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The elastic solid

+ Has a definite shape.

+ Deformed by external forces into a new equilibrium shape.

+ Reverts exactly to its original form on removal of external
forces.

+ Stores all the energy obtained from the work done by
external forces during deformation.

+ This energy remains available to restore the body to its
original shape when these forces are removed.

+ Responds only to the total stress level at every instant of
time.
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The elastic solid

Example 1 (Wave Equation)

utt −∆u = 0 in Ω,

under u ≡ 0 on ∂Ω, the total energy

E(t) =
1

2

∫
Ω
u2
t + |∇u|2dx

satisfies E′(t) ≡ 0. Hence E(t) = E(0), ∀t ≥ 0.
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The elastic solid

Example 2 (Damped Wave Equation)

utt −∆u+ g(ut) = 0 in Ω,

under u ≡ 0 on ∂Ω, g(0) = 0 and g is increasing, we have

E′(t) = −
∫

Ω
g(ut)utdx ≤ 0.

So E(t) is decreasing.
Many stability results were obtained: Kopackova, Haraux,
Zuazua, Lasiecka, Guesmia, Soufyane, Messaoudi, Benaissa,
Tataru,...
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Newtonian viscous fluid

+ Responds to a suddenly applied state of uniform shear
stress by a steady flow process.

+ Has no definite shape and flows irreversibly under the
action of external forces.
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Viscoelastic Materials

+ Other materials have properties which are intermediate
between those of an elastic solid and a viscous liquid.

+ The most interesting examples are polymers.

+ A polymer can show all the features of a glassy, brittle
solid, an elastic rubber or a viscous liquid depending on the
temperature and time scale of measurement.

+ Polymers are usually described as viscoelastic materials.
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Viscoelastic Materials
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Viscoelastic Materials

+ This type of material possesses a characteristic which can
be referred to as a memory effect.

+ That is, the material response is not only determined by
the current state of stress, but is also determined by all
past states of stress.

+ To understand this phenomenon, several early models were
introduced by Maxwell, Kelvin-Voight, Boltzmann (1874),
and Volterra (1909).
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Linear Kelvin-Voight Viscoelastic Model

utt = divS, S = a∇u+ b∇ut, a, b > 0.

As a result:
utt − a∆u− b∆ut = 0.

(Viscoelastic or strongly damped wave equation)
For Dirichlet boundary condition

E′(t) = −b
∫

Ω
|∇ut|2dx.

In fact:
E(t) ≤ ce−λt, c, λ > 0.
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Boltzmann Model

+ In the isothermal viscoelasticity, the stress-strain relation is given by

σ(t) = σ0ε(t)−
∫ t

0
g(t− τ)ε(τ)dτ

+ g characterizes the mechanical properties of the material and is
referred to as relaxation functions and ε is the strain.

+ It can be considered to be the formulation of Boltzmann’s
superposition principle.

As a result we have

utt − σ0∆u+

∫ t

0
g(t− τ)∆u(τ)dτ = 0.

(Viscoelastic equation)
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Literature Review

X Dafermos (1970) discussed a certain one-dimensional
viscoelastic problem

+ established some existence results

+ proved that solutions go to zero as t goes to infinity
(smooth monotone decreasing relaxation functions)

+ no rate of decay has been specified.

X Hrusa (1985) considered

utt − cuxx +

∫ t

0
m(t− s) (ψ(ux(x, s)))x ds = f(x, t)

+ proved several global existence results for large data

+ proved exponential decay, for strong solutions, when
m(s) = e−s and ψ satisfies certain conditions.
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Literature Review

X Dassios and Zafiropoulos (1990) studied a viscoelastic
problem in IR3 and proved a polynomial decay for
exponentially decaying kernels.

X Rivera (1994) considered equations for linear isotropic
homogeneous viscoelastic solids of integral type

+ For bounded domains: proved an exponential decay result
for exponentially decaying relaxation functions

+ For IRn: showed that only the polynomial decay can be
obtained even if the kernel is of exponential decay.
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Literature Review

The viscoelastic problem
utt −∆u+

t∫
0

g(t− τ)∆u(τ)dτ + a(x)ut + |u|γu = 0

u(x, t) = 0, x ∈ ∂Ω , t ≥ 0

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

in Ω ⊂ IRn (n ≥ 1) bounded with ∂Ω regular, γ > 0, g ≥ 0 discussed by many
mathematicians.
X Cavalcanti et al. (EJDE 2002) proved an exponential decay under

