Smooth Imploding Solutions for 3D Compressible Fluids

T. Buckmaster (Princeton University & IAS) with Cao-Labora (MIT) and Gómez-Serrano (Brown & Univ. Barcelona)

Long Time Behavior and Singularity Formation in PDEs-Part IV, SITE online conference January 18, 2022

Compressible Euler Equations

Non-Isentropic Form

Full non-isentropic Euler equations:

$$\begin{split} \partial_t(\rho\;u) + \operatorname{div}\left(\rho u \otimes u + \rho \operatorname{Id}\right) &= 0 & \text{(Conservation of momentum)} \\ \partial_t \rho + \operatorname{div}(\rho u) &= 0 & \text{(Conservation of mass)} \\ \partial_t E + \operatorname{div}\left((\rho + E)u\right) &= 0 & \text{(Conservation of energy)} \end{split}$$

where u is the velocity, ρ , the density, p, the pressure and E, the energy. Conservation of energy can be replaced by transport of specific entropy $\partial_t S + u \cdot \nabla S = 0$. The pressure is

$$p = (\gamma - 1)(E - \frac{1}{2}\rho|u|^2) = \frac{1}{\gamma}\rho^{\gamma}e^{S}$$

for adiabatic exponent $\gamma > 1$. The sound speed is given by

$$c = \sqrt{\frac{\gamma P}{\rho}}$$
.

Shock waves and imploding solutions

- Shock waves: The prototypical singularity for the Euler equations is a shock wave, which occurs when the speed of a disturbance exceeds the local speed of sound. Mathematically, one is interested in both the formation of the shock and the development of the shock.
- Implosions: Implosions involve spherically symmetric solutions that collapse at a point in finite time. Classically, one considers imploding shock waves. Recently, Merle-Raphael-Rodnianski-Szeftel showed there exist smooth imploding solutions.

Shock formation results

- Christodoulou '07, Christodoulou-Miao '14: 3D isentropic, irrotational.
- Luk-Speck '18: 2D isentropic, non-trivial vorticity.
- B-Shkoller-Vicol '19: 2D isentropic, azimuthal, non-trivial vorticity + description of self-similar profile.
- B-Shkoller-Vicol '19: 3D isentropic, non-trivial vorticity + description of self-similar profile.
- B-Shkoller-Vicol '20: Full 3D Euler + description of self-similar profile.
- ► Luk-Speck '21: Full 3D Euler, allow non-generic shocks.

Related works: John-Klainerman '84, Klainerman, John '87, Hörmander '87, John '81, Sideris '85, Alinhac '99

Shock development results

- Lebaud '94: 1D, 2x2 p-system, existence of discontinuous shock (uniqueness follows by T.P. Liu) (cf. Chen-Dong '01, Kong '02 for generalizations)
- Yin '04: Spherically symmetric Euler, existence of weak solution past formation, no uniqueness and no description of weak discontinuities.
- Christodoulou-Lisbach '16: Spherically symmetric isentropic Euler in formation, restricted problem thereafter, not a weak solution to Euler.
- Christodoulou '19: Multi-D, irrotational, isentropic shock development for the restricted problem, not a weak solution to Euler.
- ▶ B-Drivas-Shkoller-Vicol '21: Development for full Euler under azimuthal symmetry satisfying the Rankine-Hugoniot jump conditions, uniqueness, full description of weak discontinuities.

Implosion results

- Guderley '42: Self-similar imploding shock waves solutions to Euler.
- Merle-Raphael-Rodnianski-Szeftel '19: Smooth imploding self-similar solutions exist from a.e. adiabatic exponent $\gamma > 1$.
- Biasi' 21: Detailed numerical description of smooth self-similar imploding solutions.

