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Introduction
—–Start from elliptic homogenization

1. Strongly nonhomogeneous case (Fourier’s law).{
Lε(uε) := −∇ · A(·/ε)∇uε = F in Ω;

uε = 0 on ∂Ω.
(1)

Qiang Xu, Lanzhou University | Quantitative results
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Introduction
—– Qualitative homogenization theory

A. Compensated compactness (Tartar, 1977.) A is elliptic, periodic.{
uε ⇀ u0 weakly in H1(Ω);

A(·/ε)∇uε ⇀ Â∇u0 weakly in L2(Ω;Rd ),
as ε→ 0. (2)

B. Two-scale convergence, (Nguetseng, 89; Allaire, 90.)

Qiang Xu, Lanzhou University | Quantitative results
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Introduction
—– effective coefficient (homogenized coefficient)

How to compute
Â ?

Â = −
∫

Y=[0,1)d

(
A + A∇ Φ︸︷︷︸

corrector

)
dy (3)

Qiang Xu, Lanzhou University | Quantitative results
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Introduction
——–two-scale expansions

Let x ∈ Ω and y = x/ε. Let Lε = ∇xA(x/ε)∇x .

uε(x) = u0(x , y) + εu1(x , y) + ε2u2(x , y) + · · · ;
Lε =

{
∇x + ε−1∇y

}
· A(y)

{
∇x + ε−1∇y

}
Recall Lε(uε) = F .

O(ε−2)A(u0) + O(ε−1)B(u0,u1) + O(1)C(u0,u1,u2) + O(ε) = F .

▶ A(u0) = 0 =⇒ u0(x , y) = u0(x).

▶ B(u0,u1) = 0 =⇒

{
∇ · A(y)∇(χk + yk ) = 0 in Rd ;

u1(x , y) = χ(y) · ∇u0(x).

▶ C(u0,u1,u2) = F =⇒ Â = −
∫

Y

(
A + A∇χ

)
dy .

Qiang Xu, Lanzhou University | Quantitative results



7

Introduction
—–key picture in mind

Fix a bounded domain Ω, and χ ∈ H1
per(Y ).

∥χ(·/ε)∇u0∥H1/2(∂Ω) ≲
trace theorem ∥χ(·/ε)∇u0∥1/2

L2(Ω)
∥χ(·/ε)∇u0∥1/2

H1(Ω)

= O(ε−
1
2 );

This gives

ε∥
d∑

k=1

χk (·/ε)∂k u0∥H1/2(∂Ω) = O(ε1/2). (4)

Qiang Xu, Lanzhou University | Quantitative results
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Introduction
——Quantitative periodic homogenization theory

A. Large-scale estimates (“quenched” type estimates).
▶ Compactness methods (Avellaneda-Lin, 1987).

▶ Campanato’s iteration + homogenization error

▶ Armstrong-Kuusi-Mourrat-Shen, 2014
▶ Gloria-Neukamm-Otto, 2014

B. Homogenization error.
▶ algebra formula (flux corrector, Jikov-Kozlov-Oleinik, 90s)
▶ duality (seek for a sharp error) (Aubin-Nitsche’s methods, 1960s;

Kenig-Lin-Shen-Suslina, 2012; Shen-Xu, 2016)

C. Boundary layers (higher-order expansions’s error).
▶ Gérard-Varet-Masmoudi, 2012.
▶ Armstrong-Kuusi-Mourrat-Prange, 2017.
▶ Shen-Zhuge, 2018.

Bella-Duerinckx-Fisher-Giunti-Otto, 2016-now for higher-order expansions.

Qiang Xu, Lanzhou University | Quantitative results
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Introduction
——perforated domain (or porus medium)

▶ A perforated domain Ωε of type (I) domains.

▶ A perforated domain Ωε of type (II) domains.

[1] Oleinik-Shamaev-Yosifian: Mathematical Problems in Elasticity and
Homogenization. Studies in Mathematics and its Applications, (1992).

Qiang Xu, Lanzhou University | Quantitative results
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Introduction
—–unsteady Stokes equations on perforated domains

1. Assumption:
▶ Let Ωε be the perforated domain of type (II) with smooth boundary;
▶ 0 < ε≪ 1 and 0 < T ≤ ∞.

2. Equations:

∂uε

∂t
− ε2µ∆uε +∇pε = f in Ωε × (0,T ];

∇ · uε = 0 in Ωε × (0,T ];

uε = 0 on ∂Ωε × (0,T ];

uε|t=0 = 0 on Ωε,

(5)

▶ Velocity: uε;
▶ Pressure: pε;
▶ Density of forces: f ;
▶ Viscosity: µ.

Remark: assume µ = 1 throughout for simplicity.
Qiang Xu, Lanzhou University | Quantitative results
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Introduction
—–known results (Darcy’s law with memory)

Theorem 1 (Lions, 81; Allaire-Mikelić, 90s)
Let 0 < T ≤ ∞. There exists an extension (ũε, p̃ε) of the solution (uε, pε), which
weakly converges in L2(0,T ; L2(Ω)d )× L2(0,T ; L2(Ω)/R) to the unique solution
(u0, p0) of the homogenized problema:

u0(x , t) =
∫ t

0
dsA(s)(f −∇p0)(x , t − s) in Ω× (0,T );

∇ · u0 = 0 in Ω× (0,T );

u0 · n⃗ = 0 on ∂Ω× (0,T ),

(6)

where n⃗ is the unit outward normal vector of ∂Ω. Moreover, there holds∫ T

0
dt
∥∥ũε(·, t)−

∫ t

0
dsW (·/ε, t − s)(f −∇p0)(·, s)

∥∥2
L2(Ω)

→ 0, (7)

as ε goes to zero.

aThe homogenized problem (6) is referred to as Darcy’s law with memory.

Qiang Xu, Lanzhou University | Quantitative results
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Introduction
—–correctors and permeability

1. Correctors:1

∂Wj

∂t
−∆Wj +∇πj = 0 in ω × (0,∞);

∇ · Wj = 0 in ω × (0,∞);

Wj = 0 on ∂ω × (0,∞),

Wj |t=0 = ej on ω.

(8)

where ei = (0, · · · ,1, · · · ,0) with 1 in the i th place.
2. Permeability:

Aij(t) =
∫

Yf

dyWj(y , t) · ei , (9)

▶ symmetry;
▶ positive definite;
▶ exponential decay.

