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Compressible Euler Equations

Non-Isentropic Form

Full non-isentropic Euler equations:

Oi(pu)+div(pu®u+ pld)

0 (Conservation of momentum)
Orp + div(pu) =0 (Conservation of mass)
0

OtE +div((p+ E)u)= (Conservation of energy)

where u is the velocity, p, the density, p, the pressure and E, the
energy. Conservation of energy can be replaced by transport of
specific entropy 0:S + u- VS = 0. The pressure is

p=(y—1)(E - 3pluf®) = 1p7e®

for adiabatic exponent v > 1. The sound speed is given by

c=4/2
\VE.



Shock waves and imploding solutions

» Shock waves: The prototypical singularity for the Euler equations is a
shock wave, which occurs when the speed of a disturbance exceeds
the local speed of sound. Mathematically, one is interested in both
the formation of the shock and the development of the shock.

» Implosions: Implosions involve spherically symmetric solutions that
collapse at a point in finite time. Classically, one considers imploding
shock waves. Recently, Merle-Raphael-Rodnianski-Szeftel showed
there exist smooth imploding solutions.



Shock formation results

» Christodoulou *07, Christodoulou-Miao '14: 3D isentropic, irrotational.
» Luk-Speck '18: 2D isentropic, non-trivial vorticity.

» B-Shkoller-Vicol ’19: 2D isentropic, azimuthal, non-trivial vorticity +
description of self-similar profile.

» B-Shkoller-Vicol ’19: 3D isentropic, non-trivial vorticity + description
of self-similar profile.

» B-Shkoller-Vicol '20: Full 3D Euler + description of self-similar profile.
» Luk-Speck '21: Full 3D Euler, allow non-generic shocks.

Related works: John-Klainerman '84, Klainerman, John '87,
Hoérmander '87, John '81, Sideris ‘85, Alinhac ‘99



Shock development results

» Lebaud ’'94: 1D, 2x2 p-system, existence of discontinuous shock
(unigueness follows by T.P. Liu) (cf. Chen-Dong 01, Kong '02 for
generalizations)

» Yin '04: Spherically symmetric Euler, existence of weak solution past
formation, no uniqueness and no description of weak discontinuities.

» Christodoulou-Lisbach '16: Spherically symmetric isentropic Euler in
formation, restricted problem thereafter, not a weak solution to Euler.

» Christodoulou '19: Multi-D, irrotational, isentropic shock development
for the restricted problem, not a weak solution to Euler.

» B-Drivas-Shkoller-Vicol '21: Development for full Euler under
azimuthal symmetry satisfying the Rankine-Hugoniot jump conditions,
uniqueness, full description of weak discontinuities.



Implosion results

» Guderley '42: Self-similar imploding shock waves solutions to Euler.
» Merle-Raphael-Rodnianski-Szeftel '19: Smooth imploding self-similar
solutions exist from a.e. adiabatic exponent v > 1.

» Biasi’ 21: Detailed numerical description of smooth self-similar
imploding solutions.

Related work:
Navier-Stokes (Merle et al. '19), NLS via Madelung transform (Merle
et al. '19), Euler Poisson (Guo-Hadzic-Jang-Schrecker '21)



Setup

» Isentropic, spherically symmetric Euler

1
OtU + UORU + —Opp" =
P

» The self-similar ansatz

u(r,t) = r "B U(log( 5

Rt)l ))and o(r,t) =

=0 and o+

where o = i * is the rescaled sound speed.

» Setting ¢ = Iog((

au _ Ny(U.S)
de ~ D(UYS)

and at

HZ

a"2r! TiS(Iog(

—0p(R?pu) =0,

1 ) leads to the autonomous ODE

ds _ Ns(U,S)
— D(U,

S) -







Result of Merle et al. '19

For a.e. v > 1, there exists a countably infinite sequence of
self-similar solutions to isentropic Euler. The velocity and density
blow up at the origin.

The condition on ~ relates to the non-vanishing of an analytic
function. The condition is not proven for any specific +, but may be
checked numerically. The case v = 5/3 (monatomic gases) is
specifically ruled out.



Compressible Navier-Stokes

Isentropic 3D compressible Navier-Stokes with constant viscosity:

di(pu) +div (pu ® u) + Vp(p) — p1Au — (1 + p2)Vdivu= 0,
Otp + div (pu)= 0,

for uy = 0and 2u1 + p2 = 0.

Merle et al. "19: there exists imploding solutions to NS for a.e.