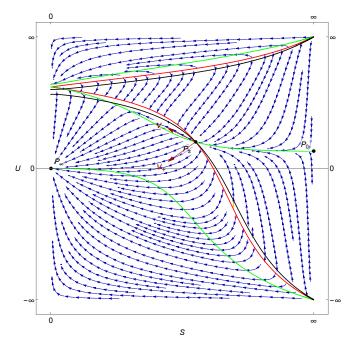
Related work:

Navier-Stokes (Merle et al. '19), NLS via Madelung transform (Merle et al. '19), Euler Poisson (Guo-Hadzic-Jang-Schrecker '21)

Setup

Isentropic, spherically symmetric Euler

$$\partial_t u + u \partial_R u + rac{1}{\gamma
ho} \partial_R
ho^\gamma = 0 \quad ext{and} \quad \partial_t
ho + rac{1}{R^2} \partial_R (R^2
ho u) = 0 \, ,$$


The self-similar ansatz

$$u(r,t) = r^{-1} \frac{R}{T-t} U(\log(\frac{R}{(T-t)^{\frac{1}{r}}})) \text{ and } \sigma(r,t) = \alpha^{-\frac{1}{2}} r^{-1} \frac{R}{T-t} S(\log(\frac{R}{(T-t)^{\frac{1}{r}}})),$$

where $\sigma = \frac{1}{\alpha} \rho^{\alpha}$ is the rescaled sound speed.

• Setting $\xi = \log(\frac{R}{(T-t)^{\frac{1}{T}}})$ leads to the autonomous ODE

$$rac{dU}{d\xi} = rac{N_U(U,S)}{D(U,S)}, \quad ext{and} \quad rac{dS}{d\xi} = rac{N_S(U,S)}{D(U,S)} \,.$$

Result of Merle et al. '19

For a.e. $\gamma > 1$, there exists a countably infinite sequence of self-similar solutions to isentropic Euler. The velocity and density blow up at the origin.

The condition on γ relates to the non-vanishing of an analytic function. The condition is not proven for any specific γ , but may be checked numerically. The case $\gamma=5/3$ (monatomic gases) is specifically ruled out.

Compressible Navier-Stokes

Isentropic 3D compressible Navier-Stokes with constant viscosity:

$$\partial_t(\rho u) + \operatorname{div}(\rho u \otimes u) + \nabla p(\rho) - \mu_1 \Delta u - (\mu_1 + \mu_2) \nabla \operatorname{div} u = 0,$$

$$\partial_t \rho + \operatorname{div}(\rho u) = 0,$$

for $\mu_1 \geqslant 0$ and $2\mu_1 + \mu_2 \geqslant 0$.

Merle et al. '19: there exists imploding solutions to NS for a.e. $1 < \gamma < \frac{2+\sqrt{3}}{\sqrt{3}}$ with decaying density.

Previously, Xin '98: blow up for initial data with compact density and Rozanova '08: blow up for rapidly decaying density.

Problems left open

- 1. Do imploding solutions for Euler exist for all $\gamma > 1$?
- 2. Can one construct imploding solutions to the Navier-Stokes equation with initial density constant at infinity?

Main result

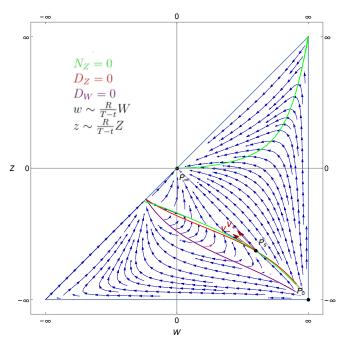
- 1. There exists smooth self-similar imploding solutions for all $\gamma > 1$.
- 2. For the case $\gamma = \frac{7}{5}$ (diatomic gas, e.g. oxygen, hydrogen, nitrogen) there exists a countably infinite sequence of imploding solutions.
- 3. Simplified proofs of linear stability and non-linear stability.
- 4. Asymptotically self-similar imploding solutions to NS for $\gamma = \frac{7}{5}$.
- 5. First example of initial data with density constant at infinity leading to blow up for NS.

