1/50

General Decay in Viscoelasticity: Overview and recent development

Salim A. Messaoudi

Department of Mathematics University of Sharjah Sharjah UAE

$\mathbf{Outline}$	Introduction	Literature Review	General Decay
Outline			

2 Literature Review

3 General Decay

<ロト < 部 > < E > < E > E の (2/50

Outline	Introduction	Literature Review	General Decay
●	000000000		000000000000000000000000000000000000
Outline			

2 Literature Review

3 General Decay

$\mathbf{Outline}$	Introduction 000000000	Literature Review 00000	General Decay
Outline			

2 Literature Review

3 General Decay

The elastic solid

- ${\ensuremath{\mathbb R}} {\ensuremath{\mathbb R}}$ Has a definite shape.
- \square Deformed by external forces into a new equilibrium shape.
- Reverts exactly to its original form on removal of external forces.
- Stores all the energy obtained from the work done by external forces during deformation.
- This energy remains available to restore the body to its original shape when these forces are removed.
- Responds only to the total stress level at every instant of time.

The elastic solid

Example 1 (Wave Equation)

 $u_{tt} - \Delta u = 0$ in Ω ,

under $u \equiv 0$ on $\partial \Omega$, the total energy

$$E(t) = \frac{1}{2} \int_{\Omega} (u_t^2 + |\nabla u|^2) dx$$

satisfies $E'(t) \equiv 0$. Hence $E(t) = E(0), \forall t \ge 0$.

The elastic solid

Example 1 (Wave Equation)

 $u_{tt} - \Delta u = 0$ in Ω ,

under $u \equiv 0$ on $\partial \Omega$, the total energy

$$E(t) = \frac{1}{2} \int_{\Omega} \left[\! u_t^2 + |\nabla u|^2 \! \right] \! dx$$

satisfies $E'(t) \equiv 0$. Hence $E(t) = E(0), \forall t \ge 0$.

Energy conserved

4/50

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

The elastic solid

Example 2 (Damped Wave Equation)

$$u_{tt} - \Delta u + q(u_t) = 0 \text{ in } \Omega,$$

under $u \equiv 0$ on $\partial\Omega$, g(0) = 0 and g is increasing, we have

$$E'(t) = -\int_{\Omega} g(u_t)u_t dx \le 0.$$

So E(t) is decreasing.

Many stability results were obtained: Kopackova, Haraux, Zuazua, Lasiecka, Guesmia, Soufyane, Messaoudi, Benaissa, Tataru,...

General Decay in Viscoelasticity: Overview and recent development

5/50

3

The elastic solid

Example 2 (Damped Wave Equation)

$$u_{tt} - \Delta u + q(u_t) = 0 \text{ in } \Omega,$$

under $u \equiv 0$ on $\partial \Omega$, g(0) = 0 and g is increasing, we have

$$E'(t) = -\int_{\Omega} g(u_t)u_t dx \le 0.$$

So E(t) is decreasing.

Many stability results were obtained: Kopackova, Haraux, Zuazua, Lasiecka, Guesmia, Soufyane, Messaoudi, Benaissa, Tataru,...

◆□▶ ◆舂▶ ◆≧▶ ◆≧▶ ≧ のへで 5/50

Newtonian viscous fluid

- Responds to a suddenly applied state of uniform shear stress by a steady flow process.
- Has no definite shape and flows irreversibly under the action of external forces.

<ロト 4 部 ト 4 王 ト 4 王 ト 王 · つ Q (* 6/50)

7/50

Viscoelastic Materials

- Other materials have properties which are intermediate between those of an elastic solid and a viscous liquid.
- The most interesting examples are polymers.
- A polymer can show all the features of a glassy, brittle solid, an elastic rubber or a viscous liquid <u>depending on the</u> <u>temperature and time scale of measurement</u>.
- \square Polymers are usually described as viscoelastic materials.

Viscoelastic Materials

Picture2.jpg

Viscoelastic Materials

- This type of material possesses a characteristic which can be referred to as a memory effect.
- That is, the material response is not only determined by the current state of stress, but is also determined by <u>all</u> past states of stress.
- To understand this phenomenon, several early models were introduced by Maxwell, Kelvin-Voight, Boltzmann (1874), and Volterra (1909).

Linear Kelvin-Voight Viscoelastic Model

$$u_{tt} = \operatorname{div} S, \ S = a\nabla u + b\nabla u_t, \ a, b > 0.$$

As a result:

$$u_{tt} - a\Delta u - b\Delta u_t = 0.$$

(Viscoelastic or strongly damped wave equation) For Dirichlet boundary condition

$$E'(t) = -b \int_{\Omega} |\nabla u_t|^2 dx.$$

In fact:

$$E(t) \le ce^{-\lambda t}, \ c, \lambda > 0.$$

<ロト < 部 ト < 臣 ト < 臣 ト 三 の へ C 10/50

Linear Kelvin-Voight Viscoelastic Model

$$u_{tt} = \operatorname{div} S, \ S = a\nabla u + b\nabla u_t, \ a, b > 0.$$

As a result:

$$u_{tt} - a\Delta u - b\Delta u_t = 0.$$

(Viscoelastic or strongly damped wave equation) For Dirichlet boundary condition

$$E'(t) = -b \int_{\Omega} |\nabla u_t|^2 dx.$$

In fact:

$$E(t) \le c e^{-\lambda t}, \ c, \lambda > 0.$$

(日) (部) (目) (日) (10/50)

Boltzmann Model

 \mathbbmss{S} In the isothermal viscoelasticity, the stress-strain relation is given by

$$\sigma(t) = \sigma_0 \varepsilon(t) - \int_0^t g(t-\tau) \varepsilon(\tau) d\tau$$

g characterizes the mechanical properties of the material and is referred to as relaxation functions and ε is the strain.
 It can be considered to be the formulation of Boltzmann's superposition principle.

As a result we have

$$u_{tt} - \sigma_0 \Delta u + \int_0^t g(t - \tau) \Delta u(\tau) d\tau = 0.$$

11/50

(Viscoelastic equation)

Boltzmann Model

 \mathbbmss{s} In the isothermal viscoelasticity, the stress-strain relation is given by

$$\sigma(t) = \sigma_0 \varepsilon(t) - \int_0^t g(t-\tau) \varepsilon(\tau) d\tau$$

- \mathbb{I} g characterizes the mechanical properties of the material and is referred to as relaxation functions and ε is the strain.
- It can be considered to be the formulation of Boltzmann's superposition principle.