1We take Mikelić’s definition, which slightly differs from that given by Allarie.
Qiang Xu, Lanzhou University | Quantitative results
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Introduction
——Main results

1. Homogenization error:

∥uε − W (·/ε) ∗ (f −∇p0)∥L2(Ωε,T )

+∥ε∇uε −∇W (·/ε) ∗ (f −∇p0)∥L2(Ωε,T )

+ ∥pε − p0 − c∥L2(Ωε,T ) ≤ Cε1/2∥f∥L2(0,T ;C1,1/2(Ω̄));

(10)

2. Large-scale regularity estimates: for any 0 < β < α, there holds

Excr (uε, f ) ≲
( r

R
)2βExcR(uε, f ) (11)

for any ε ≤ r < R, where

ExcR(uε, f ) := inf
E∈Rd

∫ T

0

(
−
∫

Qε
R

|ε∇uε − (∇W )ε ∗ E |2 + R2α∥f∥2
C0,α(QR )

)
.

QεR := QR ∩ εω and QR ⊂ Rd is a cube.
The notation “∗” represents revolution w.r.t. time variable.

Qiang Xu, Lanzhou University | Quantitative results
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Introduction
——remarks

▶ Allaire’s definition of correctors:

∂wj

∂t
−∆wj +∇π̃j = ej in ω × (0,∞);

∇ · wj = 0 in ω × (0,∞);

wj = 0 on ∂ω × (0,∞);

wj |t=0 = 0 in ω.

(12)

which is connected to Mikelić’s by the relationship

∂t wj (·, t) = Wj (·, t)

in the sense of Stokes semigroup representation, up to a projection.

Aij (t) =
∫

Yf

dy∂t wj (y , t) · ei .

▶ If changing the initial data of Mikelić’s definition into ej −∇bj
2, its solution is no

different3 from Wj in the sense of Stokes semigroup representation, where
∆bj = 0 in Yf with ∂bj/∂ν = nj on ∂Ys .

2This is Sandrakov’s way.
3But, it will change the value of defined permeability at zero.

Qiang Xu, Lanzhou University | Quantitative results
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Introduction
——remarks

▶ As pointed out by Allaire in stationary cases, the ratio of the solid
obstacle size to the periodic repetition one is crucial when people
study the limit behavior for such problems, and different ratios will lead
to Darcy’s law, Brinkman’s law and Stokes’ law, separately.

▶ In terms of the scaling ε2 of the viscosity in the equations (5), it is not a
simple change of variable as in the stationary case because the density
in front of the inertial term has been scaled to 1. The present scaling
in (5) will precisely lead to a limit problem depending on time in a
nonlocal manner, which is the critical case (see Sandrakov’s work, 97).

▶ Recently, Shen provides an optimal error estimate (11) for steady
Stokes systems on perforated domains. Instead, the present work
avoids using boundary correctors defined in his way, since any useful
nontangential maximal function estimates employed by Shen turns to be
very difficult for unsteady Stokes systems4.

4It is known from Shen that the Rellich type estimates involve pressure terms in a
surprising way, and it will lead us to some uneasy estimates on pressures.

Qiang Xu, Lanzhou University | Quantitative results
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Part 2: Nonstandard Expansion

Qiang Xu, Lanzhou University | Quantitative results
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Nonstandard Expansion
——standard expansion & difficulties

▶ Formal two-scale expansion:{
uε = u0(x , y) + εu1(x , y) + ε2u2(x , y) + · · · ;

pε = p0(x , y) + εp1(x , y) + ε2p2(x , y) + · · · ,
y = x/ε.

The known results:

u0(x , y , t) =
∫ t

0
dsW (y , s) (f −∇p0)︸ ︷︷ ︸

F

(x , t − s); p0(x , y) = p0(x).

▶ Recall the qualitative result (7), i.e.,∫ T

0
∥uε − u0∥2

L2(Ωε)
−→ 0, as ε→ 0,

which suggests that the error term should be the form of

w (1)
ε = uε − W ε ∗ F . (13)

▶ Difficulties: (inhomogeneous conditions, i.e.,)∇ · w (1)
ε = −W ε ∗2 ∂F in Ωε × (0,T );

w (1)
ε = −W ε ∗ F on ∂Ω× (0,T ).

Qiang Xu, Lanzhou University | Quantitative results
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Nonstandard Expansion
——notations

1. ψε is radial type cut-off function, while φε is a general cut-off one.

2. Notation for different type correctors:
▶ Corrector: (W , π);
▶ Flux corrector: Φ;
▶ Corrector of Bogovskii’s operator: ϕ;
▶ Boundary-layer correctors: (ξ, η).

3. Notation for convolutions (involving Einstein’s summation convention):

a ∗1 b(t) :=
∫ t

0
dsa(t − s) · b(s); A ∗ b(t) :=

∫ t

0
dsA(t − s)b(s);

C ∗2 A(t) :=
∫ t

0
dsC(t − s) : A(s); C ∗3 D(t) :=

∫ t

0
dsCijk (t − s)Dijk (s),

4. Notation for important quantities:

J1 := ∇ψε ·
[
(W ε − A) ∗ G

]
;

J2 := ∇ψε · (A ∗ G) + ε∇ψε ·
(
ϕε ∗2 ∂G

)
+ ψε

A
|Yf |

∗2 ∂G + εψεϕ
ε ∗3 ∂

2G,

where G := S ε
2
(φεF ) with Sδ being a smoothing operator and F := f −∇p0.

Let ϕε(x , t) := ϕ( x
ε
, t); W ε(x , t) := W ( x

ε
, t); and πε(x , t) := π( x

ε
, t).

Qiang Xu, Lanzhou University | Quantitative results
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Nonstandard Expansion

1. Velocity terms:

wε = uε − ψε W ε ∗ G︸ ︷︷ ︸
zero order

+ ξ̂ + η̂︸ ︷︷ ︸
involving boundary-layer

−εψε ϕε ∗2 ∂G︸ ︷︷ ︸
first order

where

(ξ̂, η̂)(·, t) :=
∫ t

0
ds(ξ, η)(·, s), (14)

and corrector of Bogovskii’s operator5 is given by (for any t ≥ 0){
∇ · ϕi,j(·, t) = −Wij(·, t) + |Yf |−1Aij(t) in ω;

ϕi,j(·, t) = 0 on ∂ω.
(15)

2. Pressure terms:
qε = pε − p0 − εψεπ

ε ∗1 ∂G

5To the authors’ best knowledge, this type corrector was originally imposed by E.
Marušić-Paloka, A. Mikelić for stationary cases.

