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2D MHD equation

The 2D incompressible MHD equations in a channel T× [−1, 1]:

(MHD)


∂tV + V · ∇V −B · ∇B +∇P = 0,
∂tB + V · ∇B−B · ∇V = 0,
∇ ·V = ∇ ·B = 0,
V2(t, x, y)

∣∣
y=−1,1

= 0, B2(t, x, y)
∣∣
y=−1,1

= 0,

Equilibrium (Background velocity and magnetic field):

Vs =
(
u(y), 0

)
, Bs =

(
b(y), 0

)
, Ps = constant.

Notations:

u(y) = 0, non-flowing plasma,

b(y) ≡ 1 homogeneous case,
general b(y) inhomogeneous case;

u(y) 6= 0, flowing plasma.
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Question

We would like to study the long time behavior of the solutions near the
equilibrium (shear flow and sheared magnetic field) at both linear and
nonlinear level.

Let V = (V1, V2) = V − (u(y), 0) and H = (H1, H2) = B− (b(y), 0) be
the perturbed velocity and magnetic field.
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2D linearized MHD equation

The linearized MHD equation around (u(y), 0) and (b(y), 0).
∂tV1 + u∂xV1 + ∂xp+ u′V2 − b∂xH1 − b′H2 = 0,
∂tV2 + u∂xV2 + ∂yp− b∂xH2 = 0,
∂tH1 + u∂xH1 + b′V2 − b∂xV1 − u′H2 = 0,
∂tH2 + u∂xH2 − b∂xV2 = 0,
∇ · V = 0, ∇ ·H = 0.

(1)

We introduce the vorticity w = ∂xV2 − ∂yV1 and the current
density j = ∂xH2 − ∂yH1 which satisfy{
∂tw + u∂xw − b∂xj = u′′V2 − b′′H2,
∂tj + u∂xj − b∂xw = b′′V2 − u′′H2 + 2u′∂xH1 + 2b′∂yV2,

Let w = −∆ψ and j = −∆φ, where ψ and φ are stream function
and the magnetic potential function.
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Historical Comments: non-flowing plasma, homogeneous

Non-flowing plasma, homogeneous case: (∂tt − ∂xx)(j, w) = 0, no decay
(1-D wave).

Global nonlinear stability: C. Bardos, C. Sulem, and P. L. Sulem, 1988,
Tran. Amer. Math. Soci. Note x ∈ R the decay in space gives the decay
in time.

Key idea(observation):

Elsässer valuables: z+ = V + B and z− = V −B;

The fluctuations z± propagate along the background magnetic field
in opposite directions. 1

The strong magnetic field reduce the nonlinear interactions and
inhibit formation of strong gradients. [from nonlinear PDE to
quasilinear PDE]

1B ∼ (1, 0) and V ∼ 0.
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Historical comments: inhomogeneous case

Inhomogeneous case:
Grossmann and Tataronis predicted decay rate 1

t in 1973.

The mechanism leading to the damping is the phase mixing phenomenon.
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Historical comments: flowing plasma

Figure: Physics of Plasmas 12, 012107 (2005)

Flowing plasma:
Hirota, Tatsuno and
Yoshida studied the
spectral of the linear
operator and formally
proved the existence
of ”magnetic island”.

(67). V̂2(t)→ α

β
Ĥin

2 (α, y),

(68). Ĥ2(t)→ Ĥin
2 (α, y).
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Magnetic island [H. Zohm, Magnetohydrodynamic Stability of Tokamaks]

Reconnection of field lines is the process by which the topology of a flux
surface structure in a plasma can change. It occurs in situation in which
magnetic field lines of opposing direction occur close to each other,
indicating the presence of a current sheet. While this current sheet
persists infinitely long in ideal MHD, it decays on the resistive timescale
in resistive MHD. By forming topologically new objects, the so-called
magnetic islands, the free energy of the system can be reduced.This
instability, which tears and reconnects field lines, is called a tearing mode.
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Magnetic islands and magnetic reconnection

Magnetic islands are the regions enclosed by magnetic field lines
and separated by reconnection points.

