaves as above
with some T' < oo, C' > 0.



Theorem 2
(i) Assume that a sol. u undergoes RBC at (x,t) = (0,7), i.e.,

u(0,t) > 0 for t < 7 close to 7 and u(0,7) = 0.

Let n be the number of vanishing intersections at (x,t) = (0, 7).
Then there exists C' > 0 s.t.

lim (7 — £)""u(0,) = C ?MZ
t—717—
and ]

u(z,t) = C(t —t)"pn (T — )" Y22) + o((T —t)") as t — 7_,

where ¢, is the eigenft.

p 1 'y _
b+ (Sog 3 — 5) 00+ ko = A0

with ¢,,(0) = 1 associated with the nth eigenvalue n — k.

(ii) For each n > 1, there exists a sol. that behaves as above
with some 7 < o0, C > 0.



G : the braid group of three strands

X,Y . generators of G

A

X

I : the trivial braid.

A

j/_ _/&
)/(—1 Y_l
XX 1=7g
X2




A € G is a positive braid < A contains neither X~ ! nor Y 1.
Denote by GT the semigroup of positive braids in G.

Artin's formula : XY X =Y XY

ﬁ XYXYXY

A — — XY2XY?2
7 XYXYXY = XY2XY

jﬂ\ ,/\\ XYXYXY
/A w—

For A, B € G, A is topologically equivalent to B
< A is modified to B applying Artin's formula at most

VYXYXYX
Y2XY2X

finitely many times.



[Ghrist, Van den Berg, Vandervorst (2003)]
Let v1,v2, v3 be solutions of a unif. parabolic eq.

vt = (X) Ve + B(T)vr + f(2,0,0,)  in (a,b) X (T1, T2)
s.t. v;(¢t) and v;(t) (i,5 = 1,2,3) transversally intersect.
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For A, B ¢ GJF, defined by Matano
B is a simple parabolic reduction of A (A =1 B)
& there exist C, D € G7T s.t.

A=CX?D, B=CD o A=CY?D, B=CD,

N y N\ N\
y\ A N \/H %A = XY?2X?Y XY
AN AN N\ \

NG / B = XYV3XY
% X X c=XY: D=XYX

B is a parabolic reduction of A (A = B)
& FAL Ay JALEGT st A A= -2 A =1 B




Proposition 1 (Matano (2007), M. (2011))
let A, B,H € G™,

If HA = HB, then A = B.

If AH = BH, then A= B.

Lemma 1
For positive integer k, let

Ao = (XY2X)FY2F Ay = (XY2X)F XY X 2R+
B = X2V XY X, Bopyq = X2y 1 X2+,
Then Agk % ng and AQ].H_l % 32k+1.

Lemma 2
For positive integer k, let

Ao, = (YX2Y)R X2k Agpiq = (YX2Y)FY XY 2R+
BQk — Y2X2kYX2kY, BQk—I—l — Y2X2k—|—1y2k—|—1X_
Then Agk % ng and "212164-1 % B2k+1.



Lemma 3
Under the hypotheses of Theorem 1,

0 < liminf (T — )72 u,(0,t) < limsup (T — )72 u,(0,t) < oo.
t—=1— t—T_

Proof.

Let 0 < X1(t) < Xa(t) < --- < X, (t) be the vanishing intersections
beween u(t) and U at (z,t) = (0,7).

Then we derive /&<5
lim X, (t) = 0. .

t—T_
For 0 < D < 1, there exists top < T s.t.

X,,(t) <D in [to,T).

For a > 0, define a solution u, by
U (z,t) = a*u(a™ %2, T+ a ) in (0,a'/?R) x (—aT,0)
GBU time of u, ist =0 u, — U in O}

locasa—)oo



We construct a special sol. v with n vanishing intersections with U
at (x,t) = (0,T) satisfying

lim (T — )" ®?=2y,(0,t) = C for some C > 0
t—T_

and there exist a > 1, t; < O s.t.
U(a'?2D) —v(a'/?D, T +t)| > |U(a'/?>D) — ug(a/?D, t)]

in [t1,0) and
2(v(T +t1) — U : [0,a'/2D])

= 2(v(T + t1) — ua(t1) : [0,a*/2D]) =n

p al/ZD g

P a'/2D
at t = t4 W U
Ugq
v
As \WARW, /\A .




Assume that the first ineq. does not hold. 0 <limint (T )77, (0,1)
Then there exists t5 € (¢1,0) s.t.
v(x, T +1t2) > uq(x,tz) for 0 <z < 1.

v(T + ta) — uy(t2) loses one zero
(or odd number of zeros) at z = 0

I AN AW AW VAV
\VARVAER o

ANN NANAN

att =t U
1 VvV — ,
For 0 < A < 1, let v

Gg(z,t) = Neug A" 22,81 + X1t — t1))
in (0, \'/2aY2R) x (t1,T) with T := (1 — \)t; < 0.
For A\ close to 1, the above statements at ¢t = ¢1, 2 hold
with u, replaced by u,.




Since @, undergoes GBU at t = T, there is t3 € (t2,T) s.t.
v(x,t3) < Ug(x,t3) for 0 <z < 1.

at t = t3 /\/\/\ /\/\/\ -

_J VV [V ]\ i
] vV

l} parabolic reduction

The process from ¢t = ¢; to t = ¢t3 means A,, = B,,.
On the other hand, we have A,, & B,, by Lemma 1.

The contradiction implies the first ineq. §
limsup (7" — t) P2 u,(0,t) < oo.

t—1T_

As for the last ineq., there is C'; > 0 s.t. fora>1
all zeros of v,(t) — U locate in (0, Cy(—t)'/?) for t € [to,0).

It suffices to take u, vq, [p, D] instead of v, ug, [p, a'/2D]. O



Lemma 4
If a sol. u undergoes GBU at (z,t) = (0,T), then for £ € N,

liminf (T — )72 uy (0, ) = limsup (T — )72 u, (0, t).
t—T— t—T_

Proof.
Assume for contradiction that there exist 0 < L; < Lo < o0 s.t.

liminf(T — )72 u,(0,¢) < L4

t—T_ 14
< Lo < limsup(T — t)?=2u,(0,1).
t—T_

We construct a special sol. u s.t.

L1 < liminf(T — )72 4,(0,¢) < limsup(T — )72, (0,¢) < Lo
t—1— t—T_

and
u(xg,t) # u(xg,t) in (to,T)
for some xg € (0, R),t0 < T.



Then
z(u(t) —a(t) : [0,20]) < z(u(to) — u(to) : [0, x0]) in [to,T).
On the other hand,
ugz(0,t;) = ,(0,t;) for somet; "T.
and hence
z(u(t) — u(t) : [0, xg]) = oo.
This contradicts above. O

Proof of Theorem 1
It is known that for t < T close to T,

1

ug(z,t) = [m"PE)+ (p—1)z] 7T +0(x) for 0 <z < 1,
where m(t) = u,(0,t).
This and Lemmas 3,4 imply the claim for u,.

Integrating the formula of u, yields the claim for u. O



Thank you for your attention!
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