Qiang Xu, Lanzhou University | Quantitative results
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Nonstandard Expansion
—–further explanation

1. Why do we introduce radial type cut-off function ψε?
▶ Make the inhomogeneous boundary condition be homogeneous;
▶ Structural interest:

∇ψε = −|∇ψε |⃗n(x̃) on Oε, (16)

where Oε := supp∇ψε, and x̃ : Oε → ∂Ω. By virtue of n⃗ · u0 = 0 on
∂Ω, there holds

∥∇ψε · u0∥L2(Ω) = O(1) (17)

2. Why do we impose the corrector of Bogovskii’s operator ϕ?
▶ It plays an important role in the following improvement

W ε ∗2 ∂G ⇝
A
|Yf |

∗2 ∂G =
A
|Yf |

∗2 ∂(G − F )

by using A ∗2 ∂F = ∇ · u0 = 0 in Ω.

Qiang Xu, Lanzhou University | Quantitative results
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Nonstandard Expansion
—–further explanation

3. Why do we impose boundary-layer correctors associated with
Bogovskii’s operator?
▶ Let w (2)

ε = uε − ψε(W ε ∗ G + εϕε ∗2 ∂G). There holds−∇ · w (2)
ε = J1 + J2 in Ωε × (0,T );

w (2)
ε = 0 on ∂Ωε × (0,T ),

(18)

▶ The crucial idea is to introduce a “magical” quantity∑
i

(−
∫

Oi
ε

J1)1Oi
ε
,

where supp(J1) = Oε =
∑

i
Oi
ε, and 1Oi

ε
is the indicator function, such that

J1 + J2 = J1 −
∑

i

(−
∫

Oi
ε

J1)1Oi
ε︸ ︷︷ ︸

Π

+
∑

i

(−
∫

Oi
ε

J1)1Oi
ε
+ J2︸ ︷︷ ︸

H

.

▶ Construct solutions (ξ, η) to

(1)

{
∇ · ξ = ∂tH in Ωε;

η = 0 in ∂Ωε,
and (2)

{
∇ · η = ∂tΠ in Oε;

η = 0 in ∂Oε.
(19)

Thus, wε = w (2)
ε + ξ̂ + η̂ leads to all homogeneous conditions.

Qiang Xu, Lanzhou University | Quantitative results
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Part 3: Outline of Proofs

Qiang Xu, Lanzhou University | Quantitative results



23

Outline of Proofs
——main steps

Step 1. Find the formula on the first-order expansion, i.e.,{
wε = uε − ψε

(
W ε ∗ G + εϕε ∗2 ∂G

)
+ ξ̂ + η̂;

qε = pε − p0 − εψεπ
ε ∗1 G.

(20)

Step 2. Derive the equations that error term (wε, qε) satisfies, i.e.,
∂wε
∂t

− ε2∆wε +∇qε = I1 + εI2 + ε2I3 + ε3I4, in Ωε × (0,T );

∇ · wε = 0, in Ωε × (0,T )

(21)

with zero initial-boundary data.
Step 3. Energy estimates. Rewriting the right-hand side of (21) as the form of

Θ+ ε∇ · Λ + εψε∇ · Ξ,

we have

∥wε∥L∞(0,T ;L2(Ωε))
+ ε∥∇wε∥L2(0,T ;L2(Ωε))

≲ ∥(Θ,Λ, ψεΞ)∥L2(0,T ;L2(Ωε))
.

Then, reduce the error estimates to show:

∥(Θ,Λ, ψεΞ)∥L2(0,T ;L2(Ωε))
= O(ε1/2). (22)

Qiang Xu, Lanzhou University | Quantitative results
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Outline of Proofs
——main steps

Step 4. The desired estimate (22) relies on three type estimates:
▶ Smoothness of (flux) correctors, i.e.,

∥(∂t Wj ,∇πj )∥L1(0,T ;Lr (Yf ))
+ ∥(∂tΦ, ∂tϕ)∥L1(0,T ;W 1,q(Yf ))

≲ 1; (23)

▶ Well-posedness of the homogenized system, i.e.,

∥p0∥Lq(0,T ;Cm+1,α(Ω̄)) ≲ ∥f∥Lq(0,T ;Cm,α(Ω̄)); (24)

▶ Regularity estimates on boundary-layer correctors, i.e.,

∥(ξ, η)∥L2(0,T ;L2(Ωε))
+ ε∥(∇ξ̂,∇η̂)∥L2(0,T ;L2(Ωε))

= O(ε1/2). (25)

Step 5. Show the estimate on the inertial term

∥∂t wε∥L2(Ωε,T ) = O(ε1/2). (26)

Step 6. Show the estimate on the pressure term

inf
c∈R

∥qε − c∥L2(Ωε,T ) = O(ε1/2).

which base upon the estimates (22) and (26), as well as, a duality argument.

Qiang Xu, Lanzhou University | Quantitative results
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Outline of Proofs
——main difficulties:

(D1). If created by a simple cut-off argument, boundary layers would easily
“destroy” the desired estimate because of the incompressibility
condition6

(D2). Concerning correctors’ estimates (23), we are required to derive a
refined regularity estimate for correctors (W , π) without compatibility
condition between the initial and boundary data;

(D3). Regarding effective solution’s estimate (24), we have to establish
well-posedness of the integro-differential equation (6) in general
Bochner spaces7.