1 < ~ < 2273 with decaying density.

V3

Previously, Xin ’98: blow up for initial data with compact density and
Rozanova ’08: blow up for rapidly decaying density.



Problems left open

1. Do imploding solutions for Euler exist for all v > 1?

2. Can one construct imploding solutions to the Navier-Stokes equation
with initial density constant at infinity?



Main result

1. There exists smooth self-similar imploding solutions for all v > 1.

2. For the case v = % (diatomic gas, e.g. oxygen, hydrogen, nitrogen)
there exists a countably infinite sequence of imploding solutions.

3. Simplified proofs of linear stability and non-linear stability.
4. Asymptotically self-similar imploding solutions to NS for v = %

5. First example of initial data with density constant at infinity leading to
blow up for NS.



Riemann invariants

» Riemann invariants: w =u+ocand z = u —o.

» Self-similar anzatz

w(R,t) =7 75 W(E) and z(R,f) =} - F52Z(¢)

» Setting £ = Iog(( ) yields

(r+ %((1 +2a)W+ (1 —a)2)W+ (1 + %(W+Z+ a(W —2)))o:W — %Z2: 0
(r+ %((1 —a)W+(1+2a0)2))Z + (1 + %(W+Z— a(W —2)))0:Z — %W2: 0
» Rearranging,
aw _ —(r+} (1+20)W+(1—0)Z DW+52Z% _ Ny
dg 1+ (W+Z+a(W-2)) ~ Dy
)

dz _ —(r+3((1—a)W+(1+20)Z))Z+ 5 W* _ N,
dg— 1+ (W+Z—a(W-2)) T Dz°







Analysis of the point Ps

Under the change of variables ¢ — 1 where 0, = —DyD70¢:
oyW =—-NwDz and 0,Z =—NzDy,
Ps becomes a stable stationary point. Consider the simple ODE:
X=XA X, Yy=A_y

forA_ <A, <O0.Ifk = i—; ¢ N, x =0 and y = 0 are the sole smooth
solutions. Non-smooth, C* solutions exist of the form y = Cx* whose
series agrees with the solution y = 0 up to order |k]|.



Case \_ =

10

—~3and A, = —1

0.5 1.0 1.5



Returning to our ODE
81/,W = _NWDZ and (31/,2 = —Nsz,

Let \_ < A, < 0 be the eigenvalues of the Jacobian at Ps, and define

k=2

At
If v_, v, are the corresponding eigenvectors, we consider smooth
solutions tangent to v_. The smooth solutions tangent to v,

correspond to the Guderley solutions.



o
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Taylor Expansion around Pg (£ = 0)

» Write the solution crossing Ps as a series
0

» If D, =VD, - (W, Z,) foroe {W,Z},n> 1, then

Wna Zn

3"“

=2 n_A
DW,OWn = NW,n71 — Z < / )Dan*1*]'VV/'+17
j=0
n—2 n
ZaDz1(n— k)=~ (j)Dz,nf,-Z,-+1
j=1
+ (Nz.n — (8zNz(P2))Zn) + Zi (—Dz 5 + ZndzDz(P2)).



The wiggle with r

» Restrict 1 < r < r* where

2 5
—2 41 1<y<d
/ 2 3
r*(,w _ (‘/E\/w%H”)
3y—1 > 5
2++/3(y—1) 7= 3

k(r): (1,r*) — Risincreasing with r and k — cc as r — r*.
» For je N, define r; such that j = k(r;). At k; the denominator of Z, is
singular and switches sign.

» To connect P, to P.,, we show that for n odd

1. For r € (r, ra+1) the solution to the left of P; converges to Py, as § — oo.
2. For r = r, + ¢ the solution to the right of P. intersects the line Dy = 0.
3. For r = rp41 — e the solution to the right of P, intersects the line Dz = 0.

For v > 1, this is shown for n = 3, for y = % this is shown for odd n
sufficiently large.



Barriers




The v = £ case

» For v < 2 and fixed n, (W,, Z,) converge as r — r* in a non-trivial
T<3
manner.

v

The wiggle can be determined from the sign and a lower bound on

the coefficients of order O(k).

» Via a computer assisted proof, compute the first 10000 coefficients
with effective error bounds at r* (Zjgosg ~ 6 x 1046770,

» The proof works for general v < %; however, the computation

degenerates as v — 2.



Strategy for stability for Euler and Navier-Stokes

The basic strategy is:

1. Linearize Euler/Navier-Stokes around self-similar profiles.
2. Show the linearized operator as finitely many unstable modes.

