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The Navier-Stokes equations

{
∂t u + u · ∇u −∆u +∇p = f

div u = 0
in R3 × R+ (NS)

For each u0 ∈ L2 (div u0 = 0) and f ∈ L1
t L2

x , there exists a global-in-time
Leray-Hopf solution [Leray, Acta 1934], [Hopf, Math. Nachr. 1951]:

u ∈ L∞t L2
x ∩ L2

t Ḣ1
x (R3 × R+)

I u ∈ Cw([0,+∞); L2) and u(·, 0) = u0

I solves (NS) for some pressure p ∈ L1
loc(R3 × R+)

I satisfies energy inequality for all t > 0:

1
2

∫
|u(x , t)|2 dx +

∫ t

0

∫
|∇u|2 dx ds

≤ 1
2

∫
|u0(x)|2 dx +

∫ t

0

∫
f · u dx ds .
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Suitable weak solutions

Suitable weak solutions further satisfy the local energy inequality:

(∂t −∆)
1
2
|u|2 + |∇u|2 + div

[(
1
2
|u|2 + p

)
u
]
≤ f · u

Partial regularity [CKN, CPAM 1982]: P1(Sing[u]) = 0 (when f ∈ L5/2+)

Weak-strong uniqueness: If u0 ∈ H1 and f = 0, there exists a unique
strong solution, and Leray-Hopf solutions agree with the strong solution.
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Smoothness and uniqueness

The Navier-Stokes equations are used for predicting fluid flows.

I If there is no blow-up, then there is perhaps no need to consider
Leray-Hopf solutions.

I If there is blow-up, then the solution may be continued as a
suitable Leray-Hopf solution. Is it unique?

The other strange thing is the failure of the uniqueness proof in three
dimensions.

It is hard to believe that the initial value problem of viscous liquids for n = 3
should have more than one solution, and more attention should be paid
to the settling of the uniqueness question.

— Hopf (translation by Klöckner)
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Ladyzhenskaya’s example

In 1969, Ladyzhenskaya constructed an example of non-uniqueness
for (NS) within a Leray–Hopf-type class.

Though striking, it is in a self-similarly shrinking domain with force and
non-standard boundary conditions (inhomogeneous, for the
stream function).

We note a certain “exoticness” of the domain QT in which our example
has been constructed does not imply loss of the uniqueness theorems just
mentioned.

The example described here can provoke “displeasure” for only one
reason. It has been constructed for boundary conditions of type (18) but
not for adhesion conditions.

The examples presented here are interesting to me in that they refute the
entrenched opinion on the “naturalness” for nonstationary problems of
physics and mechanics of the class of solutions which have finite energy
norm.

— Ladyzhenskaya (translated)
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Recent progress

I. The program of Jia, Šverák, and Guillod.
I [Jia-Šverák, Inventiones 2014, JFA 2015]

Could non-uniqueness arise due to bifurcations from or within the
class of large self-similar solutions?

I [Guillod-Šverák, arXiv 2017] Compelling numerical evidence
I Leray solutions, but no “proof.”

(I will explain in a few slides.)

II. Convex integration.

I [Buckmaster-Vicol, Annals 2019]: There exists β > 0 such that for
any non-negative smooth function e(t) : [0, T ]→ R≥0, there exists
v ∈ C0

t ([0, T ]; Hβx (T3)) a weak solution of the Navier-Stokes
equations, such that

∫
|v(x , t)|2 dx = e(t) for all t ∈ [0, T ].

I [Cheskidov-Luo] Non-uniqueness in Lq
t L∞x , q < 2, d ≥ 2 [arXiv 2020]

and Ct L
p
x , p < 2, d = 2, respectively [arXiv 2021]

I Proof, but no Leray solutions.
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Theorem (A.-Brué-Colombo, arXiv 2021)

There exist two distinct suitable Leray–Hopf solutions to the
Navier–Stokes equations with identical body force f ∈ L1

t L2
x and u0 ≡ 0.
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Non-uniqueness is an extreme form of instability.

I Instability: A nearby trajectory is driven away (exponentially)
quickly.

I Non-uniqueness: An infinitesimally close trajectory is driven away
instantaneously.

Consider the ODE

ẋ = f (x) . . . equilibrium f (x0) = 0

Linearized equation : ẏ = (Df )(x0)y

Unstable manifold Mu:

Contains all the trajectories which
approach x0 backward-in-time at
a certain rate. dim Mu = dim Eu.