6It was pointed out by Marušić-Paloka, Mikelić in their cooperated job.
7In terms of Hilbert space, the existence had been well established by Lions, Mikelić

and Sandrakov through different methods.
Qiang Xu, Lanzhou University | Quantitative results
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Part 4: Correctors’ estimates

Qiang Xu, Lanzhou University | Quantitative results
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Correctors’ estimates
——main results:

Proposition 1 (Wang-Xu-Zhang, 22)
Let 0 < T <∞ and 1 < q <∞. Then,

∥Wj∥L∞(0,T ;L2(Yf ))
+ ∥Wj∥L2(0,T ;H1(Yf ))

≲ 1, (27)

Also, for any α > (1/3), we have higher regularity estimates:

∥Wj∥L2(0,T ;W 1,q(Yf ))
+ ∥tα∂t Wj∥L2(0,T ;L2(Yf ))

+ ∥tαπj∥L2(0,T ;L2(Yf )/R)
≲ 1;

∥∂t Wj∥L1(0,T ;Lq(Yf ))
+ ∥∇2Wj∥L1(0,T ;Lq(Yf ))

+ ∥∇πj∥L1(0,T ;Lq(Yf ))
≲ 1,

(28)

Moreover, let W̃j be the zero-extension of Wj . For any t ∈ [0,T ], define
bij (·, t) := W̃j (·, t) · ei − Aij (t). Then, there exists Φki,j ∈ H1

per(Y ) such that

∇kΦki,j = bij and Φki,j = −Φik,j , (29)

as well as, the following regularity estimates:

∥∂tΦ∥L1(0,T ;H1(Y )) + ∥Φ∥L1(0,T ;H1(Y )) + ∥Φ(·, 0)∥H1(Y ) ≲ 1;

∥∂tΦ∥L1(0,T ;W 1,q(Y )) + ∥Φ∥L1(0,T ;W 1,q(Y )) ≲ 1.
(30)

Consequently, we also have Φki,j , ∂tΦki,j ∈ L1(0,T ;Cper (Y )).

Qiang Xu, Lanzhou University | Quantitative results
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Correctors’ estimates
——main ingredients:

Lemma 2 (semigroup estimate I)
Let 2 < p <∞. Then, for any t > 0, there holds(∫

Yf

|∇Wj (·, t)|2
)1/2

≤ Cp t−
p

3p−2 , (31)

in which the constant Cp depends on d, p and the character of Yf .

Lemma 3 (semigroup estimate II)

Let p ≥ 2 be sufficiently large, and γ := p(19p−14)
(3p−2)(7p−2) . Then, for any r ∈ (1,∞), there

exists a constant q ∈ (1,∞), such that λ := 2(q−r)
r(q−2) satisfying 0 ≤ λ ≤ 1, and there

holds (∫
Yf

|∂t Wj (·, t)|r
)1/r

≲ t−1+λ(1−γ) (32)

for any t > 0, where the multiplicative constant depends on d , p, q and the character of
Yf .

Qiang Xu, Lanzhou University | Quantitative results
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Correctors’ estimates
——semigroup estimate I

The key observation on the estimate (31):
▶ Caccioppoli type inequality offers a good decay in the interior region, but

produces a bad scale factor.
▶ The semigroup estimate can dominate the region near boundary, owning a

relatively bad decay, but creating a good scale factor.

The idea is to bring in a parameter ρ to balance their advantage and disadvantage
such that we can “improve” the decay power of semigroup estimates.

Step 1. Decompose the integral domain into two parts: (Yf )ρ and Yf \ (Yf )ρ, where
(Yf )ρ := {y ∈ Yf : dist(y , ∂Yf ) ≥ 2ρ} for the parameter ρ > 0, which will be fixed later.(∫

Yf

|∇W (·, t)|2
) 1

2
≲

(∫
Yf \(Yf )ρ

|∇W (·, t)|2
) 1

2
+

(∫
(Yf )ρ

|∇W (·, t)|2
) 1

2

=: I1 + I2.

(33)

Step 2. Classical semigroup estimates + Hölder’s inequality:

I1 ≲ ρ
1
2 −

1
p

(∫
Yf

|∇W (·, t)|p
)1/p

≲ ρ
1
2 −

1
p t−

1
2 . (34)

Qiang Xu, Lanzhou University | Quantitative results
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Correctors’ estimates
——semigroup estimate I

Step 3. Estimate I2. We start from giving a family of cut-off functions, denoted by {χi},
which satisfy that χi (y) = χ0(y + yi ) and (Yf )ρ ⊂

⋃
i B(yi , ρ/2) ⊂ (Yf ) 1

2 ρ
. It is fine to

assume that y0 = 0, and
▶ χ0 ∈ C1

per (Y ) is a cut-off function;

▶ χ0 = 1 on B(0, ρ/2) and supp(χ0) ⊂ B(0, ρ) with |∇χ0| ≲ 1
ρ
;

▶ If |i − j| > 2, supp{χi}
⋂

supp{χj} = ∅.
From the assumptions on {χi}, it follows that dist(∂Ys, suppχi ) ≥ ρ. Moreover, we
define a family of indicator functions associated with {χi} as follows:

χ̃i = 1 in B(yi , ρ) and χ̃i = 0 outside B(yi , ρ).

We claim that

I2 ≤
(∑

i

∫
Yf

χ2
i |∇W (·, t)|2

)1/2
≲

1
ρ
. (35)

Qiang Xu, Lanzhou University | Quantitative results
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Correctors’ estimates
——semigroup estimate I

Caccioppoli type estimates: for each i and any t > 0, there hold∫
Yf

χ2
i |∇W (·, t)|2 ≲

∫
Yf

χ2
i |∇ × W (·, t)|2 +

1
ρ2

∫
Yf

χ̃i |W (·, t)|2; (36)

and ∫
Yf

χ2
i |∇ × W (·, t)|2 ≲

1
ρ2

∫ T

0

∫
Yf

χ̃i |∇W |2. (37)

Step 4. Admitting the claims (36), (37) for a moment,∫
Yf

χ2
i |∇W (·, t)|2dy ≲

1
ρ2

{∫ T

0

∫
Yf

χ̃i |∇W |2 + sup
0≤t≤T

∫
Yf

χ̃i |W (·, t)|2
}
.