As a result we have

$$\left[u_{tt} - \sigma_0 \Delta u + \int_0^t g(t-\tau) \Delta u(\tau) d\tau = 0.\right]$$

(Viscoelastic equation)

<ロ> (日) (日) (主) (主) (主) (11/50)

12/50

Literature Review

- \checkmark Dafermos (1970) discussed a certain one-dimensional viscoelastic problem
 - ${\tt I}{\tt S}{\tt S}$ established some existence results
 - \square proved that solutions go to zero as t goes to infinity (smooth monotone decreasing relaxation functions)
 - \mathbb{I} no rate of decay has been specified.

 \checkmark Hrusa (1985) considered

$$u_{tt} - cu_{xx} + \int_0^t m(t-s) \left(\psi(u_x(x,s))\right)_x ds = f(x,t)$$

reproved several global existence results for large data reproved exponential decay, for strong solutions, when $m(s) = e^{-s}$ and ψ satisfies certain conditions.

12/50

Literature Review

- $\checkmark~$ Dafermos (1970) discussed a certain one-dimensional viscoelastic problem
 - some existence results
 - \square proved that solutions go to zero as t goes to infinity (smooth monotone decreasing relaxation functions)
- \bowtie no rate of decay has been specified.
- \checkmark Hrusa (1985) considered

$$u_{tt} - cu_{xx} + \int_0^t m(t-s) \left(\psi(u_x(x,s)) \right)_x ds = f(x,t)$$

For proved several global existence results for large data proved exponential decay, for strong solutions, when $m(s) = e^{-s}$ and ψ satisfies certain conditions.

- ✓ Dassios and Zafiropoulos (1990) studied a viscoelastic problem in ℝ³ and proved a polynomial decay for exponentially decaying kernels.
- $\checkmark~$ Rivera (1994) considered equations for linear isotropic homogeneous viscoelastic solids of integral type
 - For bounded domains: proved an exponential decay result for exponentially decaying relaxation functions
 - For \mathbb{R}^n : showed that only the polynomial decay can be obtained even if the kernel is of exponential decay.

<ロ> < 母> < 目> < 目> < 目> < 目> 目 のへで 13/50

- ✓ Dassios and Zafiropoulos (1990) studied a viscoelastic problem in \mathbb{R}^3 and proved a polynomial decay for exponentially decaying kernels.
- ✓ Rivera (1994) considered equations for linear isotropic homogeneous viscoelastic solids of integral type
 - For bounded domains: proved an exponential decay result for exponentially decaying relaxation functions
 - For \mathbb{R}^n : showed that only the polynomial decay can be obtained even if the kernel is of exponential decay.

Literature Review

The viscoelastic problem

$$\begin{aligned} u_{tt} - \Delta u + \int_{0}^{t} g(t-\tau)\Delta u(\tau)d\tau + a(x)u_{t} + |u|^{\gamma}u &= 0\\ u(x,t) &= 0, \quad x \in \partial\Omega \ , t \ge 0\\ u(x,0) &= u_{0}(x), \ u_{t}(x,0) = u_{1}(x), \quad x \in \Omega, \end{aligned}$$

in $\Omega \subset \mathbb{R}^n$ $(n \ge 1)$ bounded with $\partial \Omega$ regular, $\gamma > 0, g \ge 0$ discussed by many mathematicians.

 \checkmark Cavalcanti *et al.* (EJDE 2002) proved an exponential decay under

 $-\xi_1 g(t) \le g'(t) \le -\xi_2 g(t), \quad t \ge 0,$

 $||g||_{L^1((0,+\infty))}$ is small enough and $a:\Omega\to\mathbb{R}^+$ such that

 $a(x) \ge a_0 > 0 \quad on \quad \emptyset \neq \omega \subset \Omega,$

with ω satisfying some geometry restrictions.

✓ Berrimi and Messaoudi (EJDE 2004) obtained the same result under weaker conditions on q and ω . In particular, they allowed $\omega = \emptyset$ and the Biochamical (Biophis to be nor 28. Gr. 14/50

The viscoelastic problem

$$\begin{cases} u_{tt} - \Delta u + \int\limits_{0}^{t} g(t-\tau)\Delta u(\tau)d\tau + a(x)u_{t} + |u|^{\gamma}u = 0\\ u(x,t) = 0, \quad x \in \partial\Omega \ , t \ge 0\\ u(x,0) = u_{0}(x), \quad u_{t}(x,0) = u_{1}(x), \quad x \in \Omega, \end{cases}$$

in $\Omega \subset \mathbb{R}^n$ $(n \ge 1)$ bounded with $\partial \Omega$ regular, $\gamma > 0, g \ge 0$ discussed by many mathematicians.

 \checkmark Cavalcanti et al. (EJDE 2002) proved an exponential decay under

 $-\xi_1 g(t) \le g'(t) \le -\xi_2 g(t), \quad t \ge 0,$

 $||g||_{L^1((0,+\infty))}$ is small enough and $a:\Omega\to\mathbb{R}^+$ such that

 $a(x) \ge a_0 > 0 \quad on \quad \emptyset \ne \omega \subset \Omega,$

with ω satisfying some geometry restrictions.

✓ Berrimi and Messaoudi (EJDE 2004) obtained the same result under weaker conditions on q and ω . In particular, they allowed $\omega = \emptyset$ and the Bucchanical (Euclidean definition) being the being the same result under weaker conditions

The viscoelastic problem

$$\begin{cases} u_{tt} - \Delta u + \int_{0}^{t} g(t-\tau)\Delta u(\tau)d\tau + a(x)u_{t} + |u|^{\gamma}u = 0\\ u(x,t) = 0, \quad x \in \partial\Omega \ , t \ge 0\\ u(x,0) = u_{0}(x), \quad u_{t}(x,0) = u_{1}(x), \quad x \in \Omega, \end{cases}$$

in $\Omega \subset \mathbb{R}^n$ $(n \ge 1)$ bounded with $\partial \Omega$ regular, $\gamma > 0, g \ge 0$ discussed by many mathematicians.

✓ Cavalcanti et al. (EJDE 2002) proved an exponential decay under

$$-\xi_1 g(t) \le g'(t) \le -\xi_2 g(t), \quad t \ge 0,$$

 $||g||_{L^1((0,+\infty))}$ is small enough and $a:\Omega\to{\rm I\!R}^+$ such that

$$a(x) \ge a_0 > 0 \quad on \quad \emptyset \ne \omega \subset \Omega,$$

with ω satisfying some geometry restrictions.