Generalization to semilinear
parabolic PDEs: [Henry 1981]
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Similarity variables

Scaling symmetry and dimensional analysis:

uλ(x , t) = λu(λx , λ2t), fλ(x , t) = λ3f (λx , λ2t)

[x] = L, [t ] = L2, [u] = L−1, [f ] = L−3, since [ν] = L2/T = 1

Self-similarity variables:

ξ =
x√
t
, τ = log t ∈ R (!)

u(x , t) =
1√
t

U(ξ, τ), f (x , t) =
1

t
3
2

F(ξ, τ) (convention)

Navier-Stokes in self-similarity variables:

∂τU−1
2

(1 + ξ · ∇ξ) U︸ ︷︷ ︸
additional terms

−∆U + U · ∇U +∇P = F , div U = 0 . (NS-SS)

U = O(1) smooth and decaying ⇐⇒ u in critical spaces, e.g., L∞t L3,∞
x

U steady solution of (NS-SS) ⇐⇒ u forward self-similar solution of (NS)
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The program of Jia, Šverák, and Guillod

Linearized operator in function space X :

− Lss = −1
2

(1 + ξ · ∇ξ) U −∆U + P
(
Ū · ∇U + U · ∇Ū

)
,

u0,σ = σ × a0 (−1-homogeneous initial datum of size σ)

Ūσ = self-similarity profile of corresponding solution

Theorem (Jia-Šverák, JFA 2015)

Suppose (A) transcritical bifurcation or (B) Hopf bifurcation. Then, upon
truncating properly, there exist two distinct Leray-Hopf solutions with
identical compactly supported data u0, and |u0| = O(1/|x |) at x = 0.

Numerical evidence of Z2-symmetry-breaking bifurcation:

|x|Uσ · eθ for two solutions when σ ≈ 300 [Guillod-Šverák, arXiv 2017]
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Theorem (A.-Brué-Colombo, arXiv 2021)

There exist Ū ∈ C∞0 (R3) (div Ū = 0) satisfying

1. (Linear instability) Lss has an unstable eigenvalue λ with non-trivial
eigenfunction η ∈ Hk for all k ≥ 0:

Lssη = λη and a := Reλ > 0.

Define

U lin(·, τ) = Re(eτλη) , which solves ∂τU lin = LssU lin .

2. (Nonlinear instability) There exist T ∈ R and Uper : R3× (−∞, T ]→ R3,

‖Uper(·, τ)‖Hk .k e2τa ∀τ ∈ (−∞, T ] , ∀k ≥ 0

such that
ū, u = ū + ulin + uper

are the desired distinct suitable Leray-Hopf solutions with zero
initial velocity and identical force f̄ , whose similarity profile is

F̄ := −1
2

(1 + ξ · ∇ξ)Ū −∆Ū + Ū · ∇Ū .
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Elements of the proof
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Euler steady states

Claim: It is enough to find a decaying unstable steady state of the
(forced) Euler equations in three dimensions,

∂t u + u · ∇u +∇p = f in R3 × R+ .

with, more specifically, an unstable eigenvalue.

Heuristic:

−L(β)
ss = −1

2
(1 + ξ · ∇ξ) U −∆U︸ ︷︷ ︸

perturbative when β�1

+βP
(
Ū · ∇U + U · ∇Ū

)

Remarkably, no suitable steady state was known, and a key
component and major difficulty of our proof is its construction.
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Two-dimensional steady states

We “lift” a two-dimensional instability into dimension three. Consider

Shear flows: ū(x1, x2) = (b(x2), 0)

Vortices: ū(x) = ζ(r)x⊥, ω̄(x) = g(r), x ∈ R2, r = |x |

Linearized Euler equations around vortex:

∂tω + ζ(r)∂θω + (u · er )g′(r)︸ ︷︷ ︸
=:−Lstω

= 0, u = BS2d[ω] (Biot-Savart law)

Remarks on stability (see [Drazin-Reid, Chapters 3-4])

I Rayleigh’s stability criterion [Rayleigh 1880]: If g′(r) < 0 for all r > 0,
then there are no unstable eigenvalues (spectral stability).

I Stability of these vortices is by inviscid damping. Nonlinear stability
is a well known open problem.
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Unstable vortices

Theorem (Vishik, arXiv ’18)

There exist m ≥ 2 and a smooth, decaying, radially symmetric vorticity
profile ω̄ such that the linearized operator Lst : D(Lst) ⊂ L2

m → L2
m,

−Lstω := ū · ∇ω + u · ∇ω̄ , u = BS2d[ω] ,

has an unstable eigenvalue. Moreover, the velocity profile ū can be
chosen to be compactly supported [ABC 2021].

