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Introduction

� The Keller-Segel system:∂tu = ∆u −∇ · (u∇Φu),

0 = ∆Φu + u,
in Rd . (KS)

� Modeling features:
- Mathematical Biology: the chemotaxis phenomena, [Patlak ’53], [Keller-Segel ’70],
[Nanjundiah ’73], [Hillen-Painter ’09]; Astrophysics: the gravitational interacting
massive particles in a cloud, [Othmer-Stevens ’90], [Stevens ’00]), [Chavanis ’08],
[Hillen-Painter ’08]; related to the miscroscopic description of the dynamics of
particle systems in kinetic theory, [Chalub-Markowich-Perthame-Schmeiser ’04]; etc.

- Competition between dispersion of cells (diffusion) and aggregation;
- Rich model from mathematical point of view, [Horstman ’03 & ’04],
[Calvez-Carrillo-Hoffmann ’16], [Biler ’20], etc. The cross diffusive terms like
∇ · (u∇Φu) lead to substantial difficulties compared to the standard theory of
parabolic systems.
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Introduction

Basis features

The Keller-Segel system: ∂tu = ∇ ·
(
∇u − u∇Φu

)
Φu = −Kd ∗ u, Kd (x) =


1
2π log |x | for d = 2,

1
(d−2)σd

|x |2−d for d ≥ 3.

- mass conservation: M =
∫
Rd

u0(x)dx =
∫
Rd

u(x , t)dx ;

- scaling invariance: uγ(x , t) = 1
γ2 u
(

x
γ
, t
γ2

)
, Φuγ (x , t) = Φu

(
x
γ
, t
γ2

)
;

- L d
2 -critical:

∫
Rd

u
d
2
γ =

∫
Rd

u
d
2 ; L1-supercritical for d ≥ 3:

∫
Rd

uγ = γd−2
∫
Rd

u;

- variational structure: F(u) =
∫
Rd

u
(

ln u − 1
2Φu

)
(entropy or free energy):

d
dtF(u) = −

∫
Rd

u|∇ log u −∇Φu|2 ≤ 0.
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Introduction

The 8π problem in the 2D case

� If M < 8π: global existence + spreading, [Blanchet-Dolbeault-Perthame ’06]. The
proof mainly relies on the free energy functional F(u) and the Log HLS inequality.

� If M = 8π and
∫
R2 |x |2u < +∞: blowup in infinite time,

[Blanchet-Carrillo-Masmoudi ’08]. Constructive approaches by [Ghoul-Masmoudi
’18] (radial), [Davila-del Pino-Dolbeault-Musso-Wei ’20] (full nonradial):

‖u(t)‖L∞ ∼ c0 log t as t → +∞.

� If M > 8π: blowup in finite time, [Childress-Percus ’81], [Jager-Luckhaus ’92],
[Nagai-Senba ’98], [Senba-Suzuki ’03]:

(virial identity) d
dt

∫
R2
|x |2u(x , t)dx = M

2π (8π −M).

Constructive approaches in the radial setting by [Herrero-Velázquez ’96],
[Raphaël-Schweyer ’14]:

‖u(t)‖L∞ ∼ C0
e
√

2| log(T−t)|

T − t as t → T .
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Introduction

A numerical simulation for d = 2

A numerical simulation of blowup for the 2D Keller-Segel system

∂tu = ∆u −∇.(u∇Φu), −∆Φu = u.

V. T. Nguyen (NYUAD) Singularities in the Keller-Segel system 7


KS1.mp4
Media File (video/mp4)



Introduction

A numerical simulation for d = 2

A numerical simulation of blowup for the 2D Keller-Segel system

∂tu = ∆u −∇.(u∇Φu), −∆Φu = u.
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Introduction

Underlying problem

Existence and Stability of blowup solutions.
∂tu = ∇ ·

(
∇u − u∇Φu

)
, −∆Φu = u in Rd
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The two dimensional case Statement of the result

2 - The two dimensional case:
Statement of the result
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The two dimensional case Statement of the result

Finite time blowup for the 2DKS ∂tu = ∇ ·
(
∇u − u∇Φu

)
- Type I does not exist, [Senba-Suzuki ’11]: ∂tu = ∆u −∇u.∇Φu + u2.
- Type II: "∆ dominates ∂t"  profile, unknown blowup rates.