Magnetic reconnection is a ubiquitous plasma process which
changes the magnetic field topology. The process starts when two
oppositely directed magnetic field lines bend towards each other
and touch at a reconnection point. After that, field lines break,
pair and reconnect. This generates closed regions called magnetic
islands
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Main results: Linear damping

Theorem (Damping, Ren, Z, SIAM Jour. Math. Anal. 2017)

Let b(y) ∈ C4([−1, 1]) be a strictly monotone and positive function with
b(y) ≥ c0, b′(y) ≥ c0 for a fixed constant c0 > 0. Assume that∫
T ω0(x, y)dx = 0,

∫
T j0(x, y)dx = 0. Then it holds that,

1. if ω0, j0 ∈ Hk−1
x L2

y, for k ∈ N, then

‖∂ktH2‖L2
x,y

+ ‖∂kt V2‖L2
x,y

. 〈t〉−1
(
‖ω0‖Hk−1

x L2
y

+ ‖j0‖Hk−1
x L2

y

)
,

2. if ω, j0 ∈ H
l− 3

2
x H1

y , for l = 0, 1, then

‖∇lx,yP‖L2
x,y
≤ C

〈t〉(1 + ln〈t〉)2

(
‖ω0‖

H
l− 3

2
x H1

y

+ ‖j0‖
H
l− 3

2
x H1

y

)
,

3. if u1, u2, b1, b2 ∈ L2
x,y, then there exists A±∞(x, y) ∈ L2

x,y, such that,∥∥(H1 ± V1)(t, x∓ tb(y), y)−A±∞(x, y)
∥∥
L2
x,y
−→ 0 as t→ +∞.
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Main results: Magnetic island

Theorem (Magnetic island, Zhai, Zhang, Z. 2018)

Assume that u(y), b(y) ∈ C5([−1, 1]) satisfy u(0) = b(0) = 0 and
b′(y) > |u′(y)| and let

(
ψ(t, x, y), φ(t, x, y)

)
be the solution of linearized

MHD with initial data (ψ0, φ0) ∈ H3(−1, 1)×H4(−1, 1). There holds
that,
1. for y = 0, as t→ +∞ and α 6= 0

ψ̂(t, α, 0)→ u′(0)

b′(0)
φ̂0(α, 0), φ̂(t, α, 0) ≡ φ̂0(α, 0);

2. as t→ +∞, there exists Γ(α, y) such that

ψ̂(t, α, y)→ −u(y)

b(y)

(
b(y)Γ(α, y)

)
φ̂0(α, 0),

φ̂(t, α, y)→ −
(
b(y)Γ(α, y)

)
φ̂0(α, 0),

Note that V̂2 = iαψ̂ and Ĥ2 = iαφ̂.
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Remarks

We have representation formula of the final state:

Γ(α, y) =

{
Γ+(α, y), y ≥ 0,

Γ−(α, y), y ≤ 0.
with

Γ±(α, y) =
1

b′(0)

∫ y

±1

ϕ±(α, y)(u′(0)2 − b′(0)2)(
u(y′)2 − b(y′)2

)
ϕ±(α, y′)2

dy′,

where ϕ± solves ∂y
(
(u2 − b2)∂yϕ±

)
− α2(u2 − b2)ϕ± = 0 with

boundary conditions ϕ±(α, 0) = 1 and ∂yϕ±(α, 0) = 0.

If u(y) = ky, b(y) = k0y for some constant k0 > |k| ≥ 0, then
b(y)Γ±(α, y) are harmonic functions on T× [0,±1] with boundary
condition b(0)Γ±(α, 0) = −1 and b(±1)Γ±(α,±1) = 0.

If −5u′(0)u′′(0) + u′′(0)b′(0)− u′(0)b′′(0) + 5b′(0)b′′(0) 6= 0, then
there exists a positive constant C such that∣∣∂y(b(y)Γ±(α, y)

)∣∣ ≥ C−1
(
1 +

∣∣ ln |y|∣∣),
which implies V̂1(t =∞), Ĥ1(t =∞) /∈ L∞.

Even if u = 0, there exists island structure at infinite time.
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pictures

φ0(x, y) =
cos(πy) + 1

2
cosx+ sin(5πy) cos(2x).
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pictures

φ(t, x, y)→ φ∞(x, y) =
sinh(1− |y|)

sinh 1
cosx
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Almost sure results

If u = 0, the sheared magnetic field changes the direction, i.e.,
b(y) changes the sign, then there exists magnetic islands structures
at infinite time.
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Historical comments: fluid driven damping

In 2020, Ren, Wei and Zhang considered the linear sheared velocity
and magnetic field b(y) = k1y and u(y) = k2y with k1 < k2 and
proved linear damping for the vertical components of velocity and
magnetic field.