Riemann invariants

- ▶ Riemann invariants: $\mathbf{w} = \mathbf{u} + \mathbf{\sigma}$ and $\mathbf{z} = \mathbf{u} \mathbf{\sigma}$.
- Self-similar anzatz

$$w(R, t) = \frac{1}{r} \cdot \frac{R}{T - t} W(\xi)$$
 and $z(R, t) = \frac{1}{r} \cdot \frac{R}{T - t} Z(\xi)$

• Setting $\xi = \log(\frac{R}{(T-t)^{\frac{1}{r}}})$ yields


$$(r + \frac{1}{2}((1 + 2\alpha)W + (1 - \alpha)Z))W + (1 + \frac{1}{2}(W + Z + \alpha(W - Z)))\partial_{\xi}W - \frac{\alpha}{2}Z^{2} = 0$$

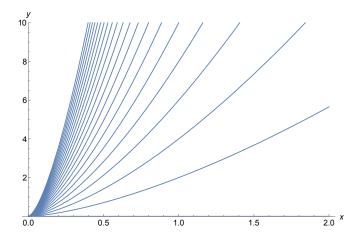
$$(r + \frac{1}{2}((1 - \alpha)W + (1 + 2\alpha)Z))Z + (1 + \frac{1}{2}(W + Z - \alpha(W - Z)))\partial_{\xi}Z - \frac{\alpha}{2}W^{2} = 0$$

Rearranging,

$$\begin{split} \frac{dW}{d\xi} &= \frac{-(r + \frac{1}{2}((1 + 2\alpha)W + (1 - \alpha)Z))W + \frac{\alpha}{2}Z^2}{1 + \frac{1}{2}(W + Z + \alpha(W - Z))} \\ &= \frac{N_W}{D_W}, \\ \frac{dZ}{d\xi} &= \frac{-(r + \frac{1}{2}((1 - \alpha)W + (1 + 2\alpha)Z))Z + \frac{\alpha}{2}W^2}{1 + \frac{1}{2}(W + Z - \alpha(W - Z))} \\ &= \frac{N_Z}{D_Z}. \end{split}$$

Analysis of the point P_s

Under the change of variables $\xi \mapsto \psi$ where $\partial_{\psi} = -D_W D_Z \partial_{\xi}$:

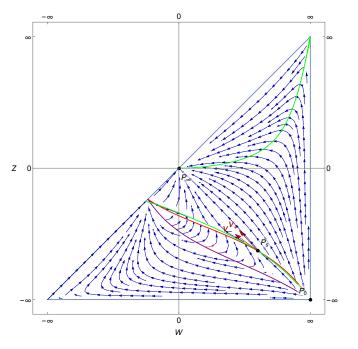

$$\partial_{\psi} W = -N_W D_Z$$
 and $\partial_{\psi} Z = -N_Z D_W$,

 P_s becomes a stable stationary point. Consider the simple ODE:

$$\dot{\mathbf{x}} = \lambda_{+}\mathbf{x}, \quad \dot{\mathbf{y}} = \lambda_{-}\mathbf{y}$$

for $\lambda_- < \lambda_+ < 0$. If $k = \frac{\lambda_-}{\lambda_+} \notin \mathbb{N}$, x = 0 and y = 0 are the sole smooth solutions. Non-smooth, C^k solutions exist of the form $y = Cx^k$ whose series agrees with the solution y = 0 up to order $\lfloor k \rfloor$.

Case $\lambda_- = -\frac{3}{2}$ and $\lambda_+ = -1$


Returning to our ODE

$$\partial_{\psi} W = -N_W D_Z$$
 and $\partial_{\psi} Z = -N_Z D_W$,

Let $\lambda_- < \lambda_+ < 0$ be the eigenvalues of the Jacobian at P_s , and define

$$k = \frac{\lambda_-}{\lambda_+}$$
.

If ν_- , ν_+ are the corresponding eigenvectors, we consider smooth solutions tangent to ν_- . The smooth solutions tangent to ν_+ correspond to the Guderley solutions.