� There exists a set O ⊂ L1 ∩ E , where E = {u :
∑2

k=0 ‖〈x〉
k∇ku‖L2 < +∞}, of

initial data u0 (not necessary radially symmetric) such that

u(x , t) = 1
λ2(t)

[
Q
(
x − a(t)
λ(t)

)
+ ε (x , t)

]
, Q(x) = 8

(1 + |x |2)2 ,

where a(t)→ ā ∈ R2 and
∑1

k=0 ‖〈y〉
k∇kε(t)‖L2 → 0 as t → T , and λ is given

by either

λ(t) ∼ 2e−
γ+2
2
√
T − t exp

(
−
√
| log(T − t)|
√
2

)
, (C1)

or
λ(t) ∼ c(u0)(T − t)

`
2 | log(T − t)|−

`
2(`−1) , ` ≥ 2 integer. (C2)

� Case (C1) is stable and Case (C2) is (`− 1)-codimension stable.

Theorem 1 ([Collot-Ghoul-Masmoudi-Ng., 2021).
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The two dimensional case Statement of the result

Comments ∂tu = ∇ ·
(
∇u − u∇Φu

)
,−∆Φu = u in R2

� Existing results: formal level (numerical observation, formal matching asymptotic
expansions) and in the radial setting to remove the nonlocal structure difficulty, i.e.
u(x , t) = u(r , t),

m(r) =
∫ r

0
u(ζ)ζdζ, u(r) = ∂rm(r)

r , ∂r Φu(r) = −m(r)
r , r = |x |,

∂tu = 1
r ∂r
(
r∂ru − ru∂r Φu

)
=⇒ ∂tm = ∂2r m −

∂rm
r + ∂rm2

2r

Refs: [Herrero-Velazquez ’96 & ’97], [Velazquez ’02], [Schweyer-Raphael ’14],
[Dyachenko-Lushnikov-Vladimirova ’13], ...

� The new result: full nonradial setting, refined description of the stable blowup
mechanism, new (unstable) blowup dynamics, a nature approach via spectral
analysis/robust energy-type method, a step toward a classification of all possible blowup
behaviors, ...
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The two dimensional case Existing formal/rigorous analysis

2 - The two dimensional case:
Existing formal/rigorous analysis
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The two dimensional case Existing formal/rigorous analysis

Formal analysis ∂tu = ∇ ·
(
∇u − u∇Φu

)
,−∆Φu = u in R2

� Formal analysis via matched asymptotic expansions [Velazquez ’02]: working with the
self-similar variables

u(x , t) = 1
T − t w(z, τ), z = x√

T − t
, τ = − log(T − t),

∂τw = ∇ ·
(
∇w − w∇Φw

)
−1
2∇ · (zw)

Fig 2: Understanding of the matched asymptotic expansions
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The two dimensional case Existing formal/rigorous analysis

Matched asymptotic expansions ∂τ w = ∇ ·
(
∇w − w∇Φw

)
− 1

2∇ · (zw)

� Inner approximate solution: w inn(z, τ) = 1
ν(τ)2P

( z
ν
, τ
)
,

ν2∂τP = ∇ · (∇P − P∇ΦP) + σ(τ)∇ · (yP), σ = νντ −
ν2

2 .

- Expanding P: P(y , τ) = Q(y) + σ(τ)T1(y) + T2(y , τ), where

L0T1 = −∇ · (yQ), L0T2 = ν2στT1 − σ2(τ)∇ · (yT1) + lot.

L0f = ∇ · (∇f − f∇ΦQ − Q∇Φf ).