Thus,

I2 ≲
1
ρ

(∫ T

0

∫
Yf

|∇W |2 + sup
0≤t≤T

∫
Yf

|W (·, t)|2
)1/2

≲(27) 1
ρ
. (38)

As a result, plugging (34) and (38) back into (33), one can acquire(∫
Yf

|∇W (·, t)|2
)1/2

≲ ρ
1
2 −

1
p t−

1
2 + ρ−1 ≲ t−

p
3p−2 ,

where we take ρ = t
p

3p−2 (which requires t to be small).
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Correctors’ estimates
——semigroup estimate I

Step 3-a. To show ∫
Yf

χ2
i |∇ × W (·, t)|2 ≲

1
ρ2

∫ T

0

∫
Yf

χ̃i |∇W |2,

we ask for test function to be the form of

∇× (χ2
i ∇× W ),

and employ 
∇ · (∇× (χ2

i ∇× W )) = 0

∇× (χ2
i ∇× W ) = ∇χ2

i × (∇× W ) + χ2
i ∇×∇× W

∇×∇× W = −∆W +∇(∇ · W ) = −∆W

(39)

Step 3-b. To show∫
Yf

χ2
i |∇W (·, t)|2 ≲

∫
Yf

χ2
i |∇ × W (·, t)|2 +

1
ρ2

∫
Yf

χ̃i |W (·, t)|2;

we can go back the last two line of (39).
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Correctors’ estimates
——semigroup estimate II

The key ingredient: (∫
Yf

dy |∆W (y , t)|2
)1/2

≲ t−γ , (40)

with γ := p(19p−14)
(3p−2)(7p−2) . This implies

∥AW (·, t)∥L2(Yf )
= ∥P(−∆)W (·, t)∥L2(Yf )

≤ ∥∆W (·, t)∥L2(Yf )
≲ t−γ ,

which together with the semigroup estimates: for 1 < q <∞,
∥AW (·, t)∥Lq(Yf )

≲ t−1, and ∂t W = AW ,

leads to the desired estimate (32).

Arguments for (40):( ∫
Yf

|∆W (·, t)|2
)1/2 ≤

( ∫
(Yf )ρ

|∆W (·, t)|2
)1/2

+
( ∫

Yf \(Yf )ρ

|∆W (·, t)|2
)1/2

.

▶ Interior estimates (stream function methods + Caccioppoli type estimates):( ∫
(Yf )ρ

|∇2W (y , t)|2dy
)1/2 ≲ ρ−3t−

p
3p−2 , (41)

▶ Hölder inequality + Lp-estimates + semigroup estimates:( ∫
Yf \(Yf )ρ

dy |∆W (y , t)|2
)1/2 ≲ ρ

1
2 −

1
p t−1. (42)
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Correctors’ estimates
——corrector of Bogovskii’s operator

Proposition 2 (corrector of Bogovskii’s operator)
Let 2 ≤ q <∞. Then, there exists at least one weak solution ϕ associated
with W and A by{

∇ · ϕi,j(·, t) = −Wij(·, t) + |Yf |−1Aij(t) in ω;

ϕi,j(·, t) = 0 on ∂ω

with t ≥ 0, whose component is 1-periodic and satisfies ϕki,j(·, t) ∈ H1
per(Yf ).

Moreover, there holds

∥ϕ∥L1(0,T ;W 1,q(Yf ))
+ ∥ϕ(·, 0)∥Lq(Yf ) + ∥∂tϕ∥L1(0,T ;W 1,q(Yf ))

≲ 1, (43)

and we concludes that ∂tϕki,j ∈ L1(0,T ;Cper (Yf )).
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Correctors’ estimates
——flux corrector

Lemma 4 (antisymmetry and regularities)
For any 0 < t < T , let B(·, t) = {bij(·, t)}1≤i,j≤d . Then,

(i) ∇ · B(·, t) = 0, (ii)
∫

Y
B(·, t) = 0. (44)

Moreover, there exists Φ(·, t) = {Φki,j(·, t)}1≤i,j,k≤d with Φki,j(·, t) ∈ H1
loc(Rd)

being 1-periodic, and satisfying

∇ · Φ(·, t) = B(·, t) in Y (45)

under the antisymmetry condition (i.e., Φki,j = −Φik,j ). Also, for any
1 < q <∞, we have the regularity estimates:

∥Φ(·, t)∥W 1,q(Y ) ≲ ∥B(·, t)∥Lq(Y ), (46)

where the up to constant is independent of t.
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Part 5: Effective equations
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Effective equations
——Darcy’s law with memory

Proposition 3 (well-posedness)

Let 1 ≤ q ≤ ∞, m ≥ 1 and α ∈ (0, 1). Given 0 < T <∞, suppose
f ∈ Lq(0,T ;Cm,α(Ω̄)d) and ∂Ω ∈ Cm+1,α. Then, there exists a unique
p0 ∈ Lq(0,T ;Cm+1,α(Ω̄)) to the integral-differential equations (6) with the
condition

∫
Ω

p0(·, t) = 0 for a.e. t ≥ 0. Moreover, we have

∥p0∥Lq(0,T ;Cm+1,α(Ω̄)) ≤ C∥f∥Lq(0,T ;Cm,α(Ω̄)), (47)

where the constant C depends only Ω, Yf and T .

Remark 4.1
In terms of temporal variable, it is hard to improve the temporal regularity in
(47). However, if replacing Hölder’s norm by Sobolev norm, we have

∥p0∥Lq(0,T ;Hm+1(Ω)) ≤ C∥f∥Lq(0,T ;Hm(Ω)), (48)

with m ≥ 0, where we regard H0(Ω) as L2(Ω).
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Effective equations
——existence of short-time solution

Lemma 5 (short-time solution)
Assume the same conditions as in Proposition 3. There exists 0 < δ0 ≪ 1, depending
on ∥∂t A∥L1(0,T ), such that the integral-differential equation (6) possesses the solution
p0 ∈ Lq(0, δ0;Cm+1,α(Ω̄)), satisfying the estimate

∥p0∥Lq(0,δ0;Cm+1,α(Ω̄)) ≲ ∥f∥Lq(0,δ0;Cm,α(Ω̄)), (49)

where the up to constant depends only on Ω.

Step 1. Taking ∇· and ∂t ,{
∇ · A(0)∇p0 +∇ · A′ ∗ ∇p0 = ∇ ·

[
A′ ∗ f + A(0)f

]
in Ω;

n⃗ · A(0)∇p0 + n⃗ · A′ ∗ ∇p0 = n⃗ ·
[
A′ ∗ f + A(0)f

]
on ∂Ω.

(50)

Step 2. Introduce p̂:{
∇ ·

[
A(0)∇p̂ − A′ ∗ ∇p

]
= 0, in Ω;

n⃗ ·
[
A(0)∇p̂ − A′ ∗ ∇p

]
= 0, on ∂Ω,

∫
Ω

p̂(·, t) = 0. (51)

and set L := ∇ · A(0)∇; K1(p) := L−1∇ · A′ ∗ ∇p.

p̂ = K1(p); =⇒ Lp̂ = L(K1(p)) = ∇ · A′ ∗ ∇p. (52)
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Effective equations
——existence of short-time solution

Step 3. Replacing ∇ · A′ ∗ ∇p0,{
L(p0 + K1(p0)) = ∇ ·

[
A′ ∗ f + A(0)f

]
in Ω;

n⃗ · A(0)∇(p0 + K1(p0)) = n⃗ ·
[
A′ ∗ f + A(0)f

]
on ∂Ω.

