Classification of GBU and RBC behaviors in the viscous Hamilton-Jacobi equation

Noriko Mizoguchi (Tokyo Gakugei University) joint work with Ph. Souplet Consider the viscous Hamilton-Jacobi eq.

$$(P) \begin{cases} u_t - \Delta u = |\nabla u|^p, & x \in \Omega, \ t > 0, \\ u = 0, & x \in \partial\Omega, \ t > 0, \\ u(x,0) = \phi(x), & x \in \Omega, \end{cases}$$

$$p > 2, \ \Omega \subset \mathbb{R}^N \text{ and}$$

where p>2, $\Omega\subset\mathbb{R}^N$ and

$$\phi \in \mathcal{W} = \left\{ u_0 \in W^{1,\infty}(\Omega); \ u_0 \ge 0, \ u_0 = 0 \text{ on } \partial\Omega \right\}.$$

Since $||u(t)||_{\infty} \leq ||\phi||_{\infty}$, t > 0 by the maximum principle,

$$u$$
 blows up at $t=T<\infty$ \Leftrightarrow $\limsup_{t\to T}\|\nabla u(t)\|_{\infty}=\infty.$ $u_t-\Delta u=u^q$ gradient blowup (GBU)

[Barles - Da Lio (2004)]

- (P) admits a unique global (generalized) viscosity solution u s.t.
 - u coincides with the classical sol. in (0,T),
 - $-u \in C(\overline{\Omega} \times [0,\infty)) \cap C^{1,2}(\Omega \times (0,\infty)), u > 0$
 - u solves the PDE in $\Omega \times (0, \infty)$.

[Porretta - Souplet(2017), Quaas - Rodríguez(2018)] ϕ is suitably large,

 $\Rightarrow u$ exhibits a loss of boundary condition (LBC) at $\exists t > T(\phi)$.

[Porretta - Souplet(2017, 2020)] there is a GBU sol. without LBC,

which is a separatrix between global sols. and GBU sols. with LBC.

[Porretta - Zuazua(2012)]

$$u\in C^{2,1}(\overline{\Omega}\times(\tilde{T},\infty))$$
 with $u=0$ on $\partial\Omega\times[\tilde{T},\infty)$ for $\exists\tilde{T}\geq T$ and $u\to 0$ in $C^1(\overline{\Omega})$ as $t\to\infty$.

[M.-Souplet(2020)](N = 1)

There is a viscosity sol. with arbitrary combination of GBU and RBC.

Rate of gadient blow-up (GBU)

[Porretta - Souplet(2020)]

$$\|\nabla u(t)\|_{\infty} \ge C(T-t)^{-\frac{1}{p-2}}, \quad t \in (0,T)$$
 type II faster than $(T-t)^{-\frac{1}{2(p-1)}}$ (type I)

[Attouchi - Souplet(2020)]

If a sol. is increasing in time in a nbhd. of $\partial\Omega$, then

$$C_1(T-t)^{-\frac{1}{p-2}} \le \|\nabla u(t)\|_{\infty} \le C_2(T-t)^{-\frac{1}{p-2}}, \quad t \in (0,T)$$

for some $C_1, C_2 > 0$.

[Porretta - Souplet(2020)] (N=1)

If u is a separatrix between global sol. and GBU sol. with LBC,

$$||u_x(t)||_{\infty} \ge C(T-t)^{-\frac{2}{p-2}}, \quad t \in (0,T)$$

for some C > 0.