- Inner expansion: for ν � |z| < ε0,

w inn(z, τ) = 8ν2

|z|4︸︷︷︸
Q

− 4σ
|z|2︸ ︷︷ ︸
σT1

−στ
[

log |z| − log ν − 5
4
]

+ σ2

ν2︸ ︷︷ ︸
T2

+lot.
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The two dimensional case Existing formal/rigorous analysis

Matched asymptotic expansions ∂τ w = ∇ ·
(
∇w − w∇Φw

)
− 1

2∇ · (zw)

� Outer approximate solution: wout = O(ν2), ∂ΦQ

∂|z| ∼ −
4
|z| for |z| → 0,

∂τwout = ∆wout + 4
|z|

∂wout

∂|z| −
1
2∇ ·

(
zwout) := H wout .

- Expanding wout : wout = ν2W1 + ντνW2, where H W1 = 0, H W2 = 2W1.
- Outer expansion: for ν � |z| < ε0,

wout(z, τ) = ν2
[ 8
|z|4 + 2

|z|2︸ ︷︷ ︸
W1

]
+ ντν

[
− 4
|z|2 + log |z| − 3

4 −
log 4
2 + γ

2︸ ︷︷ ︸
W2

]
+ lot.

� Matching expansions yields the leading ODE:

στ log ν + 5
4στ + σ2

ν2
= −

(3
4 + log 4

2 − γ

2

)
νντ =⇒ ν(τ) = C0e−

√
τ
2

� Analysis of the stability was formally done by [Velazquez ’02] at the linear level.
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The two dimensional case Existing formal/rigorous analysis

Existing rigorous analysis ∂tu = ∇ ·
(
∇u − u∇Φu

)
,−∆Φu = u in R2

� Rigorous analysis via modulation techniques [Schweyer-Raphael ’14]: working with the
blowup variables:

u(x , t) = 1
λ2

v(y , s), y = x
λ
,

ds
dt = 1

λ2
,
(
λ(t) > 0 unknown

)
,

∂sv = ∆v −∇ · (v∇Φv )−b∇ · (yv) b = −λtλ.

� Approximate solution:

v app(y ; b) = Q(|y |) + bT1(|y |) + S2(|y |; b),

L0T1 = ∇.(yQ), L0S2 = b2∇.(yT1) + bsT1 + lot.
Improving S2 in the blowup zone |y | ∼ 1√

b leads to the leading ODE (mT1 ∼ c1 ln r)

bs = − 2b2

| log b| =⇒ λ(t) =
√
T − te−

√
| log(T−t)|

2 +O(1).

� Control of the remainder ε = v − v app: based on the special structure

L0ε = ∇ ·
(
Q∇M ε

)
, M ε = ε

Q − Φε.

Requirement: radial + L1 smallness + a complicated treatment for b∇.(yε).
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2 - The two dimensional case:
A new framework for blowup analysis

V. T. Nguyen (NYUAD) Singularities in the Keller-Segel system 18



The two dimensional case A new framework for blowup analysis

Strategy of the new constructive proof ∂tu = ∇ ·
(
∇u − u∇Φu

)
in R2

� Self-similar variables:

u(x , t) = 1
T − t w(z, τ), z = x√

T − t
, τ = − log(T − t),

∂τw = ∇ · (∇w − w∇Φw )− 1
2∇ · (zw)

� Linearized problem: w(z, τ) = Qν(z) + η(z, τ), where Qν(z) = 1
ν2Q
( z
ν

)
and η solves

∂τη = L νη +
(
ντ
ν
− 1

2

)
∇ · (zQν)−∇ ·

(
ηΦη

)
, ν → 0 unknown,

L νη = ∇ ·
(
∇η − η∇ΦQν − Qν∇Φη)︸ ︷︷ ︸

≡L ν
0 η

−1
2∇ · (zη)

- Structure of L ν
0 :

L ν
0 η = ∇ ·

(
Qν∇M νη

)
, M νη = η

Qν
− Φη.

(M ν comes from the linearization of the energy functional F around Qν).
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The two dimensional case A new framework for blowup analysis

Key properties for the linear analysis: radial sector

� In the radial sector, the (nonlocal) operator L ν becomes a local operator through the
partial mass setting, i.e. ζ = |z|, mf (ζ) =

∫ ζ
0 f (r)rdr ,

L ν f = 1
ζ
∂ζ
(
A νmf

)
, A νφ = ζ∂ζ

(
∂ζφ

ζ

)
− ∂ζ(mQνφ)

ζ
− 1

2ζ∂ζφ ≡ A ν
0 φ−

1
2ζ∂ζφ.