✓ Berrimi and Messaoudi (EJDE 2004) obtained the same result under weaker conditions on g and ω . In particular, they allowed $\omega = \emptyset$ and the mechanical damping to be nonlinear. 14/50

 \checkmark Cavalcanti et~al (MMAS 2001) studied

$$\begin{split} |u_t|^\rho u_{tt} - \Delta u - \Delta u_{tt} + \int_0^t g(t-\tau) \Delta u(\tau) d\tau - \gamma \Delta u_t = 0, \quad \rho > 0. \\ \hline \text{solution-dependent density} \end{split}$$

- $\blacksquare global existence result for \gamma \geq 0,$
- ${\scriptstyle \blacksquare \blacksquare}$ exponential decay for $\gamma > 0$ were established.
- \checkmark This last result has been extended to

$$|u_t|^{\rho}u_{tt} - \Delta u - \Delta u_{tt} + \int_0^t g(t-\tau)\Delta u(\tau)d\tau - \gamma\Delta u_t = b|u|^{p-1}u,$$

by Messaoudi and Tatar for both cases $\gamma > 0$ (MSRJ 2003) then for $\gamma = 0$ (NA & MMAS 2007).

 $\checkmark~$ Cavalcanti $et~al~({\rm MMAS~2001})$ studied

$$|u_t|^{\rho}u_{tt} - \Delta u - \Delta u_{tt} + \int_0^t g(t-\tau)\Delta u(\tau)d\tau - \gamma\Delta u_t = 0, \quad \rho > 0.$$

Image shows a state of the second state of the state of the

$$|u_t|^{\rho}u_{tt} - \Delta u - \Delta u_{tt} + \int_0^t g(t-\tau)\Delta u(\tau)d\tau - \gamma\Delta u_t = b|u|^{p-1}u,$$

by Messaoudi and Tatar for both cases $\gamma > 0$ (MSRJ 2003) then for $\gamma = 0$ (NA & MMAS 2007).

 $\checkmark~$ Cavalcanti $et~al~({\rm MMAS}~2001)$ studied

$$|u_t|^{\rho}u_{tt} - \Delta u - \Delta u_{tt} + \int_0^t g(t-\tau)\Delta u(\tau)d\tau - \gamma\Delta u_t = 0, \quad \rho > 0.$$

- \square global existence result for $\gamma \ge 0$,
- \bowtie exponential decay for $\gamma > 0$ were established.
- \checkmark This last result has been extended to

$$|u_t|^{\rho}u_{tt} - \Delta u - \Delta u_{tt} + \int_0^t g(t-\tau)\Delta u(\tau)d\tau - \gamma\Delta u_t = b|u|^{p-1}u,$$

by Messaoudi and Tatar for both cases $\gamma > 0$ (MSRJ 2003) then for $\gamma = 0$ (NA & MMAS 2007).

✓ Messaoudi and Tatar (Ms. Ns. 2009) showed that the exponential decay can be obtained under other conditions

$$g'(t) \le 0, \quad \int_0^{+\infty} g(t)e^{\alpha t}dt < +\infty, \quad \alpha > 0.$$

 ✓ Many other results have been established by Munoz Rivera, Cavalcanti, Tatar, Alabau-Boussouira and Cannarsa, Messaoudi, Mustafa, Kafini, Soufyane, Guesmia, Said-Houari, Martinez, Park, Xiaosen and Mingxing ...

<ロト < 部 > < 臣 > < 臣 > 臣 の 9 () 16/50

 $\checkmark\,$ Messaoudi and Tatar (Ms. Ns. 2009) showed that the exponential decay can be obtained under other conditions

$$g'(t) \le 0, \quad \int_0^{+\infty} g(t)e^{\alpha t}dt < +\infty, \quad \alpha > 0.$$

✓ Many other results have been established by Munoz Rivera, Cavalcanti, Tatar, Alabau-Boussouira and Cannarsa, Messaoudi, Mustafa, Kafini, Soufyane, Guesmia, Said-Houari, Martinez, Park, Xiaosen and Mingxing ...

General Decay

All results dealt mainly with either exponential decay

$$g'(t) \le -\alpha g(t),$$

or polynomial decay

$$g'(t) \le -\alpha g^{\rho}(t), \quad 1 < \rho < 3/2$$

General Decay

Question

How about other rates of decay?

To answer this question, Messaoudi (2008) investigated the situation when

$$g'(t) \le -\xi(t)g(t),\tag{3.1}$$

where ξ is a positive function.

Consider

$$\begin{cases} u_{tt} - \Delta u + \int_0^t g(t - \tau) \Delta u(\tau) d\tau = 0\\ u(x, t) = 0, \ x \in \partial \Omega, t \ge 0\\ u(x, 0) = u_0(x), \ u_t(x, 0) = u_1(x), \ x \in \Omega, \end{cases}$$
(3.2)

in a bounded domain Ω and t > 0.

Literature Review

General Decay

Hypotheses

(G1) $g: \mathbb{R}^+ \to \mathbb{R}^+$ is a differentiable function and

$$g(0) > 0,$$
 $1 - \int_0^{+\infty} g(\tau) d\tau = l > 0.$

(G2) There exists a differentiable function ξ such that

$$\begin{cases} \xi(t) > 0, \quad \xi'(t) \le 0, \qquad \forall t > 0, \\ g'(t) \le -\xi(t)g(t), \ \forall t \ge 0. \end{cases}$$

· 《 다 》 《 큔 》 《 臣 》 《 臣 》 이 이 야 19/50

20/50

General Decay

Remark (1)

There are many functions satisfying **(G1)** and **(G2)**. Examples of such functions are

$$\begin{split} g(t) &= \ \frac{a}{(1+t)^{\nu}}, \quad \nu > 1 \\ g(t) &= \ a e^{-b(t+1)^{p}}, \quad 0$$

for a and b to be chosen properly.

Theorem 3 (Cavalcanti *et al.* 2001)

Let $(u_0, u_1) \in H^1_0(\Omega) \times L^2(\Omega)$ be given. Assume that g satisfies (G1). Then problem (3.2) has a unique global solution

 $u \in \mathcal{C}(\mathbb{R}_+; H_0^1(\Omega)), \quad u_t \in \mathcal{C}(\mathbb{R}_+; L^2(\Omega))$

20/50

General Decay

Remark (1)

There are many functions satisfying **(G1)** and **(G2)**. Examples of such functions are

$$\begin{array}{rcl} q(t) & = & \frac{a}{(1+t)^{\nu}}, & \nu > 1 \\ q(t) & = & a e^{-b(t+1)^{p}}, & 0$$

for a and b to be chosen properly.