(53)

This implies
p0 + K1(p0) = L−1∇ ·

[
A′ ∗ f + A(0)f

]
:= f̃ . (54)

Step 4. Reduce to a fix point problem: Let

T1(p) := f̃1 − K1(p) ∀p ∈ Lq(0,T1;Cm+1,α(Ω̄)), (55)

and verify that the map

T1 : Lq(0,T1;Cm+1,α(Ω̄)) → Lq(0,T1;Cm+1,α(Ω̄))

is a strict contraction.

Key ingredients:

∥K1(p)(·, t)∥C2,1/2(Ω̄) ≤ C1

∫ t

0
ds|A′(t − s)|∥p(·, s)∥C2,1/2(Ω̄). (56)

and
∥T1(p)∥Lq(0,T1;Cm+1,α(Ω̄))

≲ ∥A′∥L1(0,T1)

(
∥p∥Lq(0,T1;Cm+1,α(Ω̄)) + ∥f∥Lq(0,T1;Cm,α(Ω̄))

)
+ ∥f∥Lq(0,T1;Cm,α(Ω̄)).

(57)
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Effective equations
——extension of solution

Lemma 6 (inductions)
Let 0 < δ0 ≪ 1 be given as in Lemma 5. Let n ≥ 2 be an arbitrary fixed large integer,
and Tk = kδ0 with k = 1, · · · , n. Assume that there exists a unique solution
p0 ∈ Lq(0,Tn−1;Cm+1,α(Ω̄)) to the equations (6), satisfying

∥p0∥Lq(0,Tn−1;Cm+1,α(Ω̄)) ≤ Cn−1∥f∥Lq(0,Tn−1;Cm,α(Ω̄)). (58)

Then, there exists a unique extension of the solution p0 ∈ Lq(0,Tn;Cm+1,α(Ω̄)) to the
equations (6), and satisfies the estimate

∥p0∥Lq(0,Tn ;Cm+1,α(Ω̄)) ≤ Cn∥f∥Lq(0,Tn ;Cm,α(Ω̄)), (59)

where Cn is monotonically ascending w.r.t. n.

Remark: This leads to that the multiplicative constant in (48) will rely on a given finite
time
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Effective equations
——extension of solution

For any fixed n ≥ 2, and for any t ∈ [Tn−1,Tn], we start from considering
L
[
p0(·, t) + Kn(p0)(·, t)

]
= ∇ ·

[
A′ ∗ f + A(0)f −

∫ Tn−1

0
dsA′(t − s)∇p0(·, s)

]
in Ω;

∂

∂ν

[
p0(·, t) + Kn(p0)(·, t)

]
= n⃗ ·

{
A′ ∗ f + A(0)f −

∫ Tn−1

0
dsA′(t − s)∇p0(·, s)

}
on ∂Ω,

(60)
where the auxiliary function Kn(p0) is given by:

∇ ·
[
A(0)∇Kn(p0)(·, t)−

∫ t

Tn−1

dsA′(t − s)∇p0(·, s)
]
= 0 in Ω;

n⃗ ·
[
A(0)∇Kn(p0)(·, t)−

∫ t

Tn−1

dsA′(t − s)∇p0(·, s)
]
= 0 on ∂Ω;∫

Ω
Kn(p0)(·, t) = 0,

with∫ Tn

Tn−1

∥Kn(p0)(·, t)dt∥q
Cm+1,α(Ω̄)

≲
(∫ δ0

0
dt |A′(t)|

) q
q′ +1

∫ Tn

Tn−1

dt∥p0(·, t)∥
q
Cm+1,α(Ω̄)

.
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Part 5: Boundary-layer correctors
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Boundary-layer corrector I
——main results

Proposition 4 (Boundary-layer corrector I)
Let 0 < T <∞. Let J1 and J2 be given as in (63). Then, for a.e. t ≥ 0, there exists at
least one weak solution to

∇ · ξ(·, t) =
∂J2

∂t
+

∑
i

(−
∫

Oi
ε

∂J1

∂t
)1Oi

ε
, in Ωε;

ξ(·, t) = 0, on ∂Ωε,

(61)

where {Oi
ε} is a decomposition of Oε := supp(∇ψε). Also, we have

∥ξ∥L2(0,T ;L2(Ωε))
+ ε∥∇ξ∥L2(0,T ;L2(Ωε))

≲ ε1/2∥f∥L2(0,T ;C1,1/2(Ω̄)), (62)

in which the up to constant depends on d, T and the characters of Yf and Ω.

J1 := ∇ψε ·
[
(W ε − A) ∗ G

]
;

J2 := ∇ψε · (A ∗ G) + ε∇ψε ·
(
ϕε ∗2 ∂G

)
+ ψε

A
|Yf |

∗2 ∂G + εψεϕ
ε ∗3 ∂

2G.
(63)

Qiang Xu, Lanzhou University | Quantitative results



44

Boundary-layer corrector I
——outline of proofs

Theorem 7 (Bogovskii’s operator on perforated domains)

For any g ∈ L2(Ωε) with
∫
Ωε

g = 0, there exists vε ∈ H1
0 (Ωε)

d such that ∇ · vε = g in
Ωε, satisfying

∥vε∥L2(Ωε)
≤ Cε∥∇vε∥L2(Ωε)

≤ C∥g∥L2(Ωε)
, (64)

where the constant C is independent of ε and g.

By virtue of Theorem 7, the existence of the solution ξ to (61) is reduced to verify
compatibility condition, while the desired estimate (62) follows from the estimates on
the quantities(∫ T

0

∫
Ωε

∣∣∂J2

∂t

∣∣2)1/2
and

(∫ T

0

∫
Ωε

∣∣∣∑
i

(−
∫

Oi
ε

∂J1

∂t
)1Oi

ε

∣∣∣2)1/2
, (65)

which will be addressed, separately.
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Boundary-layer corrector I
——outline of proofs

1. Strong norm estimates:(∫ T

0

∫
Ωε

∣∣∂J2

∂t

∣∣2)1/2

≲ ε
1
2
(
∥∂tϕ∥L1(0,T ;L2(Y )) + ∥ϕ(0)∥L2(Yf )

)
∥(∇G, ε

1
2 ∇2G)∥L2(0,T ;L∞(Ω))

+
(
∥A′∥L1(0,T ) + |A(0)|

){
ε

1
2 ∥∇F∥L2(0,T ;C0(Ω̄)) + ∥∇(G − F )∥L2(0,T ;L2(suppψε))

}
,

(66)
whose multiplcative constant is independent of ε.