L2
m = {m-fold rotationally symmetric functions}, m ≥ 2

(removes ambiguity in the Biot-Savart law on L2)

Remarks
I Instability of shears explored in [Tollmien 1934], rigorously in [Lin,

SIMA 2002], see also influential paper [Fadeev 1971].
I Vishik’s mechanism is the same and, to our knowledge, is the only

known mechanism for generating unstable eigenvalues.
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Example vorticity profile
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Solid blue: Background vorticity profile ω̄(x) = g(r).
Dashed orange: Power law vortex r−α.

The vortex will satisfy

(i) g has exactly two zeros

(ii) ζ′ < 0 (decreasing “differential rotation”)
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Constructing the unstable vortex

Rewrite the eigenvalue equation Lstω = λω as

Rayleigh’s stability equation:

(Ξ(s)− c)

(
d2

ds2 −m2
)
φ− A(s)φ = 0 .

I s = log r ... exponential coordinates
I ψ(es) = φ(s)eimθ... separation of variables
I A(s) = esg′(es)... r × the radial derivative of vorticity
I Ξ(s) = ζ(es)... “differential rotation”
I λ = −imc... unstable eigenvalue ⇐⇒ Im c > 0
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Constructing the unstable vortex, cont.

Rayleigh’s stability equation:

(Ξ(s)− c)

(
d2

ds2 −m2
)
φ− A(s)φ = 0 .

I Let a < b be the two zeros of A.
I Let ca = Ξ(a) and cb = Ξ(b) be the “critical values.”

You can divide by Ξ(s)− c and consider a steady Schrödinger
equation when
I Im c 6= 0 (stable or unstable eigenvalue), or
I c = ca,cb (neutral eigenvalue)
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Constructing the unstable vortex, cont.

Rayleigh’s stability equation, divided:

− d2φ

ds2 + m2φ+
A(s)

Ξ(s)− c
φ = 0

Define the Schrödinger operators

La := − d2

ds2 +
A(s)

Ξ(s)− ca
, Lb similarly

Consider −m2
a < −m2

b the bottom of the spectra (choice of A).

Define the neutral limiting modes (ma,ca, φa) and (mb,cb, φb).

Unstable modes are found bifurcating from the neutral modes.

19 / 30



A nonlinear application

The unstable vortex is a key ingredient in

Theorem (Sharpness of the Yudovich class, Vishik, arXiv ’18)

Let T > 0. For every p ∈ (2,+∞), there exist two distinct finite-energy
weak solutions ū,u of the Euler equations on R2 × (0, T ), further
satisfying ω̄, ω ∈ L∞t (L1 ∩ Lp)x , with identical body force

f ∈ L1
t L2

x , curl f ∈ L1
t (L1 ∩ Lp)x

and zero initial velocity (see also [ABCDGJK, arXiv ’21]).
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Hypodissipative NS in R2

Theorem (A.-Colombo, in preparation)

For each β ∈ (0, 2), there exists two distinct Leray solutions of the
hypodissipative Navier-Stokes equations in the plane,

∂t u + u · ∇u + (−∆)
β
2 u +∇p = f , div u = 0 in R2 × R+ .

with identical initial velocity u0 ∈ L2 and body force f ∈ L1
t L2

x .

Perspective: Do not develop further spectral theory than in [Vishik ’18].
Choose similarity variables in which viscosity is perturbative:

∂τU + U · ∇U + eτγ(−∆)
β
2 U︸ ︷︷ ︸

perturbative when τ�−1

+∇P = F , div U = 0 in R2 × R .

β ∈ (0, 1]: quasilinear regime
β ∈ (1, 2): semilinear regime
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Vortex rings

Steam vortex ring above Mount Etna, Italy

Vortex ring in axisymmetric coordinates

Our unstable three-dimensional
object will be a vortex ring.

A few mathematical works on vortex rings:

I Inviscid [Fraenkel 1970], ..., [Abe, arXiv 2020]
I Viscous [Gallay–Šverák, Ann. Sci. ÉNS 2019]

[Bedrossian–Germain–Harrop-Griffiths, arXiv
2018]
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Key observation

As r → +∞, the axisymmetric Euler equations without swirl formally
converge to the two-dimensional Euler equations.