Theorem 3 (Cavalcanti *et al.* 2001)

Let $(u_0, u_1) \in H_0^1(\Omega) \times L^2(\Omega)$ be given. Assume that g satisfies (G1). Then problem (3.2) has a unique global solution

$$u \in \mathcal{C}(\mathbb{R}_+; H_0^1(\Omega)), \quad u_t \in \mathcal{C}(\mathbb{R}_+; L^2(\Omega))$$

21/50

General Decay

The "modified" energy functional

$$E(t) := \frac{1}{2} \left(1 - \int_0^t g(\tau) d\tau \right) \|\nabla u(t)\|_2^2 + \frac{1}{2} \|u_t\|_2^2 + \frac{1}{2} (g \circ \nabla u)(t), \qquad (3.3)$$

where

$$(g \circ \nabla u)(t) = \int_0^t g(t-\tau) \|\nabla u(t) - \nabla u(\tau)\|_2^2 d\tau.$$
(3.4)

Theorem 4 (Messaoudi 2008)

Let $(u_0, u_1) \in H_0^1(\Omega) \times L^2(\Omega)$ be given. Assume that g and ξ satisfy (G1) and (G2). Then, for each $t_0 > 0$, there exist strictly positive constants K and λ such that the solution of (3.2) satisfies

 $E(t) \le K e^{-\lambda \int_{t_0}^t \xi(s) ds}, \quad \forall t \ge t_0.$

General Decay

The "modified" energy functional

$$E(t) := \frac{1}{2} \left(1 - \int_0^t g(\tau) d\tau \right) \|\nabla u(t)\|_2^2 + \frac{1}{2} \|u_t\|_2^2 + \frac{1}{2} (g \circ \nabla u)(t), \qquad (3.3)$$

where

$$(g \circ \nabla u)(t) = \int_0^t g(t - \tau) \|\nabla u(t) - \nabla u(\tau)\|_2^2 d\tau.$$
 (3.4)

Theorem 4 (Messaoudi 2008)

Let $(u_0, u_1) \in H_0^1(\Omega) \times L^2(\Omega)$ be given. Assume that g and ξ satisfy (G1) and (G2). Then, for each $t_0 > 0$, there exist strictly positive constants Kand λ such that the solution of (3.2) satisfies

 $E(t) \leq K e^{-\lambda \int_{t_0}^t \xi(s) ds}, \ \forall t \geq t_0.$

General Decay in Viscoelasticity: Overview and recent development

21/50
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

22/50

Idea of proof

Let

$$F(t) := E(t) + \varepsilon_1 \Psi(t) + \varepsilon_2 \chi(t), \qquad (3.5)$$

where ε_1 and ε_2 are positive constants and

$$\begin{split} \Psi(t) &:= \int_{\Omega} u u_t dx \\ \chi(t) &:= -\int_{\Omega} u_t \int_0^t g(t-\tau)(u(t)-u(\tau)) d\tau dx. \end{split}$$

General Decay

Lemma 5

If u is a solution of (3.2), then the energy satisfies

$$E'(t) \le \frac{1}{2}(g' \circ \nabla u)(t) \le 0.$$
 (3.6)

Lemma 6

For ε_1 and ε_2 small enough, we have

$$\alpha_1 F(t) \le E(t) \le \alpha_2 F(t) \tag{3.7}$$

23/50

holds for two positive constants α_1 and α_2 .

General Decay

Lemma 5

If u is a solution of (3.2), then the energy satisfies

$$E'(t) \le \frac{1}{2}(g' \circ \nabla u)(t) \le 0.$$
 (3.6)

Lemma 6

For ε_1 and ε_2 small enough, we have

 $\alpha_1 F(t) \le E(t) \le \alpha_2 F(t) \tag{3.7}$

ヘロト スポト メヨト メヨト

э

23/50

holds for two positive constants α_1 and α_2 .

Idea of proof

Lemma 7

Under the assumptions (G1) and (G2), the functional

 $\Psi(t):=\int\limits_{\Omega}uu_tdx$

satisfies, along the solution of (3.2),

$$\Psi'(t) \le \|u_t\|_2^2 - \frac{l}{2} \|\nabla u(t)\|_2^2 + C(g \circ \nabla u)(t).$$
(3.8)

<ロト < 部 ト < 臣 ト < 臣 ト 王 の へ C 24/50

Idea of proof

Lemma 7

Under the assumptions (G1) and (G2), the functional

$$\Psi(t) := \int\limits_{\Omega} u u_t dx$$

satisfies, along the solution of (3.2),

$$\Psi'(t) \le \|u_t\|_2^2 - \frac{l}{2} \|\nabla u(t)\|_2^2 + C(g \circ \nabla u)(t).$$
(3.8)

<ロト < 部 > < 目 > < 目 > < 目 > < 24/50

Idea of proof

Lemma 8

Under the assumptions (G1) and (G2), the functional

$$\chi(t) := -\int_{\Omega} u_t \int_0^t g(t-\tau)(u(t) - u(\tau)) d\tau dx$$

satisfies, along the solution of (3.2), for any $\delta > 0$

$$\chi'(t) \leq -\left[\int_0^t g(\tau)d\tau - \delta\right] \|u_t\|_2^2 - \frac{C}{\delta}(g' \circ \nabla u)(t) + \delta \|\nabla u\|_2^2 + \frac{C}{\delta}(g \circ \nabla u)(t).$$

$$(3.9)$$

Idea of proof

Lemma 8

Under the assumptions (G1) and (G2), the functional

$$\chi(t) := -\int_{\Omega} u_t \int_0^t g(t-\tau)(u(t) - u(\tau)) d\tau dx$$

satisfies, along the solution of (3.2), for any $\delta > 0$

$$\chi'(t) \leq \boxed{-\left[\int_{0}^{t} g(\tau)d\tau - \delta\right] \|u_t\|_{2}^{2}}_{+ \delta \|\nabla u\|_{2}^{2} + \frac{C}{\delta}(g \circ \nabla u)(t) - \frac{C}{\delta}(g' \circ \nabla u)(t)\right]}$$
(3.9)

Idea of proof

Proof.

Since g is positive and g(0) > 0 then for any $t_0 > 0$ we have

$$\int_0^t g(s)ds \ge \int_0^{t_0} g(\tau)d\tau = g_0 > 0, \ \forall t \ge t_0.$$

By using (3.5), (3.6), (3.8), (3.9), with suitable choice of constants we obtain for $t \ge t_0$,

$$F'(t) \le -\beta_1 E(t) + \beta_2 (g \circ \nabla u)(t), \qquad \forall t \ge t_0.$$
(3.10)

Multiply (3.10) by $\xi(t)$ and recall Lemma 5

$$\begin{aligned} \xi(t)F'(t) &\leq -\beta_1\xi(t)E(t) + \beta_2(\xi g \circ \nabla u)(t) \\ &\leq -\beta_1\xi(t)E(t) - \beta_3(g' \circ \nabla u)(t) \\ &\leq -\beta_1\xi(t)E(t) - KE'(t) \end{aligned}$$