−ξ1g(t) ≤ g′(t) ≤ −ξ2g(t), t ≥ 0,

||g||L1((0,+∞)) is small enough and a : Ω→ IR+ such that

a(x) ≥ a0 > 0 on ∅ 6= ω ⊂ Ω,

with ω satisfying some geometry restrictions.
X Berrimi and Messaoudi (EJDE 2004) obtained the same result under weaker conditions
on g and ω. In particular, they allowed ω = ∅ and the mechanical damping to be nonlinear.
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Literature Review

X Cavalcanti et al (MMAS 2001) studied

|ut|ρutt −∆u−∆utt +

∫ t

0
g(t− τ)∆u(τ)dτ − γ∆ut = 0, ρ > 0.

+ global existence result for γ ≥ 0,

+ exponential decay for γ > 0 were established.

X This last result has been extended to

|ut|ρutt −∆u−∆utt +

∫ t

0
g(t− τ)∆u(τ)dτ − γ∆ut = b|u|p−1u,

by Messaoudi and Tatar for both cases γ > 0 (MSRJ 2003) then
for γ = 0 (NA & MMAS 2007).
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Literature Review

X Messaoudi and Tatar (Ms. Ns. 2009) showed that the
exponential decay can be obtained under other conditions

g′(t) ≤ 0,

∫ +∞

0
g(t)eαtdt < +∞, α > 0.

X Many other results have been established by Munoz Rivera,
Cavalcanti, Tatar, Alabau-Boussouira and Cannarsa,
Messaoudi, Mustafa, Kafini, Soufyane, Guesmia,
Said-Houari, Martinez, Park, Xiaosen and Mingxing ...

Salim A. Messaoudi KFUPM

General Decay in Viscoelasticity: Overview and recent development



16/50

Outline Introduction Literature Review General Decay

Literature Review

X Messaoudi and Tatar (Ms. Ns. 2009) showed that the
exponential decay can be obtained under other conditions

g′(t) ≤ 0,

∫ +∞

0
g(t)eαtdt < +∞, α > 0.

X Many other results have been established by Munoz Rivera,
Cavalcanti, Tatar, Alabau-Boussouira and Cannarsa,
Messaoudi, Mustafa, Kafini, Soufyane, Guesmia,
Said-Houari, Martinez, Park, Xiaosen and Mingxing ...

Salim A. Messaoudi KFUPM

General Decay in Viscoelasticity: Overview and recent development



17/50

Outline Introduction Literature Review General Decay

General Decay

All results dealt mainly with either exponential decay

g′(t) ≤ −αg(t),

or polynomial decay

g′(t) ≤ −αgρ(t), 1 < ρ < 3/2
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General Decay

Question

How about other rates of decay?

To answer this question, Messaoudi (2008) investigated the situation when

g′(t) ≤ −ξ(t)g(t), (3.1)

where ξ is a positive function.
Consider 

utt −∆u+

∫ t

0
g(t− τ)∆u(τ)dτ = 0

u(x, t) = 0, x ∈ ∂Ω , t ≥ 0

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(3.2)

in a bounded domain Ω and t > 0.
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General Decay

Hypotheses

(G1) g : R+ → R+ is a differentiable function and

g(0) > 0, 1−
∫ +∞

0
g(τ)dτ = l > 0.

(G2) There exists a differentiable function ξ such thatξ(t) > 0, ξ′(t) ≤ 0, ∀t > 0.

g′(t) ≤ −ξ(t)g(t), ∀t ≥ 0.
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General Decay

Remark (1)

There are many functions satisfying (G1) and (G2). Examples of such
functions are

g(t) =
a

(1 + t)ν
, ν > 1

g(t) = ae−b(t+1)p , 0 < p ≤ 1.

for a and b to be chosen properly.

Theorem 3 (Cavalcanti et al. 2001)

Let (u0, u1) ∈ H1
0 (Ω)× L2(Ω) be given. Assume that g satisfies (G1). Then

problem (3.2) has a unique global solution

u ∈ C(R+;H1
0 (Ω)), ut ∈ C(R+;L2(Ω))
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General Decay

The ”modified” energy functional

E(t) :=
1

2

(
1−

∫ t

0
g(τ)dτ

)
‖∇u(t)‖22 +

1

2
‖ut‖22 +

1

2
(g ◦ ∇u)(t), (3.3)

where

(g ◦ ∇u)(t) =

∫ t

0
g(t− τ)‖∇u(t)−∇u(τ)‖22dτ. (3.4)

Theorem 4 (Messaoudi 2008)