Taylor Expansion around P_s ($\xi = 0$)

Write the solution crossing P_s as a series

$$(\boldsymbol{W}(\xi), \boldsymbol{Z}(\xi) = \sum_{n=0}^{\infty} \frac{\xi^n}{n!} (\boldsymbol{W}_n, \boldsymbol{Z}_n)$$

▶ If $D_{\circ,n} = \nabla D_{\circ} \cdot (W_n, Z_n)$ for $\circ \in \{W, Z\}, n \geqslant 1$, then

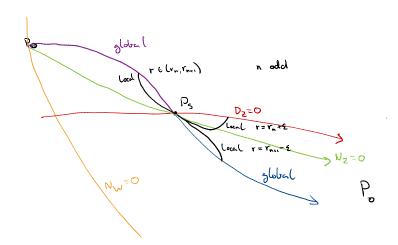
$$D_{W,0}W_n = N_{W,n-1} - \sum_{j=0}^{n-2} {n-1 \choose j} D_{W,n-1-j} W_{j+1},$$

$$Z_n D_{Z,1}(n-k) = -\sum_{j=1}^{n-2} {n \choose j} D_{Z,n-j} Z_{j+1} + (N_{Z,n} - (\partial_Z N_Z(P_2)) Z_n) + Z_1 (-D_{Z,n} + Z_n \partial_Z D_Z(P_2)).$$

The wiggle with r

▶ Restrict 1 < r < r* where</p>

$$r^*(\gamma) = \begin{cases} \frac{2}{\left(\sqrt{2}\sqrt{\frac{1}{\gamma-1}}+1\right)^2} + 1 & 1 < \gamma < \frac{5}{3}.\\ \frac{3\gamma-1}{2+\sqrt{3}(\gamma-1)} & \gamma \geqslant \frac{5}{3}. \end{cases}$$


 $k(r): (1, r^*) \to \mathbb{R}$ is increasing with r and $k \to \infty$ as $r \to r^*$.

- ▶ For $j \in \mathbb{N}$, define r_j such that $j = k(r_j)$. At k_j the denominator of Z_n is singular and switches sign.
- ▶ To connect P_0 to P_∞ , we show that for n odd
 - 1. For $r \in (r_n, r_{n+1})$ the solution to the left of P_c converges to P_∞ as $\xi \to \infty$.
 - 2. For $r = r_n + \varepsilon$ the solution to the right of P_c intersects the line $D_W = 0$.
 - 3. For $r = r_{n+1} \varepsilon$ the solution to the right of P_c intersects the line $D_Z = 0$.

For $\gamma > 1$, this is shown for n = 3, for $\gamma = \frac{7}{5}$, this is shown for odd n sufficiently large.

Barriers

 b^{∞}

The
$$\gamma = \frac{7}{5}$$
 case

- ▶ For $\gamma < \frac{5}{3}$ and fixed n, (W_n, Z_n) converge as $r \to r^*$ in a non-trivial manner.
- The *wiggle* can be determined from the sign and a lower bound on the coefficients of order O(k).
- ▶ Via a computer assisted proof, compute the first 10000 coefficients with effective error bounds at r^* ($Z_{10000} \sim 6 \times 10^{46770}$).
- ► The proof works for general $\gamma < \frac{5}{3}$; however, the computation degenerates as $\gamma \to \frac{5}{3}$.

Strategy for stability for Euler and Navier-Stokes

The basic strategy is:

- 1. Linearize Euler/Navier-Stokes around self-similar profiles.
- 2. Show the linearized operator as finitely many unstable modes.
- A Brouwer fix point argument shows there exists a manifold of initial data of finite co-dimension leading to imploding asymptotically self-similar blow-up.