Then

$$KE'(t) + \xi(t)F'(t) \le -\beta_1\xi(t)E(t)$$

Idea of proof

Note

$$(KE(t) + \xi(t)F(t))' \leq KE'(t) + \xi(t)F'(t)$$

$$\leq -\beta_1\xi(t)E(t)$$

Use
$$L(t) = KE(t) + \xi(t)F(t) \sim E(t)$$
 (3.11)

to arrive at

$$L'(t) \le -\lambda \xi(t) L(t), \qquad \forall t \ge t_0$$

A simple integration leads to

$$L(t) \le L(t_0)e^{-\lambda \int_{t_0}^t \xi(\tau)d\tau}, \qquad \forall t \ge t_0.$$

Thus (3.11) yield

$$E(t) \le C e^{-\lambda \int_{t_0}^t \xi(\tau) d\tau}, \quad \forall t \ge t_0. \tag{3.12}$$

Idea of proof

Note

$$(KE(t) + \xi(t)F(t))' \leq KE'(t) + \xi(t)F'(t)$$

$$\leq -\beta_1\xi(t)E(t)$$

Use $L(t) = KE(t) + \xi(t)F(t) \backsim E(t)$ (3.11)

to arrive at

$$L'(t) \le -\lambda \xi(t) L(t), \qquad \forall t \ge t_0$$

A simple integration leads to

$$L(t) \le L(t_0)e^{-\lambda \int_{t_0}^t \xi(\tau)d\tau}, \qquad \forall t \ge t_0.$$

Thus (3.11) yield

$$E(t) \le C e^{-\lambda \int_{t_0}^t \xi(\tau) d\tau}, \qquad \forall t \ge t_0.$$

General Decay

Remark (2)

The estimate (3.12) is also true for $t \in [0, t_0]$ by virtue of continuity and boundedness of E(t) and $\xi(t)$.

<ロト < 部 ト < 臣 ト < 臣 ト 三 の へ C 28/50

General Decay

Example 9

Let

$$g(t) = ae^{-(1+t)^{\nu}}, \ 0 < \nu \le 1,$$

where 0 < a < 1 is chosen so that $\int_0^{+\infty} g(t) dt < 1$. Then

$$g'(t) = -a\nu(1+t)^{\nu-1}e^{-(1+t)^{\nu}} = -\xi(t)g(t)$$

where $\xi(t) = \nu (1+t)^{\nu-1}$ which is nonincreasing and $\xi(0) > 0$. Therefore Theorem 4 gives

$$E(t) \le C e^{-\lambda(1+t)^{\nu}}.$$

General Decay

Example 9

Let

$$g(t) = ae^{-(1+t)^{\nu}}, \ 0 < \nu \le 1,$$

where 0 < a < 1 is chosen so that $\int_0^{+\infty} g(t) dt < 1$. Then

$$g'(t) = -a\nu(1+t)^{\nu-1}e^{-(1+t)^{\nu}} = -\xi(t)g(t)$$

where $\xi(t) = \nu(1+t)^{\nu-1}$ which is nonincreasing and $\xi(0) > 0$. Therefore Theorem 4 gives

$$E(t) \le C e^{-\lambda(1+t)^{\nu}}.$$

<ロト < 部 > < E > < E > うへで 29/50

General Decay

Example 9

Let

$$g(t) = ae^{-(1+t)^{\nu}}, \ 0 < \nu \le 1,$$

where 0 < a < 1 is chosen so that $\int_0^{+\infty} g(t) dt < 1$. Then

$$g'(t) = -a\nu(1+t)^{\nu-1}e^{-(1+t)^{\nu}} = -\xi(t)g(t)$$

where $\xi(t) = \nu(1+t)^{\nu-1}$ which is nonincreasing and $\xi(0) > 0$. Therefore Theorem 4 gives

$$E(t) \le C e^{-\lambda(1+t)^{\nu}}.$$

<ロ> < 部 > < 書 > < 書 > う < 29/50

30/50

General Decay

Example 10

Let

$$g(t) = \frac{a}{(1+t)^{\nu}}, \ \nu > 2,$$

where a > 0 is a constant so that $\int_0^{+\infty} g(t) dt < 1$.

$$g'(t) = -\frac{a\nu}{(1+t)^{\nu+1}} = -\frac{\nu}{1+t}g(t) = -\xi(t)g(t), \qquad (3.13)$$

where $\xi(t) = \frac{\nu}{1+t}$ which is nonincreasing and $\xi(0) > 0$. Theorem 4 gives $E(t) < \frac{c}{1+t}$

30/50

General Decay

Example 10

Let

$$g(t) = \frac{a}{(1+t)^{\nu}}, \ \nu > 2,$$

where a > 0 is a constant so that $\int_0^{+\infty} g(t) dt < 1$.

$$g'(t) = -\frac{a\nu}{(1+t)^{\nu+1}} = -\frac{\nu}{1+t}g(t) = -\xi(t)g(t), \qquad (3.13)$$

where $\xi(t) = \frac{\nu}{1+t}$ which is nonincreasing and $\xi(0) > 0$. Theorem 4 gives

$$E(t) \le \frac{c}{(1+t)^{\lambda \nu}}.$$

General Decay

Alabau-Boussouira and Cannarsa (C. R. Acad. Sci. Paris (2009)) considered Problem

$$\begin{cases} u_{tt} - \Delta u + \int_{0}^{t} g(t - \tau) \Delta u(\tau) d\tau = 0 \\ u(x, t) = 0, \quad x \in \partial \Omega, \ t \ge 0 \\ u(x, 0) = u_{0}(x), \quad u_{t}(x, 0) = u_{1}(x), \quad x \in \Omega, \end{cases}$$
(3.2)

in a bounded domain Ω and t > 0, with

 $g'(t) \le -H(g(t)), \quad \forall a.e. t \ge 0$

F H is nonnegative measurable function on some interval $[0, k_0]$ **F** strictly increasing and of class C^1 on $[0, k_1]$, for $k_1 \le k_0$ **F** H(0) = H'(0) = 0 **F** $H(s) \ge H_0 > 0$, $\forall s \in [k_1, k_0]$ **F** $\int_0^{k_0} \frac{dx}{H(x)} = +\infty$, $\int_0^{k_0} \frac{xdx}{H(x)} < 1$. Under the above hypotheses and an extra condition of the form

Under the above hypotheses and an extra condition of the form

$$\lim \inf_{s \to 0^+} \frac{H(s)/s}{H'(s)} > \frac{1}{2},$$

they announced a decay result for the energy of (3.2), with an explicit rate of decay.