Denote by z the number of sign changes on [0, R], i.e.,

$$z(v:[0,R]) = \sup \{m \in \mathbb{N} : \exists x_0 < \dots < x_m \in (0,R) \text{ s.t.}$$

$$v(x_{i-1})v(x_i) < 0, i = 1,\dots, m\}$$

Rate of rocovery of boundary condition (RBC)

[Porretta - Souplet(2020)] (N=1)Under $z(u_t:[0,1])=2$ and some assumptions, if u recoveries BC at $(x,t)=(0,\tau)$, then $C_1(\tau-t)\leq u(0,t)\leq C_2(\tau-t),\quad t\in(0,\tau)$ for some $C_1,C_2>0$. Let $0 < R \le \infty$ and Consider

$$\begin{cases}
u_t = u_{xx} + |u_x|^p, & x \in \Omega := (0, R), \ t > 0, \\
u = 0, & x \in \partial \Omega, \ t > 0, \\
u(x, 0) = u_0(x), & x \in \Omega,
\end{cases}$$

Let

$$\beta := \frac{1}{p-1} \in (0,1), \quad k := \frac{p-2}{2(p-1)}$$

The singular and regular steady-states are respectively given by

$$U(x) := c_p x^{1-\beta}, \quad x > 0, \quad \text{where } c_p := (1-\beta)^{-1} \beta^{\beta}$$

and for a > 0,

$$U_a(x) := U(a+x) - U(a), \quad x > 0.$$

Theorem 1

(i) Suppose that u undergoes GBU at (x,t)=(0,T). Let n be the number of vanishing intersetions between u and U at (x,t)=(0,T).

Then there exists C > 0 s.t.

$$\lim_{t \to T^{-}} (T - t)^{\frac{n}{p-2}} u_x(0, t) = C$$

and

$$u(x,t) = U_{a(t)}(x) + O(x^2), \quad u_x(x,t) = U'_{a(t)}(x) + O(x)$$
 as $t \to T_-$ with $a(t) := \beta C^{1-p} (T-t)^{\frac{p-1}{p-2}n}$.

(ii) For each $n \ge 1$, there exists a sol. that behaves as above with some $T < \infty$, C > 0.

Theorem 2

(i) Assume that a sol. u undergoes RBC at $(x,t)=(0,\tau)$, i.e., u(0,t)>0 for $t<\tau$ close to τ and $u(0,\tau)=0$.

Let n be the number of vanishing intersections at $(x,t)=(0,\tau)$. Then there exists C>0 s.t.

$$\lim_{t \to \tau^{-}} (\tau - t)^{-n} u(0, t) = C$$

and

$$u(x,t) = C(\tau - t)^n \phi_n((\tau - t)^{-1/2}x) + o((\tau - t)^n)$$
 as $t \to \tau_-$,

where ϕ_n is the eigenft.

$$\phi_{yy} + \left(\frac{p}{p-1}\frac{1}{y} - \frac{y}{2}\right)\phi_y + k\phi = -\lambda\phi$$

with $\phi_n(0) = 1$ associated with the *n*th eigenvalue n - k.

(ii) For each $n \ge 1$, there exists a sol. that behaves as above with some $\tau < \infty$, C > 0.

G: the braid group of three strands

X,Y: generators of G

$$\left[\begin{array}{cccc} & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

I: the trivial braid.

$$XX^{-1} = X^{-1}X = YY^{-1} = Y^{-1}Y = I$$

$$XX^{-1} = I$$

 X^2

 $A \in \mathbf{G}$ is a positive braid $\Leftrightarrow A$ contains neither X^{-1} nor Y^{-1} . Denote by \mathbf{G}^+ the semigroup of positive braids in \mathbf{G} .

Artin's formula : XYX = YXY

$$XYXYXY$$

$$XYXYXY = XY^2XY^2$$

$$XYXYXY = YXYXYX$$

$$= Y^2XY^2X$$

For $A, B \in \mathbf{G}^+$, A is topologically equivalent to $B \Leftrightarrow A$ is modified to B applying Artin's formula at most finitely many times.