Write

$$w(R,t) = r^{-1} (T-t)^{r^{-1}-1} \mathcal{W}(\frac{R}{(T-t)^{\frac{1}{r}}}, -\frac{\log(T-t)}{r})$$
$$z(R,t) = r^{-1} (T-t)^{r^{-1}-1} \mathcal{Z}(\frac{R}{(T-t)^{\frac{1}{r}}}, -\frac{\log(T-t)}{r}).$$

and define the self-similar variables

$$s = -\frac{\log(T-t)}{r}, \quad \zeta = \frac{R}{(T-t)^{\frac{1}{r}}} = e^s R = \exp(\xi).$$

The Navier-Stokes equations ($\mu_1 = 1$ and $\mu_2 = -1$) become

$$\begin{split} &(\partial_{s}+r-1)\mathcal{W}+(\zeta+\frac{1}{2}(\mathcal{W}+\mathcal{Z}+\alpha(\mathcal{W}-\mathcal{Z})))\partial_{\zeta}\mathcal{W}+\frac{\alpha}{2\zeta}(\mathcal{W}^{2}-\mathcal{Z}^{2})\\ &=\frac{r^{1+\frac{1}{\alpha}}2^{1/\alpha}}{\alpha^{1/\alpha}\zeta^{2}((\mathcal{W}-\mathcal{Z}))^{\frac{1}{\alpha}}}e^{(2-r+\frac{1}{\alpha}(1-r))s}\left(\partial_{\zeta}(\zeta^{2}\partial_{\zeta}(\mathcal{W}+\mathcal{Z}))-2(\mathcal{W}+\mathcal{Z})\right)\\ &(\partial_{s}+r-1)\mathcal{Z}+(\zeta+\frac{1}{2}(\mathcal{W}+\mathcal{Z}-\alpha(\mathcal{W}-\mathcal{Z})))\partial_{\zeta}\mathcal{Z}-\frac{\alpha}{2\zeta}(\mathcal{W}^{2}-\mathcal{Z}^{2})\\ &=\frac{r^{1+\frac{1}{\alpha}}2^{1/\alpha}}{\alpha^{1/\alpha}\zeta^{2}((\mathcal{W}-\mathcal{Z}))^{\frac{1}{\alpha}}}e^{(2-r+\frac{1}{\alpha}(1-r))s}\left(\partial_{\zeta}(\zeta^{2}\partial_{\zeta}(\mathcal{W}+\mathcal{Z}))-2(\mathcal{W}+\mathcal{Z})\right) \end{split}$$

If $2 - r + \frac{1}{\alpha}(1 - r) < 0$ then the dissipation term is an exponentially decaying error term, i.e.

$$r>\frac{2\gamma}{\gamma+1},$$
.

Recall $1 < r < r^*$. Then, the adiabatic exponents are restricted to

$$1 < \gamma < \frac{2+\sqrt{3}}{\sqrt{3}}$$

.

Linearization

Let $(\overline{W}, \overline{Z})$ be an exact, self-similar Euler profile and define $(\widetilde{W}, \widetilde{Z}) = (\mathcal{W} - \overline{W}, \mathcal{Z} - \overline{Z})$. Rewrite Euler/NS in linearized form

$$\partial_s \widetilde{W} = \mathcal{L}_W(\widetilde{W}, \widetilde{Z}) + \mathcal{F}_W \quad \text{and} \quad \partial_s \widetilde{Z} = \mathcal{L}_W(\widetilde{W}, \widetilde{Z}) + \mathcal{F}_Z$$

where $(\mathcal{F}_W, \mathcal{F}_Z)$ include nonlinear and dissipative terms.

- ▶ We study the linearized operator $\mathcal{L} = (\mathcal{L}_W, \mathcal{L}_Z)$
- It is also sometimes useful to write the operator in terms of self-similar velocity \mathcal{U} and sound speed \mathcal{S} , so that $\mathcal{L} = (\mathcal{L}_{\mathcal{U}}, \mathcal{L}_{\mathcal{S}})$

Strategy for linear stability

- 1. Causality is used to cut-off the linearized equation on a neighborhood of the backwards acoustic cone ($|\zeta| \le 1$). Redefine \mathcal{L} using cut-offs.
- 2. Show that for large m and small $\delta_g > 0$, \mathcal{L} decomposes as

$$\mathcal{L} = A = A_0 - \delta_g + K$$

for some A_0 maximally dissipative on H_{Rad}^m and K is some compact.