2. Weak norm estimates8:(∫ T

0

∫
Ωε

∣∣∣∑
i

(−
∫

Oi
ε

∂J1

∂t
)1Oi

ε

∣∣∣2)1/2

≲ε
1
2 ∥(G,∇G)∥L2(0,T ;L∞(supp(ψε)))

{
∥∂tΦ∥L1(0,T ;L∞(Y )) + ∥Φ(0)∥L∞(Y )

}
.

(67)

8This terminology was borrowed from Stochastic homogenization, which is not quite
appropriate here. However, we use this terminology to emphasize that the estimate
(67) relies on the periodic cancellations deeply.
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Boundary-layer corrector I
——outline of proofs

The key ideas are summarized as follows:
▶ By imposing radial cut-off function, together with the special structure

of the effective solution (6) on the boundary, i.e., n⃗ · u0 = 0 on ∂Ω, it is
possible to produce a desired smallness near the boundary, simply by
Poincaré’s inequality.

▶ By decomposing the boundary layer region, we can take full
advantage of the invariant properties of periodic functions w.r.t.
translation and rational rotation9, which consequently provides us with
more cancellations compared to dealing with the estimates on the
boundary layer region as a whole.

9From E. Schmutz’s work, it is known that each orthogonal matrix can be
approximated by a rotational matrix with finite denominator, which establishs a
theoretical base for dividing boundary layer regions.
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Boundary-layer corrector I
——outline of proofs

L :=

∫ T

0

∫
Ωε

∣∣∣∑
i

(−
∫

Oi
ε

∂J1

∂t
)1Oi

ε

∣∣∣2 ≤
∫ T

0

∫
Ωε

∣∣∣ N(ε)∑
i

(−
∫

Oi
ε

∂J1

∂t
)1Oi

ε
+

K0∑
j=1

(−
∫

Rj

∂J1

∂t
)1Rj

∣∣∣2,
(68)

Q1(t) :=
∫ t

0
ds∥∂tΦ(t − s)∥L∞(Y )∥∇G(s)∥L∞(supp(ψε)) + ∥Φ(0)∥L∞(Y )∥∇G(t)∥L∞(supp(ψε));

Q2(t) :=
∫ t

0
ds∥∂tΦ(t − s)∥L∞(Y )∥G(s)∥L∞(supp(ψε))(t) + ∥Φ(0)∥L∞(Y )∥G(t)∥L∞(supp(ψε)).

(69)
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Boundary-layer corrector I
——outline of proofs

Part 1. Show the estimates for the regular decomposition part, i.e.,∣∣∣∣−∫
Oi
ε

∂J1

∂t
(·, t)

∣∣∣∣ ≲ Q1(t) + Q2(t), (70)

and then we are also interested in the estimates on the irregular part:∣∣∣−∫
Rj

∂J1

∂t
(·, t)

∣∣∣ ≲ {
Q1(t), d = 2;

Q1(t) + ε−1Q2(t), d = 3.
(71)

where the up to constant is independent of i, j and t .

Part 2. Plugging (70) and (71) into the right-hand side of (68),

L ≤
∫ T

0
dt

∫
Ωε

1Oε

[
Q1(t) + Q2(t)

]2
+ (d − 2)

K0∑
j=1

ε−2
∫ T

0
dt

∫
Ωε

1Rj

[
Q2(t)

]2
.

By Fubini theorem, Young’s inequality and the facts |Oε| = O(ε),

L ≲ |Oε|
∫ T

0
dt
[
Q1(t) + Q2(t)

]2
+ (d − 2)εd−2

∫ T

0
dt
[
Q2(t)

]2

≲ ε

{
∥∂tΦ∥2

L1(0,T ;L∞(Y ))
∥∇G∥2

L2(0,T ;L∞(supp(ψε)))
+ ∥Φ(0)∥2

L∞(Y )∥∇G∥2
L2(0,T ;L∞(supp(ψε)))

}
+ ε

{
∥∂tΦ∥2

L1(0,T ;L∞(Y ))
∥G∥2

L2(0,T ;L∞(supp(ψε)))
+ ∥Φ(0)∥2

L∞(Y )∥G∥2
L2(0,T ;L∞(supp(ψε)))

}
.
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Boundary-layer corrector I
——the estimate (70)

Part 1-a. On account of the antisymmetric property of flux corrector Φ, integrating by
parts we obtain that∫

Oi
ε

∂J1

∂t
(·, t) =

∫
Oi
ε

∂

∂t
[(W ε − A) ∗ G](·, t) · ∇ψε =

∫
Oi
ε

∂

∂t

[
(∇ · Φ)ε ∗ G

]
(·, t) · ∇ψε

(29)
= −ε

∫
Oi
ε

∂

∂t

[
Φε ∗2 ∂G

]
(·, t) · ∇ψε + ε

∫
∂Oi

ε

dS
∂

∂t

[
Φε ∗3 (G ⊗∇ψε ⊗ n⃗s)

]
(·, t)

: = E1(t) + E2(t),
(72)

in which n⃗s is the unit outward normal vector of the boundary ∂Oi
ε.

The term E1 is easy, and a direct computation leads to

|E1(t)| ≲
∫

Oi
ε

∣∣∣∣ ∂∂t
[Φε ∗2 ∂G](·, t)

∣∣∣∣ = ∫
Oi
ε

∣∣∣∣(∂tΦ
ε ∗2 ∂G)(·, t) + Φε(·, 0) : ∂G(·, t)

∣∣∣∣
≤

∫
Oi
ε

∣∣∂tΦ
ε ∗2 ∂G

∣∣(·, t) + |Oi
ε|∥Φ(0)∥L∞(Y )∥∇G(t)∥L∞(Oε).