� [Collot-Ghoul-Masmoudi-Ng., ’21]: A ν is self-adjoint in L2ων
ζ
, its eigenvalues are

spec(A ν) =
{
αn,ν = 1− n + 1

2 ln ν +O
(

1
| ln ν|2

)
, n ∈ N

}
ων = e−

ζ2
4

Qν
.

The eigenfunction φn,ν solving A νφn,ν = αn,νφn,ν is defined by

φn,ν(ζ) =
n∑

j=0

cn,jν
2j−2Tj

( ζ
ν

)
+ l.o.t, A ν

0 Tj+1 = −Tj , T0 = ξ∂ξmQ .

Proof: Schrödinger type operator  discreteness, Sturm comparison principle  
uniqueness, matching asymptotic expansions + implicit function theorem  (αn,ν , φn,ν).
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The two dimensional case A new framework for blowup analysis

Key properties of the linear analysis: nonradial sector

� First expression:

L ν f = L ν
0 f −

1
2∇.(zf ) with L ν

0 f = ∇ · (Qν∇M ν f ) and M ν f = f
Qν
− Φf ,

The operator L ν
0 is self-adjoint in L2 with respect to the inner product

〈f , g〉Mν =
∫
R2

f M νg dz, (positivity) 〈f , f 〉Mν ∼
∫
R2

f 2

Qν
dz.

� Second expression:

L ν f = H ν f −∇Qν · ∇Φf with H ν f = 1
ων
∇ ·
(
ων∇f

)
+ (2Qν − 2)f .

The operator H ν is self-adjoint in L2ων with ων = e−
|z|2
4

Qν .

� The well-adapted scalar product and coercivity [Collot-Ghoul-Masmoudi-Ng., ’21]:∫
R2

L ν(f√ρ)M ν(f√ρ) ≤ −c
∫
R2

|∇f |2

Qν
ρdz ρ = e−

|z|2
4 .
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The two dimensional case A new framework for blowup analysis

Approximate solution ∂τ w = ∇ ·
(
∇w − w∇Φw

)
− 1

2∇ · (zw)

� The approximate solution: for ` ≥ 1 integer,

w app(z, τ) = Qν(z) + a`(τ)
[
ϕ`,ν(|z|)− ϕ0,ν(|z|)

]︸ ︷︷ ︸
modification driving the law of blowup

with ϕn,ν = ∂ζφn,ν

ζ
.

A suitable projection onto ϕ`,ν and compatibility condition, we obtain the leading ODE

(` = 1, stable) ντ
ν

= 1
4 ln ν + e2

| ln ν|2 =⇒ ν = C0e−
√
τ
2

(` ≥ 2, unstable) ντ
ν

= 1− `
2 + `

4 ln ν =⇒ ν = C`e
(1−`)τ

2 τ
`

2(1−`)

� The linearized equation: ε = w − w app,

∂τε = L νε+ Error + SmallLinear + Nonlinear .
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The two dimensional case A new framework for blowup analysis

Control of the remainder ∂τε = L νε+ Error + · · ·

� Decomposition: ε = ε0 + ε⊥ , ε0(ζ) = ∂ζmε
ζ

,

∂τmε = A νmε + mE + · · ·, ∂τε
⊥ = L νε⊥ + · · · .

� For the radial part, we use the spectral gap

〈mε,A
νmε〉L2ων

ζ

≤ αN+1,ν‖mε‖2L2ων
ζ

for mε ⊥ φn,ν , n = 0, ...,N.

=⇒ d
dτ ‖mε‖2L2ων

ζ

≤ −‖mε‖2L2ων
ζ

+ C ν2

| ln ν|2

� For the nonradial part, we use the coerivity of L ν and the well-adapted norm

‖ε⊥‖20 =
∫
R2
ε⊥
√
ρM ν(ε⊥√ρ) dz ∼

∫
R2

|ε⊥|2

Qν
ρ dz.