Let (u0, u1) ∈ H1
0 (Ω)× L2(Ω) be given. Assume that g and ξ satisfy (G1)

and (G2). Then, for each t0 > 0, there exist strictly positive constants K
and λ such that the solution of (3.2) satisfies

E(t) ≤ Ke−λ
∫ t
t0
ξ(s)ds

, ∀t ≥ t0.
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Idea of proof

Let
F (t) := E(t) + ε1Ψ(t) + ε2χ(t), (3.5)

where ε1 and ε2 are positive constants and

Ψ(t) : =

∫
Ω

uutdx

χ(t) : = −
∫
Ω

ut

∫ t

0
g(t− τ)(u(t)− u(τ))dτdx.
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General Decay

Lemma 5

If u is a solution of (3.2), then the energy satisfies

E′(t) ≤ 1

2
(g′ ◦ ∇u)(t) ≤ 0. (3.6)

Lemma 6

For ε1 and ε2 small enough, we have

α1F (t) ≤ E(t) ≤ α2F (t) (3.7)

holds for two positive constants α1 and α2.
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Idea of proof

Lemma 7

Under the assumptions (G1) and (G2), the functional

Ψ(t) :=

∫
Ω

uutdx

satisfies, along the solution of (3.2),

Ψ′(t) ≤ ‖ut‖22 −
l

2
‖∇u(t)‖22 + C(g ◦ ∇u)(t). (3.8)

Salim A. Messaoudi KFUPM

General Decay in Viscoelasticity: Overview and recent development



24/50

Outline Introduction Literature Review General Decay

Idea of proof

Lemma 7

Under the assumptions (G1) and (G2), the functional

Ψ(t) :=

∫
Ω

uutdx

satisfies, along the solution of (3.2),

Ψ′(t) ≤ ‖ut‖22 −
l

2
‖∇u(t)‖22 + C(g ◦ ∇u)(t). (3.8)

Salim A. Messaoudi KFUPM

General Decay in Viscoelasticity: Overview and recent development



25/50

Outline Introduction Literature Review General Decay

Idea of proof

Lemma 8

Under the assumptions (G1) and (G2), the functional

χ(t) := −
∫
Ω

ut

∫ t

0
g(t− τ)(u(t)− u(τ))dτdx

satisfies, along the solution of (3.2), for any δ > 0

χ′(t) ≤−
[∫ t

0
g(τ)dτ − δ

]
‖ut‖22 −

C

δ
(g′ ◦ ∇u)(t)

+ δ‖∇u‖22 +
C

δ
(g ◦ ∇u)(t).

(3.9)
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Idea of proof

Proof.
Since g is positive and g(0) > 0 then for any t0 > 0 we have∫ t

0
g(s)ds ≥

∫ t0

0
g(τ)dτ = g0 > 0, ∀t ≥ t0.

By using (3.5), (3.6), (3.8), (3.9), with suitable choice of constants we
obtain for t ≥ t0,

F ′(t) ≤ −β1E(t) + β2(g ◦ ∇u)(t), ∀t ≥ t0. (3.10)

Multiply (3.10) by ξ(t) and recall Lemma 5

ξ(t)F ′(t) ≤ −β1ξ(t)E(t) + β2(ξg ◦ ∇u)(t)

≤ −β1ξ(t)E(t)− β3(g′ ◦ ∇u)(t)

≤ −β1ξ(t)E(t)−KE′(t)

Then
KE′(t) + ξ(t)F ′(t) ≤ −β1ξ(t)E(t)
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Idea of proof

Note

(KE(t) + ξ(t)F (t))′ ≤ KE′(t) + ξ(t)F ′(t)

≤ −β1ξ(t)E(t)

Use L(t) = KE(t) + ξ(t)F (t) v E(t) (3.11)

to arrive at
L′(t) ≤ −λξ(t)L(t), ∀t ≥ t0

A simple integration leads to

L(t) ≤ L(t0)e
−λ

∫ t
t0
ξ(τ)dτ

, ∀t ≥ t0.