- 3. Use (U, S) variables for high derivative energy estimates (dissipativity) and (W, Z) for low derivative arguments (maximality).
- 4. Lumer-Phillips theorem ensures exponential decay modulo a finite dimensional unstable space.

Theorem

Let $\delta > 0$, and T the (strongly continuous) semigroup generated by $A = A_0 - \delta + K$ where $A_0 : H \to H$ is a maximally dissipative operator and $K : H \to H$ is compact. Then, there are finitely many eigenvalues λ_i with $Re(\lambda_i) \geqslant 0$.

Let $\psi_i \in H$ be the corresponding eigenfunctions, let V be the finite dimensional space $V = span(\psi_i)$. There exists $U \subset H$ such that U, V are invariant spaces of A and $H = U \oplus V$. Moreover

$$\|T(t)X\| \leqslant Ce^{-\delta t/2}\|X\|$$

for all $X \in U$

Dissipativity

Aim is to show that for (U,S) in a finite co-dim subspace of $H^m_{\mathrm{Rad}}[0,2]$

$$\langle \mathcal{L}(U, S), (U, S) \rangle_{H^m} \leqslant - \|(U, S)\|_{H^m}^2$$

- Highest order terms cancel.
- ▶ Left over with *m*th order terms have a good sign, if *m* is large.
- Projecting away low frequencies controls lower order terms.

Nonlinear stability argument

- 1. Control on unstable modes of truncated equations ⇒ global control on low order derivatives.
- 2. Global control on low order derivatives \implies global control on high order derivatives.
- 3. Global control on high order derivatives \implies dissipation can be treated as an decaying forcing term for the linearized problem.
- 4. Topological argument closes the argument, leading to a global solution of the self-similar equation.

Topological argument

Let $\{\psi_i\}_{i=1,...,N}$ be a basis for the unstable manifold and

$$\kappa_i = \langle (\widetilde{U}, \widetilde{S}), \psi_i \rangle$$

be the unstable modes of a solution. Let $\mathcal{R}(s) = B_{\mathbb{R}^N}(0, e^{-\delta s})$. If $\kappa \in \partial \mathcal{R}$, we can show that κ leaves \mathcal{R} immediately.

Consider solutions with initial unstable modes $\kappa(s_0) \in \mathcal{R}(s_0)$. Suppose all such initial data leave \mathcal{R} in finite time. This would imply (after rescaling) the existence of a continuous map from $B_{\mathbb{R}^N}(0,1)$ to \mathcal{S}^{N-1} , which leads to a contradiction.

Computer assisted arguments

Computer assisted interval arithmetic is used to prove the positivity of certain quantities: e.g. positivity of a polynomial over finite interval (barrier arguments) or the sign of a Taylor coefficient.

We define an arithmetic such that for intervals X, Y and $x \in X$, $y \in Y$

$$x \star y \in X \star Y$$
.

for a given operator ⋆. E.g.

$$\begin{split} & [\underline{x}, \overline{x}] + [\underline{y}, \overline{y}] = [\underline{x} + \underline{y}, \overline{x} + \overline{y}] \\ & [\underline{x}, \overline{x}] \times [\underline{y}, \overline{y}] = [\min\{\underline{x}\underline{y}, \underline{x}\overline{y}, \overline{x}\underline{y}, \overline{x}\overline{y}\}, \max\{\underline{x}\underline{y}, \underline{x}\overline{y}, \overline{x}\underline{y}, \overline{x}\overline{y}\}]. \end{split}$$

Thank you!