[Ghrist, Van den Berg, Vandervorst (2003)]

Let v_1, v_2, v_3 be solutions of a unif. parabolic eq.

$$v_t = \alpha(x)v_{xx} + \beta(x)v_x + f(x, v, v_x) \quad \text{in } (a, b) \times (T_1, T_2)$$

s.t. $v_i(t)$ and $v_j(t)$ (i, j = 1, 2, 3) transversally intersect.

defined by Matano

For $A, B \in \mathbf{G}^+$,

B is a simple parabolic reduction of A $(A \Rightarrow_1 B)$

 \Leftrightarrow there exist $C, D \in \mathbf{G}^+$ s.t.

$$A = CX^2D$$
, $B = CD$ or $A = CY^2D$, $B = CD$,

B is a parabolic reduction of A $(A \Rightarrow B)$ $\Leftrightarrow {}^{\exists}A_1, A_2, \cdots, A_k \in \mathbf{G}^+$ s.t. $A \Rightarrow_1 A_1 \Rightarrow_1 \cdots \Rightarrow_1 A_k \Rightarrow_1 B$ **Proposition 1** (Matano (2007), M. (2011))

Let $A, B, H \in \mathbf{G}^+$,

If $HA \Rightarrow HB$, then $A \Rightarrow B$.

If $AH \Rightarrow BH$, then $A \Rightarrow B$.

Lemma 1

For positive integer k, let

$$\tilde{A}_{2k} = (XY^2X)^kY^{2k}, \ \tilde{A}_{2k+1} = (XY^2X)^kXYX^{2k+1},$$
 $\tilde{B}_{2k} = X^2Y^{2k}XY^{2k}X, \ \tilde{B}_{2k+1} = X^2Y^{2k+1}X^{2k+1}Y.$

Then $\tilde{A}_{2k} \not \Rightarrow \tilde{B}_{2k}$ and $\tilde{A}_{2k+1} \not \Rightarrow \tilde{B}_{2k+1}$.

Lemma 2

For positive integer k, let

$$\begin{split} \hat{A}_{2k} &= (YX^2Y)^k X^{2k}, \ \hat{A}_{2k+1} = (YX^2Y)^k YXY^{2k+1}, \\ \hat{B}_{2k} &= Y^2 X^{2k} YX^{2k} Y, \ \hat{B}_{2k+1} = Y^2 X^{2k+1} Y^{2k+1} X. \end{split}$$

Then $\hat{A}_{2k} \not \Rightarrow \hat{B}_{2k}$ and $\hat{A}_{2k+1} \not \Rightarrow \hat{B}_{2k+1}$.

Lemma 3

Under the hypotheses of Theorem 1,

$$0 < \liminf_{t \to T_{-}} (T - t)^{\frac{n}{p-2}} u_{x}(0, t) \le \limsup_{t \to T_{-}} (T - t)^{\frac{n}{p-2}} u_{x}(0, t) < \infty.$$

Proof.

Let $0 < X_1(t) < X_2(t) < \cdots < X_n(t)$ be the vanishing intersections beween u(t) and U at (x,t) = (0,T).

Then we derive

$$\lim_{t \to T_{-}} X_n(t) = 0.$$

For $0 < D \ll 1$, there exists $t_0 < T$ s.t.

$$X_n(t) < D$$
 in $[t_0, T)$.

For a > 0, define a solution u_a by

$$u_a(x,t) := a^k u(a^{-1/2}x, T+a^{-1}t) \quad \text{in } (0,a^{1/2}R) \times (-aT,0)$$
 GBU time of u_a is $t=0$
$$u_a \to U \text{ in } C^1_{loc} \text{ as } a \to \infty$$

We construct a special sol. v with n vanishing intersections with U at (x,t)=(0,T) satisfying

$$\lim_{t \to T_{-}} (T - t)^{n/(p-2)} v_{x}(0, t) = C \text{ for some } C > 0$$

and there exist $a \gg 1$, $t_1 < 0$ s.t.

$$|U(a^{1/2}D) - v(a^{1/2}D, T+t)| > |U(a^{1/2}D) - u_a(a^{1/2}D, t)|$$

in $[t_1,0)$ and

$$z(v(T+t_1) - U : [0, a^{1/2}D])$$

= $z(v(T+t_1) - u_a(t_1) : [0, a^{1/2}D]) = n.$

Assume that the first ineq. does not hold. $0 < \liminf_{t \to T_-} (T - t)^{\frac{n}{p-2}} u_x(0,t)$ Then there exists $t_2 \in (t_1,0)$ s.t.