Thus (3.11) yield

E(t) ≤ Ce−λ
∫ t
t0
ξ(τ)dτ

, ∀t ≥ t0. (3.12)
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General Decay

Remark (2)

The estimate (3.12) is also true for t ∈ [0, t0] by virtue of continuity and
boundedness of E(t) and ξ(t).
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Example 9

Let
g(t) = ae−(1+t)ν , 0 < ν ≤ 1,

where 0 < a < 1 is chosen so that
∫ +∞

0 g(t)dt < 1. Then

g′(t) = −aν(1 + t)ν−1e−(1+t)ν = −ξ(t)g(t)

where ξ(t) = ν(1 + t)ν−1 which is nonincreasing and ξ(0) > 0.
Therefore Theorem 4 gives

E(t) ≤ Ce−λ(1+t)ν .
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Example 10

Let
g(t) =

a

(1 + t)ν
, ν > 2,

where a > 0 is a constant so that
∫ +∞

0 g(t)dt < 1.

g′(t) = − aν

(1 + t)ν+1
= − ν

1 + t
g(t) = −ξ(t)g(t), (3.13)

where ξ(t) = ν
1+t which is nonincreasing and ξ(0) > 0. Theorem

4 gives

E(t) ≤ c

(1 + t)λν
.
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Alabau-Boussouira and Cannarsa (C. R. Acad. Sci. Paris (2009)) considered Problem
utt −∆u+

∫ t

0
g(t− τ)∆u(τ)dτ = 0

u(x, t) = 0, x ∈ ∂Ω , t ≥ 0

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(3.2)

in a bounded domain Ω and t > 0, with

g′(t) ≤ −H (g(t)) , ∀ a.e. t ≥ 0

+ H is nonnegative measurable function on some interval [0, k0]
+ strictly increasing and of class C1 on [0, k1], for k1 ≤ k0

+ H(0) = H ′(0) = 0
+ H(s) ≥ H0 > 0, ∀s ∈ [k1, k0]

+
∫ k0

0
dx
H(x) = +∞,

∫ k0
0

xdx
H(x) < 1.

Under the above hypotheses and an extra condition of the form

lim inf
s→0+

H(s)/s

H ′(s)
>

1

2
,

they announced a decay result for the energy of (3.2), with an explicit rate of decay.
They also asked the question: how about

g′(t) ≤ −ξ(t)H(g(t)), t ≥ 0? (3.14)
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Mustafa and Messaoudi (2012) considered (3.2) under:

(A1) g : IR+ → IR+ is a differentiable function satisfying

g(0) > 0, 1−
∫ +∞

0
g(s)ds = l > 0.

(A2) There exists a positive function H ∈ C1(IR+), with
H(0) = 0, and H is linear or strictly increasing and strictly
convex C2 function on (0, r] for some r < 1, such that

g′(t) ≤ −H(g(t)), ∀t ≥ 0.
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Theorem 11

Let (u0, u1) ∈ H1
0 (Ω)×H1

0 (Ω) be given. Assume that (A1) - (A2) hold.
Then there exist positive constants k1, k2, k3 and ε0 such that the solution of
(3.2) satisfies

E(t) ≤ k3H
−1
1 (k1t+ k2) ∀t ≥ 0, (3.15)

where

H1(t) =

∫ 1

t

1

sH ′0(ε0s)
ds and H0(t) = H(D(t))

provided that D is a positive C1 function, with D(0) = 0, for which H0 is
strictly increasing and strictly convex C2 function on (0, r] and∫ +∞

0

g(s)

H−1
0 (−g′(s))

ds < +∞. (3.16)

Moreover, if
∫ 1

0 H1(t)dt < +∞ for some choice of D, then we have the
improved estimate

E(t) ≤ k3G
−1(k1t+ k2) where G(t) =

∫ 1

t

1

sH ′(ε0s)
ds.
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X Lasiecka, Messaoudi and Mustafa (2013) used iteration
calculation to extend the range of the optimality in case of the
polynomial decay.

X Cavalcanti et al (2016) characterized the energy decay by
the solution of a corresponding ODE and obtained the
optimality for the maximal range.
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Messaoudi and Al-Khulaifi (2017) considered
utt −∆u+

∫ t

0
g(t− τ)∆u(τ)dτ = 0

u(x, t) = 0, x ∈ ∂Ω , t ≥ 0

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(3.2)
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under:

(A1) g : IR+ → IR+ is a differentiable function satisfying

g(0) > 0, 1−
∫ +∞

0
g(s)ds = l > 0.