3. A Brouwer fix point argument shows there exists a manifold of initial
data of finite co-dimension leading to imploding asymptotically
self-similar blow-up.



Write
w(R, )= r (T = 0 I Ay, e
—_HT

Rt)=r Y(T—t) 1z(-A, el
z(R,1t) (T—1) (<r_m" L)

and define the self-similar variables

log(T—t R
3:*¥, (= m = e°R = exp(§).

The Navier-Stokes equations (u1 = 1 and up = —1) become
@s+r=1WH+(C+FW+ Z+aW = 2))aW + (W2 - 2°)
__ rtwalr @ l(1-n) 2
(Gs+r=1Z+(C+IW+Z—aW-2)0cZ - gW - 2?)
1+ L o1/a

. rrtalr  2-rt g (1 r) 2 z =z
041/‘1(2((1/\}72));7 e ( (C aC(W + )) (W + ))



f2—r+ %(1 — r) < 0 then the dissipation term is an exponentially

decaying error term, i.e.

2

v+1

Recall 1 < r < r*. Then, the adiabatic exponents are restricted to

r>

2++/3
V3

1<v<



Linearization

Let (W, Z) be an exact, self-similar Euler profile and define
(W,Z) = (W — W, Z — Z). Rewrite Euler/NS in linearized form

osW = Lw(W,Z) + Fy and 0.2 = Lw(W,2Z) + F7

where (F, Fz) include nonlinear and dissipative terms.
» We study the linearized operator £ = (Lw, L)

» Itis also sometimes useful to write the operator in terms of
self-similar velocity &/ and sound speed S, so that £ = (Ly, Ls)



Strategy for linear stability

1. Causality is used to cut-off the linearized equation on a neighborhood
of the backwards acoustic cone (|¢| < 1). Redefine £ using cut-offs.

2. Show that for large m and small §; > 0, £ decomposes as
L=A=A—-d3+K

for some Ag maximally dissipative on Hf, and K is some compact.
3. Use (U, S) variables for high derivative energy estimates
(dissipativity) and (W, Z) for low derivative arguments (maximality).

4. Lumer-Phillips theorem ensures exponential decay modulo a finite
dimensional unstable space.



Theorem

Leté > 0, and T the (strongly continuous) semigroup generated by
A=Ay — 0+ K where Ay : H— H is a maximally dissipative operator
and K : H — H is compact. Then, there are finitely many eigenvalues
Ai with Re()\;) = 0.

Let); € H be the corresponding eigenfunctions, let V be the finite
dimensional space V = span(v;). There exists U c H such that U, V
are invariant spaces of Aand H = U@ V. Moreover

IT(HX| < Ce~*"2|X|
forall X e U



Dissipativity

Aim is to show that for (U, S) in a finite co-dim subspace of HZ,[0, 2]

(L(U,S), (U, S))mn < — (U, S)5m

» Highest order terms cancel.
» Left over with mth order terms have a good sign, if mis large.

» Projecting away low frequencies controls lower order terms.



Nonlinear stability argument

1. Control on unstable modes of truncated equations = global control
on low order derivatives.

2. Global control on low order derivatives = global control on high
order derivatives.

3. Global control on high order derivatives = dissipation can be
treated as an decaying forcing term for the linearized problem.

4. Topological argument closes the argument, leading to a global
solution of the self-similar equation.



Topological argument

Let {«;}i—1.... N be a basis for the unstable manifold and

ki = (U, S), )

be the unstable modes of a solution. Let R(s) = Byw(0, %), If
Kk € OR, we can show that x leaves R immediately.

Consider solutions with initial unstable modes x(sp) € R(Sp)-
Suppose all such initial data leave R in finite time. This would imply
(after rescaling) the existence of a continuous map from By~ (0, 1) to
SN=1, which leads to a contradiction.



Computer assisted arguments

Computer assisted interval arithmetic is used to prove the positivity of
certain quantities: e.g. positivity of a polynomial over finite interval
(barrier arguments) or the sign of a Taylor coefficient.

We define an arithmetic such that for intervals X, Yand xe X, ye Y
xXxyeXx*Y.

for a given operator *. E.g.

3
Rl

+

—

)

y,yl=[x+y,x+Y]
7?] = [min{ﬂ7g7YZ7X7y}?max{ﬂ7g7YZ7W}]'

i
Kad

X

—

)



Thank you!