$$v(x,T+t_2)>u_a(x,t_2)$$
 for $0< x\ll 1$.
$$v(T+t_2)-u_a(t_2) \text{ loses one zero}$$
 (or odd number of zeros) at $x=0$

For $0 < \lambda < 1$, let

$$\tilde{u}_a(x,t) := \lambda^k u_a(\lambda^{-1/2}x, t_1 + \lambda^{-1}(t-t_1))$$

in
$$(0, \lambda^{1/2}a^{1/2}R) \times (t_1, \tilde{T})$$
 with $\tilde{T} := (1 - \lambda)t_1 < 0$.

For λ close to 1, the above statements at $t=t_1,t_2$ hold with u_a replaced by \tilde{u}_a .

Since \tilde{u}_a undergoes GBU at $t = \tilde{T}$, there is $t_3 \in (t_2, \tilde{T})$ s.t. $v(x, t_3) < \tilde{u}_a(x, t_3)$ for $0 < x \ll 1$.

The process from $t=t_1$ to $t=t_3$ means $\tilde{A}_n \Rrightarrow \tilde{B}_n$. On the other hand, we have $\tilde{A}_n \not \Rrightarrow \tilde{B}_n$ by Lemma 1. The contradiction implies the first ineq. $\lim\sup_{(T-t)^{\frac{n}{p-2}}u_x(0,t)<\infty}$.

As for the last ineq., there is $C_1 > 0$ s.t. for $a \gg 1$ all zeros of $v_a(t) - U$ locate in $(0, C_1(-t)^{1/2})$ for $t \in [t_0, 0)$.

It suffices to take $u, v_a, [\rho, D]$ instead of $v, u_a, [\rho, a^{1/2}D]$.

Lemma 4

If a sol. u undergoes GBU at (x,t)=(0,T), then for $\ell\in\mathbb{N}$,

$$\liminf_{t \to T_{-}} (T - t)^{\frac{\ell}{p-2}} u_x(0, t) = \limsup_{t \to T_{-}} (T - t)^{\frac{\ell}{p-2}} u_x(0, t).$$

Proof.

Assume for contradiction that there exist $0 < L_1 < L_2 < \infty$ s.t.

$$\lim_{t \to T_{-}} \inf (T - t)^{\frac{\ell}{p-2}} u_{x}(0, t) < L_{1}
< L_{2} < \lim_{t \to T_{-}} \sup (T - t)^{\frac{\ell}{p-2}} u_{x}(0, t).$$

We construct a special sol. \hat{u} s.t.

$$L_1 < \liminf_{t \to T_-} (T - t)^{\frac{\ell}{p-2}} \hat{u}_x(0, t) \le \limsup_{t \to T_-} (T - t)^{\frac{\ell}{p-2}} \hat{u}_x(0, t) < L_2$$

and

$$\hat{u}(x_0, t) \neq u(x_0, t) \text{ in } (t_0, T)$$

for some $x_0 \in (0, R), t_0 < T$.

Then

$$z(u(t) - \hat{u}(t) : [0, x_0]) \le z(u(t_0) - \hat{u}(t_0) : [0, x_0])$$
 in $[t_0, T)$.

On the other hand,

$$u_x(0,t_i) = \hat{u}_x(0,t_i)$$
 for some $t_i \nearrow T$.

and hence

$$z(u(t) - \hat{u}(t) : [0, x_0]) = \infty.$$

This contradicts above.

Proof of Theorem 1

It is known that for t < T close to T,

$$u_x(x,t) = \left[m^{1-p}(t) + (p-1)x\right]^{-\frac{1}{p-1}} + O(x) \text{ for } 0 < x \ll 1,$$

where $m(t) = u_x(0, t)$.

This and Lemmas 3,4 imply the claim for u_x .

Integrating the formula of u_x yields the claim for u.

Thank you for your attention!