=⇒ d
dτ ‖ε

⊥‖20 ≤ −c‖ε⊥‖20 + Ce−2κτ 0 < κ� 1.
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The two dimensional case A new framework for blowup analysis

A significant issue in the nonlinear analysis

� The perturbation ε can be large near the origin due to the present of the resonance
∇.(zQν), and the sole L2ων orthogonality conditions do not allow for a dissipation type
estimate here.
� The idea is to slightly modify the decomposition according to the new parameter ν̃ ∼ ν:

w = Qν̃ + a`
[
ϕ`,ν̃ − ϕ0,ν̃

]
+ ε̃,

and impose the local orthogonality condition∫
R2
ε̃∇.(zQν̃)χM = 0.

� The spectral structure of the perturbation operator in the radial sector:

Ā = A ν + A ν̃

2 ,

remains the same, and the spectral gap still holds true.
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Higher dimensional cases

3 - Higher dimensional cases:
Collapsing-ring/Traveling blowup solutions
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Higher dimensional cases Collapsing-ring/Traveling blowup solutions

Collapsing-ring/Traveling blowup solutions for d ≥ 3

� Basis features: mass conservation, scaling symmetry uγ(x , t) = γ2u(γx , γ2t),
L1-supercritical:

∫
Rd uγ = γd−2 ∫

Rd u.

� Radial setting: r = |x |, mu(r , t) =
∫ r
0 u(ζ, t)ζd−1dζ,

∂tu = ∂2r mu + d − 1
r ∂rmu + ∂r (umu)

r d−1 ,

∂tmu = ∂2r mu −
d − 1
r ∂rmu + mu∂rmu

r d−1

� Collapsing-ring/traveling solutions blow up in finite time:

mu(r , t) = M0Q
(
r − R(t)
λ(t)

)
, 0 < λ(t)� R(t)→ 0 as t → T ,

� Blowup solutions with arbitrary mass M0 < +∞, different from the 2D case.
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Higher dimensional cases Collapsing-ring/Traveling blowup solutions

Traveling blowup solution in the partial mass setting

The partial mass equation:

∂tmu = ∂2r mu −
d − 1
r ∂rmu + mu∂rmu

r d−1 .

� There exists a set O ⊂W 1,∞(R+) of initial data mu(0) such that

mu(r , t) = M(t)
[
Q
( r − R(t)

λ(t)

)
+ mε(r , t)

]
, Q(ξ) = e

ξ
2

1 + e
ξ
2
,

where ‖mε(t)‖W 1,∞(R+) → 0 as t → T ,

∂tM ∼ 0, λ = Rd−1

M , R(t) ∼
[
(d/2)M(T − t)

] 1
d .

� The constructed solution is stable under small perturbation in O.

Theorem 2 ([Collot-Ghoul-Masmoudi-Ng., 2021]).
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Higher dimensional cases Formal derivation of the blowup law

3 - Higher dimensional cases:
Formal derivation of the blowup law
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Higher dimensional cases Formal derivation of the blowup law

Formal explanation of the blowup law

The equation in the radial setting:

∂tu = ∂2r u + d − 1
r ∂ru + 1

r d−1 ∂r (u mu).

0

Fig 3: Collapsing-ring/traveling blowup solutions.
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Higher dimensional cases Formal derivation of the blowup law

Traveling shock solutions in the partial mass setting

The partial mass equation:

∂tmu = ∂2r mu −
d − 1
r ∂rmu + mu∂rmu

r d−1 .

Fig 4: Illustration of a traveling shock solution to the partial mass equation.