I. Axisymmetric vorticity equation (ω = −ωθ(r , z)eθ, ψ = ψθ(r , z)eθ):

∂tω
θ + u · ∇ωθ − ur

r
ωθ = 0

(
∂2

r +
1
r
∂r −

1
r2 + ∂2

z

)
ψθ = ωθ

u = −∂zψ
θer +

(
∂r +

1
r

)
ψθez .

II. Two-dimensional vorticity equation

∂tω + u · ∇ω = 0

∆x,yψ = ω, u = ∇⊥ψ
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Sketch of proof

ũ... truncation of Vishik’s unstable vortex

ũ` = ũ + v`, ω̃` = curl` ũ` := −∂z ũr
` + ∂r ũz

` .

v` is a correction to make ũ` divergence-free in the physical variables.
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Linearized operators

Consider

− L`ω := ũ` · ∇ω +
1
2

(div2d v`)ω︸ ︷︷ ︸
=:−M`ω

+ BS`[ω] · ∇ω̃`︸ ︷︷ ︸
=:−K`ω

−(r + `)−1BS`[ω]r ω̃` − (r + `)−1ũr
`ω −

1
2

(div2d v`)ω︸ ︷︷ ︸
=:−S`ω

and
− L∞ω := ũ · ∇ω︸ ︷︷ ︸

=:−M∞ω

+ BS2d [ω] · ∇ω̃︸ ︷︷ ︸
=:−K∞ω

on weighted function spaces L2
γ,` := L2(R2

r>−`; γ dr dz).

I γ ≡ 1 on support of vortex and grows polynomially away.
I constrast with L2(R2

r>−`; (r + `) dr dz) and L2(R2; dr rz).
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Proposition (Axisymmetric instability)

Let λ∞ be an unstable eigenvalue of L∞. For all ε ∈ (0,Reλ∞) and
`�ũ,ε,λ∞ 1, L` has an unstable eigenvalue λ` with |λ` − λ∞| < ε.

Spectral projection Pr`ω :=
1

2πi

∫
~c

R(λ, L`)ω dλ

Claim: R(λ, L`P`)ω → R(λ, L∞)ω in L2
γ , ∀ω ∈ C∞0 (R2), uniformly on ~c.
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Convergence of resolvents

We extend by zero via P`ω := 1r>−`ω.

Decompose the operator λ− L`P` as

λ−M`P` − K`P` − S`P`
= λ−M`P` − K∞ − K∞(P` − I)︸ ︷︷ ︸

=:I`

− (K`P` − K∞)P`︸ ︷︷ ︸
=:II`

−S`P`

= (λ−M`P` − K∞)︸ ︷︷ ︸
resolvent converge

[I − R(λ,M`P` + K∞)︸ ︷︷ ︸
uniformly bounded

(I` + II` + S`P`)︸ ︷︷ ︸
→0 in operator norm

]

Term-by-term:
I I` := K∞(P` − I): Projects onto {r < −`}, applies 2d Biot-Savart law,

and restricts to r = O(1). Small due to weights.
I II` := (K`P` − K∞)P`: Captures difference between the two

Biot-Savart laws at r = O(1). Apply cut-offs and subtract the two
PDEs for the stream functions. This is the most technical step.

I S`: Stretching terms have (r + `)−1 in front.
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The remainder of the proof

It remains to
I perturb the instability from 3d Euler equations to 3d Navier-Stokes

equations in self-similarity variables: Add on −∆− 1− ξ · ∇ξ/2;

I ensure instability in velocity rather than vorticity formulation
(bootstrap decay of the unstable eigenfunction); and

I exhibit a non-trivial trajectory on the unstable manifold via fixed
point argument: Write

U = Ū + U lin + Uper ,

where U lin = Re(eτλη) and η is a most unstable eigenfunction.
Solve for Uper = O(e2τRe λ).
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A few themes

Questions about non-uniqueness:
I Is it possible to remove the force? (Potential interactions with

computer-assisted proof.)
I Is it possible to rigorously exhibit non-unique continuations of

blow-ups? [Lessons from CGL, online lecture by Šverák, 2020]
(∃ “reverse bubbling” in HMHF...)

I What are the implications of non-unique continuation of blow-up
(or “extreme instability”) for physical theories?

Questions about coherent structures and (in)stability:
I There should be many unstable profiles Ū. How generic are they?

Is there an easier way to find them?
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Thank you!
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