They also asked the question: how about

$$g'(t) \leq -\xi(t)H(g(t)), \quad t \geq 0?$$

(3.14)

 $\langle \Box \rangle \langle \overline{C} \rangle$

(3.14)

General Decay

Alabau-Boussouira and Cannarsa (C. R. Acad. Sci. Paris (2009)) considered Problem

$$\begin{cases} u_{tt} - \Delta u + \int_{0}^{t} g(t - \tau) \Delta u(\tau) d\tau = 0 \\ u(x, t) = 0, \quad x \in \partial \Omega, \ t \ge 0 \\ u(x, 0) = u_{0}(x), \quad u_{t}(x, 0) = u_{1}(x), \quad x \in \Omega, \end{cases}$$
(3.2)

in a bounded domain Ω and t > 0, with

$$g'(t) \leq -H\left(g(t)\right), \qquad \forall \ a.e. \ t \geq 0$$

F H is nonnegative measurable function on some interval $[0, k_0]$ **F** strictly increasing and of class C^1 on $[0, k_1]$, for $k_1 \le k_0$ **F** H(0) = H'(0) = 0 **F** $H(s) \ge H_0 > 0$, $\forall s \in [k_1, k_0]$ **F** $\int_0^{k_0} \frac{dx}{H(x)} = +\infty$, $\int_0^{k_0} \frac{xdx}{H(x)} < 1$. Under the above hypotheses and an extra condition of the form

 $\lim\inf_{s\to 0^+}\frac{H(s)/s}{H'(s)}>\frac{1}{2},$

they announced a decay result for the energy of (3.2), with an explicit rate of decay. They also asked the question: how about

$$g'(t) \le -\xi(t)H(g(t)), \quad t \ge 0?$$
(3.14)
$$(\Box \Rightarrow \langle \Box \Rightarrow \langle \Box \Rightarrow \langle \Xi \Rightarrow \langle \Xi \Rightarrow \rangle \equiv \langle \Im \land \Diamond \land \heartsuit \land \exists 1 / 50$$

General Decay

Mustafa and Messaoudi (2012) considered (3.2) under: (A1) $g: \mathbb{R}^+ \to \mathbb{R}^+$ is a differentiable function satisfying

$$g(0) > 0,$$
 $1 - \int_0^{+\infty} g(s)ds = l > 0.$

(A2) There exists a positive function $H \in C^1(\mathbb{R}^+)$, with H(0) = 0, and H is linear or strictly increasing and strictly convex C^2 function on (0, r] for some r < 1, such that

$$g'(t) \le -H(g(t)), \quad \forall t \ge 0.$$

33/50

General Decay

Theorem 11

Let $(u_0, u_1) \in H_0^1(\Omega) \times H_0^1(\Omega)$ be given. Assume that (A1) - (A2) hold. Then there exist positive constants k_1, k_2, k_3 and ε_0 such that the solution of (3.2) satisfies

$$E(t) \le k_3 H_1^{-1}(k_1 t + k_2) \qquad \forall t \ge 0,$$
 (3.15)

where

$$H_1(t)=\int_t^1 \frac{1}{sH_0'(\varepsilon_0 s)}ds \qquad and \qquad H_0(t)=H(D(t))$$

provided that D is a positive C^1 function, with D(0) = 0, for which H_0 is strictly increasing and strictly convex C^2 function on (0, r] and

$$\int_{0}^{+\infty} \frac{g(s)}{H_{0}^{-1}(-g'(s))} ds < +\infty.$$
(3.16)

Moreover, if $\int_0^1 H_1(t) dt < +\infty$ for some choice of D, then we have the improved estimate

$$E(t) \leq k_3 G^{-1}(k_1 t + k_2) \qquad where \qquad G(t) = \int_t^1 \frac{1}{s H'(\varepsilon_0 s)} ds.$$

General Decay

 \checkmark Lasiecka, Messaoudi and Mustafa (2013) used iteration calculation to extend the range of the optimality in case of the polynomial decay.

 \checkmark Cavalcanti et al (2016) characterized the energy decay by the solution of a corresponding ODE and obtained the optimality for the maximal range.

< 고 > < 급 > < 글 > < 글 > < 글 <)
 < 34/50

General Decay

 $\checkmark~$ Lasiecka, Messaoudi and Mustafa (2013) used iteration calculation to extend the range of the optimality in case of the polynomial decay.

 \checkmark Cavalcanti et al (2016) characterized the energy decay by the solution of a corresponding ODE and obtained the optimality for the maximal range.

< 마 > < 큔 > < 흔 > < 흔 > < 흔 > < 흔 < 34/50

General Decay

Messaoudi and Al-Khulaifi (2017) considered

$$\begin{cases} u_{tt} - \Delta u + \int_0^t g(t - \tau) \Delta u(\tau) d\tau = 0\\ u(x, t) = 0, \quad x \in \partial \Omega, \ t \ge 0\\ u(x, 0) = u_0(x), \ u_t(x, 0) = u_1(x), \quad x \in \Omega, \end{cases}$$
(3.2)

General Decay

under:

(A1) $g: \mathbb{R}^+ \to \mathbb{R}^+$ is a differentiable function satisfying

$$g(0) > 0, \qquad 1 - \int_0^{+\infty} g(s)ds = l > 0.$$

(A2) There exists a differentiable function ξ such that

$$\begin{cases} \xi(t) > 0, \quad \xi'(t) \le 0, \qquad \forall t > 0, \\ g'(t) \le -\xi(t)g^p(t), \qquad 1 \le p < \frac{3}{2}, \ \forall t \ge 0. \end{cases}$$

General Decay

Theorem 12

Let $(u_0, u_1) \in H_0^1(\Omega) \times L^2(\Omega)$ be given. Assume that g satisfies (G1) and (G2). Then for each $t_0 > 0$, there exist strictly positive constants K and λ such that the solution of (3.2) satisfies, for all $t \ge t_0$,

 $E(t) \le K e^{-\lambda \int_{t_0}^t \xi(\tau) d\tau},$ p = 1, (3.17)

$$E(t) \le K \left[\frac{1}{1 + \int_{t_0}^t \xi^{2p-1}(\tau) d\tau} \right]^{\frac{1}{2p-2}}, \qquad p > 1.$$
 (3.18)

37/50

General Decay

Theorem 12

Moreover, if

$$\int_{0}^{+\infty} \left[\frac{1}{1 + \int_{t_0}^{t} \xi^{2p-1}(\tau) d\tau} \right]^{\frac{1}{2p-2}} dt < +\infty, \quad 1 < p < \frac{3}{2}, \quad (3.19)$$

then
$$E(t) \le K \left[\frac{1}{1 + \int_{t_0}^t \xi^p(\tau) d\tau} \right]^{\frac{1}{p-1}}, \quad p > 1.$$
(3.20)

<ロト 4 部 ト 4 王 ト 4 王 ト 王 · の Q (* 37/50

イロト イロト イヨト イヨト ヨー わらや

38/50

General Decay

Example 13 (Revisited)