The stern stability condition |b(y)| ≥ |u(y)| fails.

The strong shear flow destructs the magnetic island structure.
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Main results: Linear Damping and depletion

Theorem (Vertical damping, Liu, Masmoudi, Zhai, Z, JMPA 2021)

Let u, b ∈ C3(T) be such that b > |u| ≥ 0 and the critical points of
(u± b) are non-degenerate. Let α 6= 0 be a fixed wave number and let(
ψ̂, φ̂

)
solve LMHD with initial data

(
ψ̂0, φ̂0

)
∈ (H3 ×H3). Then the

following space-time estimate holds:∥∥∥(ψ̂, φ̂)∥∥∥
H1
tL

2
y

≤ Cα
∥∥∥(ψ̂0, φ̂0

)∥∥∥
H3
y

. (2)

In particular, lim
t→∞

∥∥∥(V̂2, Ĥ2

)∥∥∥
L2
y

= 0.

Theorem (Horizontal depletion, Liu, Masmoudi, Zhai, Z, JMPA 2021)

Let y0 be a critical point of (u+ b) or (u− b). Let
(
V̂1, Ĥ1

)
correspond

to the solution to LMHD. Then it holds that

lim
t→∞

∣∣∣(V̂1, Ĥ1

)
(t, α, y0)

∣∣∣ = 0.
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Summary

To highlight the differences among the long time behaviors of the
solutions to the linearized MHD equations in various cases, we
show the following table:

Conditions
Results References

Monotonicity
Uniform direction

b > 0
Stern stability
|u| ≤ |b| Other conditions

Yes Yes Yes u ≡ 0 Damping Ren, Z, 2017

Yes No Yes u(0) = b(0) = 0 Magnetic Island Zhai, Zhang, Z, 2018

Yes No No
u = k1y, b = k2y
k1 > k2 ≥ 0

Damping Ren, Wei, Zhang, 2020

No Yes
Yes
|u| < b

Non-degenerate
critical points

Damping
& Depletion

Liu, Masmoudi, Zhai, Z, 2021
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Why damping?

Mixing leads to damping.

To better illustrate the mixing mechanism, let us recall the system
in terms of (V1, H1):{

∂tV1 + u∂xV1 − b∂xH1 = L1,
∂tH1 + u∂xH1 − b∂xV1 = L2,

(3)

where (L1, L2) :=(
b′H2 − u′V2 − 2∂x∆−1(b′∂xH2 − u′∂xV2), u′H2 − b′V2

)
can be

seen as nonlocal forcing terms depending on V2 and H2.
By the incompressibility condition, we can check that

‖(∂xV1, ∂xH1)‖L2
xH

−1
y
∼ ‖(V2, H2)‖L2

x,y
.

Then the mixing of (V1 ±H1) would lead to the linear damping of
(V2, H2).
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Toy model

Let us consider a toy model, obtained by neglecting the nonlocal
forcing terms (L1, L2) in the linearized system (3), i.e.,{

∂tV1 + u∂xV1 − b∂xH1 = 0,
∂tH1 + u∂xH1 − b∂xV1 = 0.

(4)

Lemma

Let u, b ∈ C3(T) be such that u± b have only non-degenerate critical
points. Then the solution of (4) with initial data (V1,in, H1,in) satisfies

‖(∂xV1, ∂xH1)‖L2
xH

−1
y

.
1

〈t〉 12
‖(V1,in, H1,in)‖

H
1
2
x H1

y

. (5)

Moreover, if the initial data (U1,in, H1,in) vanish at all the critical points
of (u± b), then it holds that

‖(∂xV1, ∂xH1)‖L2
xH

−1
y

.
1

〈t〉
‖(V1,in, H1,in)‖H−1

x H2
y
. (6)
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Depletion

The space-time estimate fails to hold for the toy model (4).
Exploring the mechanisms behind the enhanced damping for the
complete system (3), we found a new dynamical phenomenon
apart from velocity mixing: the depletion of horizontal velocity
and magnetic field (V1, H1) at the critical points of u± b.
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Deduction of the problem

Step 1 Rewrite the equation ∂t
(
ψ̂

φ̂

)
(t, α, y) = −iαMα

(
ψ̂

φ̂

)
(t, α, y).