(A2) There exists a differentiable function ξ such thatξ(t) > 0, ξ′(t) ≤ 0, ∀t > 0.

g′(t) ≤ −ξ(t)gp(t), 1 ≤ p < 3
2 , ∀t ≥ 0.
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Theorem 12

Let (u0, u1) ∈ H1
0 (Ω)× L2(Ω) be given. Assume that g satisfies

(G1) and (G2). Then for each t0 > 0, there exist strictly
positive constants K and λ such that the solution of (3.2)
satisfies, for all t ≥ t0,

E(t) ≤ Ke−λ
∫ t
t0
ξ(τ)dτ

, p = 1, (3.17)

E(t) ≤ K

[
1

1 +
∫ t
t0
ξ2p−1(τ)dτ

] 1
2p−2

, p > 1. (3.18)
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Theorem 12

Moreover, if

∫ +∞

0

[
1

1 +
∫ t
t0
ξ2p−1(τ)dτ

] 1
2p−2

dt < +∞, 1 < p <
3

2
, (3.19)

then

E(t) ≤ K

[
1

1 +
∫ t
t0
ξp(τ)dτ

] 1
p−1

, p > 1. (3.20)
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Example 13 (Revisited)

Let
g(t) =

a

(1 + t)ν
, ν > 2,

where a > 0 is a constant so that
∫ +∞

0 g(t)dt < 1.

g′(t) = − aν

(1 + t)ν+1
= −b

(
a

(1 + t)ν

) ν+1
ν

= −bgp(t), (3.21)

where p = ν+1
ν < 3

2 , b > 0.
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Example 13 (Revisited)

Therefore the condition (3.19), with ξ(t) = b, yields∫ +∞

0

(
1

b2p−1t+ 1

) 1
2p−2

dt < +∞.

and hence by estimate (3.20) we get

E(t) ≤ C

(1 + t)
1
p−1

=
C

(1 + t)ν
,

which is the optimal decay rate.
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Mustafa (2017) considered (3.2) under

Hypotheses

(C1) g : R+ → R+ is a differentiable function and

g(0) > 0, 1−
∫ +∞

0
g(τ)dτ = l > 0.

(C2) There exist a differentiable function ξ and a C2-function H
which is ether linear or strictly increasing and strictly
convex on [0, r] with H(0) = H ′(0) = 0 such thatξ(t) > 0, ξ′(t) ≤ 0, ∀t > 0.

g′(t) ≤ −ξ(t)H(g(t)), ∀t ≥ 0.Salim A. Messaoudi KFUPM
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Theorem 14

Let (u0, u1) ∈ H1
0 (Ω)×H1

0 (Ω) be given. Assume that (C1) - (C2) hold.
Then there exist two positive constants k1 ≤ 1 and k2 such that the energy
functional of (3.2) satisfies

E(t) ≤ k2H
−1
1

(
k1

∫ t

g−1(r)
ξ(s)ds

)
,

where

H1(t) =

∫ r

t

ds

sH ′(s)
ds r ≤ g(0).

Proof: Very technical and combines some new ideas with others from the
proof of Theorem 11.
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Corollary 15

Under the conditions of Theorem 14, with

g′(t) ≤ −ξ(t)gp(t), 1 ≤ p < 2,

the energy functional of (3.2) satisfies

E(t) ≤ ke−k1
∫ t
0 ξ(s)ds, p = 1

E(t) ≤ k
(

1 +

∫ t

0
ξ(s)ds

) −1
p−1

, 1 < p < 2.

Remark 3: This latter result of Mustafa extended the range of p from
[1, 3

2) to [1, 2). So, the result of Al-Khulaifi and Messaoudi (2017) is only
special case.
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Summary

g′(t) ≤ −ξ(t)H(g(t)), t ≥ 0

X ξ ≡ a > 0, H(s) = sp, 1 ≤ p < 3
2 =⇒ g′(t) ≤ −agp(t), ∀t ≥ 0.

(Most of the work before 2008.)

X ξ is a function and H(s) = s =⇒ g′(t) ≤ −ξ(t)g(t), ∀t ≥ 0.
General decay (Messaoudi 2008).
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Summary

X ξ ≡ 1 and H is convex =⇒ g′(t) ≤ −H(g(t)), ∀t ≥ 0.
Guesmia 2011, Mustafa and Messaoudi 2012.

X ξ is a function and H(s) = sp, 1 ≤ p < 3
2

=⇒ g′(t) ≤ −ξ(t)gp(t), ∀t ≥ 0.

Messaoudi and Al-Khulaifi 2017.
X ξ is a function and H is a convex function

=⇒ g′(t) ≤ −ξ(t)H(g(t)), ∀t ≥ 0.

Mustafa 2017.
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Open Questions

X Case of ”super” exponential

g(t) = be−at
ν
, ν > 1.

X Case when ξ(t) changes sign.
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Comments & Questions
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ATTENTION
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