Let

$$g(t) = \frac{a}{(1+t)^{\nu}}, \ \nu > 2,$$

where a > 0 is a constant so that $\int_0^{+\infty} g(t) dt < 1$.

$$g'(t) = -\frac{a\nu}{(1+t)^{\nu+1}} = -b\left(\frac{a}{(1+t)^{\nu}}\right)^{\frac{\nu+1}{\nu}} = -bg^p(t), \quad (3.21)$$

where $p = \frac{\nu+1}{\nu} < \frac{3}{2}, b > 0.$

General Decay

Example 13 (Revisited)

Therefore the condition (3.19), with $\xi(t) = b$, yields

$$\int_{0}^{+\infty} \left(\frac{1}{b^{2p-1}t+1}\right)^{\frac{1}{2p-2}} dt < +\infty.$$

and hence by estimate (3.20) we get

$$E(t) \le \frac{C}{(1+t)^{\frac{1}{p-1}}} = \frac{C}{(1+t)^{\nu}},$$

which is the optimal decay rate.

<ロト 4 部 ト 4 王 ト 4 王 ト 王 · の Q (* 38/50

General Decay

Mustafa $\left(2017\right)$ considered $\left(3.2\right)$ under

Hypotheses

(C1) $g: \mathbb{R}^+ \to \mathbb{R}^+$ is a differentiable function and

$$g(0) > 0, \qquad 1 - \int_0^{+\infty} g(\tau) d\tau = l > 0.$$

(C2) There exist a differentiable function ξ and a C^2 -function H which is ether linear or strictly increasing and strictly convex on [0, r] with H(0) = H'(0) = 0 such that

$$\begin{cases} \xi(t) > 0, \quad \xi'(t) \le 0, \qquad \forall t > 0. \\ g'(t) \le -\xi(t)H(g(t)), \ \forall t \ge 0. \end{cases}$$

General Decay

Theorem 14

Let $(u_0, u_1) \in H_0^1(\Omega) \times H_0^1(\Omega)$ be given. Assume that (C1) - (C2) hold. Then there exist two positive constants $k_1 \leq 1$ and k_2 such that the energy functional of (3.2) satisfies

$$E(t) \le k_2 H_1^{-1}\left(k_1 \int_{g^{-1}(r)}^t \xi(s) ds\right),$$

where

$$H_1(t) = \int_t^r \frac{ds}{sH'(s)} ds \qquad r \le g(0).$$

Proof: Very technical and combines some new ideas with others from the proof of Theorem 11.

<ロト 4冊 + 4 目 + 4 目 ト 目 の 9 C 40/50

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = ののの

41/50

General Decay

Corollary 15

Under the conditions of Theorem 14, with

$$g'(t) \le -\xi(t)g^p(t), \qquad 1 \le p < 2,$$

the energy functional of (3.2) satisfies

$$E(t) \le k e^{-k_1 \int_0^t \xi(s) ds}, \qquad p = 1$$
$$E(t) \le k \left(1 + \int_0^t \xi(s) ds\right)^{\frac{-1}{p-1}}, \qquad 1$$

Remark 3: This latter result of Mustafa extended the range of p from $[1, \frac{3}{2})$ to [1, 2). So, the result of Al-Khulaifi and Messaoudi (2017) is only special case.

Outline	Introduction	Literature Review

$g'(t) \le -\xi(t)H(g(t)), \ t \ge 0$

 $\checkmark \quad \xi \equiv a > 0, \ H(s) = s^p, \ 1 \le p < \frac{3}{2} \implies g'(t) \le -ag^p(t), \quad \forall t \ge 0.$ (Most of the work before 2008.)

 $\checkmark \xi$ is a function and $H(s) = s \implies g'(t) \le -\xi(t)g(t), \quad \forall t \ge 0.$ General decay (Messaoudi 2008).

<ロト < 部 > < 臣 > < 臣 > 臣 の へ で 42/50

Outline	Introduction	Literatu

$$g'(t) \le -\xi(t)H(g(t)), \ t \ge 0$$

re Review

✓ $\xi \equiv a > 0, H(s) = s^p, 1 \le p < \frac{3}{2} \implies g'(t) \le -ag^p(t), \forall t \ge 0.$ (Most of the work before 2008.)

 $\checkmark \xi$ is a function and $H(s) = s \implies g'(t) \le -\xi(t)g(t), \quad \forall t \ge 0.$ General decay (Messaoudi 2008).

<ロト 4 部 ト 4 臣 ト 4 臣 ト 臣 - 釣 Q () 42/50

Outli	Introduction	Literature	Review

$$g'(t) \le -\xi(t)H(g(t)), \ t \ge 0$$

 $\checkmark \quad \xi \equiv a > 0, \ H(s) = s^p, \ 1 \le p < \frac{3}{2} \implies g'(t) \le -ag^p(t), \quad \forall t \ge 0.$ (Most of the work before 2008.)

✓ ξ is a function and $H(s) = s \implies g'(t) \le -\xi(t)g(t), \quad \forall t \ge 0.$ General decay (Messaoudi 2008).

Outline	Introduction	Literature Review

イロト イボト イヨト イヨト ヨー シタウ

42/50

Summary

$$g'(t) \le -\xi(t)H(g(t)), \ t \ge 0$$

 $\checkmark \quad \xi \equiv a > 0, \ H(s) = s^p, \ 1 \le p < \frac{3}{2} \implies g'(t) \le -ag^p(t), \quad \forall t \ge 0.$ (Most of the work before 2008.)

 $\checkmark \xi$ is a function and $H(s) = s \implies g'(t) \le -\xi(t)g(t), \quad \forall t \ge 0.$ General decay (Messaoudi 2008).

$\operatorname{Outline}_{\circ}$	Introduction	Literature Review	General Decay 000000000000000000000000000000000000

 $\checkmark \xi \equiv 1$ and H is convex $\implies g'(t) \leq -H(g(t)), \quad \forall t \geq 0.$ Guesmia 2011, Mustafa and Messaoudi 2012.

 $\checkmark \xi$ is a function and $H(s) = s^p, 1 \le p < \frac{3}{2}$

 $\implies g'(t) \le -\xi(t)g^p(t), \qquad \forall t \ge 0.$

Messaoudi and Al-Khulaifi 2017. $\checkmark \xi$ is a function and *H* is a convex function

$$\implies g'(t) \le -\xi(t)H(g(t)), \qquad \forall t \ge 0.$$

Mustafa 2017.

<ロト < @ ト < 臣 ト < 臣 ト 三 の へ () 43/50
Outline	Introduction	Literature Review	General Decay
			000000000000000000000000000000000000000

 $\checkmark \xi \equiv 1$ and H is convex $\implies g'(t) \leq -H(g(t)), \quad \forall t \geq 0.$ Guesmia 2011, Mustafa and Messaoudi 2012.