Step 2 Representation formula of the solution:( ψ̂

φ̂

)
(t, α, y) =

1

2πi

∫
∂Ω

e−iαtc(cI −Mα)−1
( ψ̂

φ̂

)
(0, α, y)dc.

Step 3 Solve
(
cI −Mα

)−1
( ψ̂0

φ̂0

)
(α, y) =

( Ψ1

Φ1

)
(α, y, c), which is

∂y

[((
u− c

)2 − b2)∂yΦ
]
− α2

((
u− c

)2 − b2)Φ = F,

where Φ1(α, y, c) = b(y)Φ(α, y, c) then

Ψ1(α, y, c) = (u(y)− c)Φ(α, y, c) + φ̂0(α, y)/b(y).

This is the so-called Sturmian type equation.

Step 4 Estimate and take the limit. c→ Ran(u+ b) ∩Ran(u− b)
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Uniform estimate

∂y

[((
u− c

)2 − b2)∂yΦ
]
− α2

((
u− c

)2 − b2)Φ = F, (7)

Proposition

There exists ε0 > 0 such that for c ∈ (Ωε0 \ (RanZ+ ∪ RanZ−)) , the
solution to (7) satisfies the following bound, uniform with respect to c

‖Φ(α, ·, c)‖L2 + ‖(Z− − c)(Z+ − c)∂yΦ(α, ·, c)‖H1 ≤ C‖F (α, ·, c)‖H1 .

Proposition

For c ∈ (RanZ+ ∪ RanZ−) , there exist Φ±(α, ·, c) ∈ L2 such that as
ε→ 0+, Φ(α, ·, c± iε)→ Φ±(α, ·, c) in Lr with r ∈ (1, 2) and∥∥Φ±(α, ·, c)

∥∥
L2 ≤ C‖F (α, ·, c)‖H1 .

Here Z± = u± b.
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space-time estimate

Recalling that Ψ1 = (u− c)Φ + φ̂0

b and Φ1 = bΦ we have, by the
representation formula that(

ψ̂

φ̂

)
(t, α, y) = lim

ε→0+

1

2πi

∫
∂Ωε

e−iαtc
(

Ψ1

Φ1

)
(α, y, c) dc

= lim
ε→0+

1

2πi

(∫
RanZ+∪RanZ−

e−iαt(c−iε)
(
u− (c− iε)

b

)
Φ(α, y, c− iε) dc

−
∫
RanZ+∪RanZ−

e−iαt(c+iε)
(
u− (c+ iε)

b

)
Φ(α, y, c+ iε) dc

)
.

For c ∈ (Ran (u+ b) ∪ Ran (u− b)) , we denote cε := c+ iε with
−ε0 < ε < ε0. We recall that Φ(α, y, cε) solves

∂y ((Z+ − cε)(Z− − cε)∂yΦ)− α2(Z+ − cε)(Z− − cε)Φ = F.

Let Φ̃(α, y, c) := Φ−(α, y, c)− Φ+(α, y, c).
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Differentiating in t yields

∂t

(
ψ̂

φ̂

)
(t, α, y) =

1

2πi

∫
RanZ+∪RanZ−

iαce−iαtc

(
(c− u)Φ̃

−bΦ̃

)
(α, y, c) dc.

By Plancherel’s theorem, we have the following estimates∥∥∥∥∥
(
ψ̂

φ̂

)∥∥∥∥∥
2

L2
tL

2
y

+

∥∥∥∥∥∂t
(
ψ̂

φ̂

)∥∥∥∥∥
2

L2
tL

2
y

=

∫
T

∫ ∞
−∞

∣∣∣∣∣
(
ψ̂

φ̂

)∣∣∣∣∣
2

+

∣∣∣∣∣∂t
(
ψ̂

φ̂

)∣∣∣∣∣
2
 dtdy

=

∫
T

∫
Ran (u+b)∪Ran (u−b)

(1 + (αc)2)

∣∣∣∣∣
(

(u− c)Φ̃
bΦ̃

)
(α, y, c)

∣∣∣∣∣
2

dcdy.