V. T. Nguyen (NYUAD) Singularities in the Keller-Segel system 30



Higher dimensional cases Formal derivation of the blowup law

A numerical simulation for d = 3

Fig 5: (horizontally zoomed solution) The initial data mu(r , 0) = MQ
(
r −M 1

3 ε

M− 1
3 ε2

)
, where

M = 27 and ε = 0.7. With ε = 0.7, the theoretical blowup time is T = ε3 ≈ 0.343. Maple
solver gives an approximation of the blowup time by saying "could not compute solution
for t > 0.32: Newton iteration is not converging".
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Higher dimensional cases Ideas of the analysis

3 - Higher dimensional cases:
Ideas of the analysis
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Higher dimensional cases Ideas of the analysis

Renormalized variables

� Hyperbolic inviscid variables: mu(r , t) = M(t)mw (ζ, τ), ζ = r
R ,

dτ
dt = M

Rd

∂τmw =
(

mw

ζd−1 −
1
2ζ
)
∂ζmw + ν

(
∂2ζmw −

d − 1
ζ

∂ζmw

)
+
(Rτ
R + 1

2

)
ζ∂ζmw −

Mτ

M mw , ν = Rd−2

M .

� Blowup variables: mw (ζ, τ) = mv (ξ, s), ξ = ζ − 1
ν

,
ds
dτ = 1

ν

∂smv = ∂2ξmv + mv∂ξmv −
1
2∂ξmv +

(Rτ
R + 1

2

)
∂ξmv −

Ms

M mv

+
(

1
(1 + ξν)d−1 − 1

)
mv∂ξmv − ν

d − 1
1 + νξ

∂ξmv +
(Rτ
R ν + ντ

)
ξ∂ξmv .
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Higher dimensional cases Ideas of the analysis

Linearized equation

� Linearized equation: mv = Q + mq, where

Q′′ − 1
2Q
′ + QQ′ = 0, lim

y→−∞
Q(ξ) = 0, Q(ξ) = e

ξ
2

1 + e
ξ
2
,

∂smq = L0mq +
(Rτ
R + 1

2

)
∂ξQ −

Ms

M Q + L(mq) + mq∂ξmq

(1 + νξ)d−1 + Ψ,

where L0 is a self-adjoint operator in L2ω0 with ω0 = Q−2e
ξ
2 ,

L0 = ∂2ξ −
(1
2 − Q

)
∂ξ + Q′, L0Q′ = 0,

� Orthogonality conditions:∫ ∞
−1/ν

mqQ′χAω0dξ = 0 =⇒ 〈mq,L0mq〉L2ω0 ≤ −δ0‖mq‖2H1
ω0
,

and∫ ∞
0

mqχ| log ν|

(
ξ − 4| log ν|

)
dξ = 0 =⇒ ∃ξ∗ ∈ (| log ν|, 6| log ν|) s.t mq(ξ∗) = 0.
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Higher dimensional cases Ideas of the analysis

Modulation equations and Bootstrap regime

� Solution decomposition:

minn
q = mqχ2| log ν| , mout

q = mq
(
1− χ| log ν|

)
.

� Modulation equations:∣∣∣RτR + 1
2

∣∣∣ . ‖minn
q ‖L2ω0

+ ν +
∣∣∣Ms

M

∣∣∣ and
∣∣∣Ms

M

∣∣∣ . ‖∂ξmout
q ‖L∞ + ν2.

� Bootstrap estimates: for 0 < K−1, κ� 1,

‖mq‖inn ≤ Ke−κτ , ‖∂ξmout
q ‖L∞ ≤

√
Kνe−κτ ,

where
‖mq‖2inn = −〈minn

q ,L0minn
q 〉L2ω0 ∼ ‖m

inn
q ‖2H1

ω0
.

� Improve estimates:
d
ds ‖mq‖2inn ≤ −c0‖mq‖2inn + Cν−2‖∂ξmout

q ‖L∞ + Cν2,

and mout
ε (ζ, τ) = mout

q (ξ, s),

d
dτ ‖∂ζm

out
ε ‖L∞ ≤ −

1
2‖∂ζm

out
ε ‖L∞ + ...
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Conclusion & Perspectives

4. Conclusion & Perspectives
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Conclusion & Perspectives

Conclusion and Perspectives

� Existence/Stability of blowup solutions via constructive approaches.
� Adaptability and Flexibility for studying singularity formation in other nonlinear problems,
especially for wave-type equations.
� Interesting problems:
• multiple-collapse phenomena/ interaction-collision of multi-solitons;
• classification of blowup dynamics (rates & profiles);
• Numerical methods for blowup problems (detection, rates & profiles).
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