 $\checkmark \ \xi$ is a function and $H(s)=s^p, \, 1\leq p<\frac{3}{2}$

$$\implies g'(t) \le -\xi(t)g^p(t), \qquad \forall t \ge 0.$$

Messaoudi and Al-Khulaifi 2017.

 $\checkmark \xi$ is a function and H is a convex function

$$\implies g'(t) \le -\xi(t)H(g(t)), \qquad \forall t \ge 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

43/50

Mustafa 2017.

Outline	Introduction	Literature Review	General Decay
			000000000000000000000000000000000000000

 $\checkmark \xi \equiv 1$ and H is convex $\implies g'(t) \leq -H(g(t)), \quad \forall t \geq 0.$ Guesmia 2011, Mustafa and Messaoudi 2012.

 $\checkmark \ \xi$ is a function and $H(s)=s^p, \, 1\leq p<\frac{3}{2}$

$$\implies g'(t) \le -\xi(t)g^p(t), \qquad \forall t \ge 0.$$

Messaoudi and Al-Khulaifi 2017.

 $\checkmark \xi$ is a function and H is a convex function

$$\implies g'(t) \le -\xi(t)H(g(t)), \qquad \forall t \ge 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

43/50

Mustafa 2017.

$\operatorname{Outline}_{\circ}$	Introduction	Literature Review	General Decay 000000000000000000000000000000000000

✓ $\xi \equiv 1$ and H is convex $\implies g'(t) \leq -H(g(t)), \forall t \geq 0.$ Guesmia 2011, Mustafa and Messaoudi 2012.

 $\checkmark \ \xi$ is a function and $H(s)=s^p, \, 1\leq p<\frac{3}{2}$

$$\implies g'(t) \le -\xi(t)g^p(t), \qquad \forall t \ge 0.$$

Messaoudi and Al-Khulaifi 2017.

 $\checkmark \xi$ is a function and H is a convex function

$$\implies g'(t) \le -\xi(t)H(g(t)), \qquad \forall t \ge 0.$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 – のへで

43/50

Mustafa 2017.

$\operatorname{Outline}_{\circ}$	Introduction	Literature Review	General Decay

 $\checkmark \xi \equiv 1$ and H is convex $\implies g'(t) \leq -H(g(t)), \quad \forall t \geq 0.$ Guesmia 2011, Mustafa and Messaoudi 2012.

✓ ξ is a function and $H(s) = s^p$, $1 \le p < \frac{3}{2}$

 $\implies g'(t) \le -\xi(t)g^p(t), \qquad \forall t \ge 0.$

Messaoudi and Al-Khulaifi 2017. $\checkmark \xi$ is a function and *H* is a convex function

$$\implies g'(t) \le -\xi(t)H(g(t)), \qquad \forall t \ge 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

43/50

Mustafa 2017.

Outline	Introduction	Literature Review	General Decay
			000000000000000000000000000000000000000

 $\checkmark \xi \equiv 1$ and H is convex $\implies g'(t) \leq -H(g(t)), \quad \forall t \geq 0.$ Guesmia 2011, Mustafa and Messaoudi 2012.

✓ ξ is a function and $H(s) = s^p$, $1 \le p < \frac{3}{2}$

$$\implies g'(t) \le -\xi(t)g^p(t), \qquad \forall t \ge 0.$$

Messaoudi and Al-Khulaifi 2017. $\checkmark \xi$ is a function and *H* is a convex function

$$\implies g'(t) \le -\xi(t)H(g(t)), \qquad \forall t \ge 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

43/50

Mustafa 2017.

Open Questions

\checkmark Case of "super" exponential

$$g(t) = be^{-at^{\nu}}, \ \nu > 1.$$

 \checkmark Case when $\xi(t)$ changes sign.

<ロト < 部 > < 臣 > < 臣 > 三 の < 0 44/50

Introduction

Literature Review

Open Questions

 $\checkmark~$ Case of "super" exponential

$$g(t)=be^{-at^{\nu}}, \ \nu>1.$$

✓ Case when $\xi(t)$ changes sign.

References

- Alabau-Boussouira, F. and Cannarsa, P., A general method for proving sharp energy decay rates for memory-dissipative evolution equations, C. R. Acad. Sci. Paris, Ser. I 347 (2009), 867-872.
- Berrimi, S. and Messaoudi, S.A., Existence and decay of solutions of a viscoelastic equation with a nonlinear source, *Nonlinear Anal.* 64 (2006), 2314-2331.

<ロト < 部 > < 臣 > < 臣 > 三 の へ で 45/50

References

- Cavalcanti, M. M., Domingos Cavalcanti, V. N. and Soriano, J. A., Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping, *Elect J. Diff. Eqns.* **2002** # 44 (2002), 1-14.
- Cavalcanti, M. M., Domingos Cavalcanti, V. N., Lasiecka, I. and Webler, C. M., Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density. Advances in Nonlinear Analysis, (2016).

References

- Lasiecka, I., Messaoudi, S. A. and Mustafa, M. I., Note on intrinsic decay rates for abstract wave equations with memory. *Journal of Mathematical Physics*, (2013) 54(3), 1.
- Messaoudi, S.A. General decay of solutions of a viscoelastic equation, *JMAA* **341** (2008), 1457-1467.
- Messaoudi, S. A., and Al-Khulaifi, W. General and optimal decay for a quasilinear viscoelastic equation. Applied Mathematics Letters, 66, 16-22, (2017).

<ロト < 部 > < 臣 > < 臣 > 三 の へ で 47/50

References

- Munoz Rivera, J.E., Asymptotic behavior in linear viscoelasticity, Quart. Appl. Math. 52 # 4 (1994), 628-648.
- Munoz Rivera, J.E., Naso, M.G. and Vegni, F.M.,
 Asymptotic behavior of the energy for a class of
 weakly dissipative second-order systems with
 memory, J. Math. Anal. Appl. 286 # 2 (2003), 692-704.

References

- Mustafa, M. I. and Messaoudi, S. A. . General stability result for viscoelastic wave equations, *Journal of Mathematical Physics*, **53(5)** (2012), 053702-053702-14.
- Mustafa, M.I. Optimal decay rates for the viscoelastic wave equation. Math. Methods Appl. Sci. 41(1), 192–204 (2018)

<ロト < 部 > < 臣 > < 臣 > 三 の < ④ + 4 臣 > < 臣 > 三 の < ④ 49/50

Introduction

Literature Review

General Decay

Comments & Questions

THANK YOU FOR YOUR ATTENTION

<ロト < 部 > < 目 > < 目 > 三 の へ の 50/50