Invoking Proposition and the boundedness of b, we have∥∥∥∥∥
(
ψ̂

φ̂

)∥∥∥∥∥
2

L2
tL

2
y

+

∥∥∥∥∥∂t
(
ψ̂

φ̂

)∥∥∥∥∥
2

L2
tL

2
y

≤Cα
∫
Ran (u+b)∪Ran (u−b)

‖Φ̃(α, ·, c)‖2L2
y

dc

≤Cα‖F‖2H1
y
.

∥∥∥∥∥
(
ψ̂0

φ̂0

)∥∥∥∥∥
2

H3
y

.

Weiren Zhao Linear damping, depletion and Magnetic island



Estimate at critical points

Lemma

Let y0 ∈
(
(Z+)−1(c) ∪ (Z−)−1(c)

)
be a critical point, i.e.,

Z ′+(y0) = 0 or Z ′−(y0) = 0. Then it holds that

|Φ(y0)| ≤ C|(Z−(y0)− c)(Z+(y0)− c)|−
1
4 , (8)

|∂yΦ(y0)| ≤ C|(Z−(y0)− c)(Z+(y0)− c)|−
3
4 . (9)

The lemma doesn’t hold for the toy model, for which it holds that

|∂yΦ(y0)| ≤ C|(Z−(y0)− c)(Z+(y0)− c)|−1 /∈ L1
c
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Proof of depletion

The above lemma implies uniform bounds on both
Φ(α, y0, · ± iε0) in Lρc , ρ ∈ [1, 4)
and ∂yΦ(α, y0, · ± iε) in Lpc , p ∈ [1, 4

3).
Thus, there exists a subsequence εn → 0+ as well as Λ± ∈ Lρc and
Θ± ∈ Lpc such that as εn → 0+,

Φ(α, y0, · ± iεn) ⇀ Λ±(α, y0, ·),
∂yΦ(α, y0, · ± iεn) ⇀ Θ±(α, y0, ·).

Weiren Zhao Linear damping, depletion and Magnetic island



(
V̂1

Ĥ1

)
(t, α, y0) = ∂y

(
ψ̂

φ̂

)
(t, α, y0)

= lim
εn→0+

1

2πi

∫
∂Ωεn

e−iαtc∂y

(
Ψ1

Φ1

)
(α, y0, c) dc

= lim
εn→0+

1

2πi

∫
∂Ωεn

e−iαtc
(

(u− c)∂yΦ + u′Φ
b∂yΦ + b′Φ

)
(α, y0, c) dc

=
1

2πi

∫
Ran (u+b)∪Ran (u−b)

e−iαtc
(

(u− c)(Θ− −Θ+)
b(Θ− −Θ+)

)
(α, y0, c) dc

+
1

2πi

∫
Ran (u+b)∪Ran (u−b)

e−iαtc
(
u′(Λ− − Λ+)
b′(Λ− − Λ+)

)
(α, y0, c) dc.

The desired conclusion follows from Riemann-Lebesgue lemma, as
(Θ− −Θ+)(α, y0, ·) ∈ L1

c and (Λ− − Λ+)(α, y0, ·) ∈ L1
c .

Weiren Zhao Linear damping, depletion and Magnetic island



Proof of uniform estimate

A contradiction argument.

Separate the monotonic region and critical region.

Energy estimate and representation formula.

From weak convergence to strong convergence.
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On-going project

Rate; (to be continued)

Nonlinear (in)stability

Theorem (preprint, Liu, Masmoudi, Zhai, Z)

Under the Stern stability condition |u| ≤ |b| with some
non-degeneracy assumption, it holds that:

if Ran(u+ b) ∩Ran(u− b) = ∅, then damping and depletion
at critical points;
[Ren-Z 2017, Liu-Masmoudi-Zhai-Z 2021]

if Ran(u+ b) ∩Ran(u− b) = {0}, then damping except for
the zeros;

if Ran(u+ b) ∩Ran(u− b) \ {0} 6= ∅, then there exists island
structure.
[Zhai-Zhang-Z 2018]
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Thank you for your attention!

Weiren Zhao Linear damping, depletion and Magnetic island


	Contents
	Introduction
	Main results
	Main idea, main difficulties and proof
	Some interesting problems left