This finally gives us

|E1(t)| ≲ |Oi
ε|
{
∥∂tΦ∥L∞(Y ) ∗2 ∥∂G∥L∞(Oε)(t)+ ∥Φ(0)∥L∞(Y )∥∇G(t)∥L∞(Oε)

}
. (73)
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Boundary-layer corrector I
——the estimate (70)

Part 1-b. Estimate the second term E2 in (72), which involves more geometrical details
on ∂Oi

ε. It concludes that ∇ψε(x) = 0 on ∂Oi
ε ∩ ∂Oε. Thus, to complete the estimate

of E2, it suffices to focus on the case ∂Oi
ε ∩ Oε, which actually appear in pairs

∂Oi
ε ∩ Oε =

d−1⋃
m=1

{
(∂Oi

ε)
L
m ∪ (∂Oi

ε)
R
m
}
,

where
{
(∂Oi

ε)
L
m ∪ (∂Oi

ε)
R
m
}

is known as one pair of the lateral boundaries.
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Boundary-layer corrector I
——the estimate (70)

Continued with Part 1-b.

▶ After a εz-translation or a rational rotation for (∂Oi
ε)

R
m, where z ∈ Zd and |z| = 1,

its most part can overlap with (∂Oi
ε)

L
m.

▶ In this regard, we denote this transformation by T, and ΓR
m := (∂Oi

ε)
R
m(T·). Thus,

which allow us to have[
(∂Oi

ε)
L
m ∪ ΓR

m
]
=

[
(∂Oi

ε)
L
m ∩ ΓR

m
]︸ ︷︷ ︸

intersection part

⋃[
(∂Oi

ε)
L
m △ ΓR

m
]︸ ︷︷ ︸

difference part

. (74)

▶ For the ease of the statement, it is fine to assume (∂Oi
ε)

L
m ⊂ ΓR

m in later
computations. On account of the smoothness of ∂Ω, we have the estimate of the
difference part10: ∣∣(∂Oi

ε)
L
m △ ΓR

m
∣∣ ≲ εd . (75)

10It is reduced to study the variance in derivatives of boundary functions along one
direction. Since the scale of decomposed cubes is ε, the variance would be O(ε2). The
desired estimate follows from “the variance” × O(εd−2).
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Boundary-layer corrector I
——the estimate (70)

Continued with Part 1-b.
1. By virtue of the notation defined above, we can rewrite E2 as

E2(t) = ε

d−1∑
m=1

{∫
(∂Oi

ε)
L
m

+

∫
(∂Oi

ε)
R
m

}
dS

∂

∂t

[
Φε∗3(G⊗∇ψε⊗n⃗s)

]
(·, t) := ε

d−1∑
m=1

Em
2 (t),

2. For any fixed i and m, denoted εz-translation or rational rotation transformation
by Ti

m, it follows from the equality (74) together with the notation therein that

ΓR
m = (∂Oi

ε)
L
m

⋃[
(ΓR

m \ (∂Oi
ε)

L
m
]
. (76)

3. Important facts:

▶ According to the periodicity of flux corrector,

Φε = Φε((Ti
m)

−1·). (77)

▶ the unit outward normal vector n⃗s of ∂O i
ε takes the opposite

direction on (∂O i
ε)

L
m and (∂O i

ε)
R
m.
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Boundary-layer corrector I
——the estimate (70)

Continued with Part 1-b.

Em
2 (t) =

∫
(∂Oi

ε)
L
m

dS
∂

∂t

{
Φε ∗3

[(
G − G((Ti

m)−1·)
)
⊗∇ψε ⊗ n⃗s

]
(·, t)

}
+

∫
(∂Oi

ε)
L
m

dS
∂

∂t

{
Φε ∗3

[
G((Ti

m)−1·)⊗
(
∇ψε −∇ψε((Ti

m)−1·)
)
⊗ n⃗s

]
(·, t)

}
−

∫
ΓR

m\(∂Oi
ε)

L
m

dS
∂

∂t

{
Φε ∗3

[
G ⊗∇ψε ⊗ n⃗s

]
((Ti

m)−1·, t)
}

:= Em
2,1(t) + Em

2,2(t) + Em
2,3(t).

(78)

Arguments for Em
2,2(t). Since the translation or rotation transformation preserves the

distance, we have

dist(·, ∂Ω) = dist((Ti
m)−1·, ∂Ω) on (∂Oi

ε)
L
m.

This leads to
∇ψε −∇ψε((Ti

m)−1·) = 0 on (∂Oi
ε)

L
m, (79)

whereupon the second term Em
2,2 vanishes.
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Boundary-layer corrector I
——the estimate (70)

Continued with Part 1-b.

Arguments for Em
2,3(t). In view of (75), i.e.,∣∣ΓR

m \ (∂Oi
ε)

L
m
∣∣ ≲ εd ,

as well as, Fubini’s theorem, we simply obtain that

|Em
2,3(t)| ≲ |Oi

ε|Q2(t). (80)

Arguments for Em
2,1(t). From the differential mean value theorem, it follows that

sup
x∈Oε

|G(x , t)− G((Ti
m)−1x , t)| ≲ ε∥∇G(t)∥L∞(Oε).

This estimate coupled with Fubini’s theorem leads to

|Em
2,1(t)| ≲ ε|(∂Oi

ε)
L
m|Q1(t) ≲ |Oi

ε|Q1(t).

As a result,
|Em

2 (t)| ≤ |Em
2,1(t)|+ |Em

2,3(t)| ≲ |Oi
ε|
{

Q1(t) + Q2(t)
}
. (81)

By noting the relationship E2(t) := ε
∑d−1

m=1 Em
2 (t), we finally obtain

|E2(t)|
(81)
≲ |Oi

ε|
{

Q1(t) + Q2(t)
}
,
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Boundary-layer corrector I
——the estimate (71)

Part 1-c. The irregular part:∣∣∣−∫
Rj

∂J1

∂t
(·, t)

∣∣∣ ≲ {
Q1(t), d = 2;

Q1(t) + ε−1Q2(t), d = 3.

Using the same idea as given for (72) in Part 1-a, we have∫
Rj

∂J1

∂t
(·, t) (29)

= −ε
∫

Rj

∂

∂t

[
Φε ∗2 ∂G

]
(·, t) · ∇ψε

+ ε

∫
∂Rj

dS
∂

∂t

[
Φε ∗3 (G ⊗∇ψε ⊗ n⃗s)

]
(·, t) := E3(t) + E4(t),

(82)

We can deal with the term E3 as we did for E1 in (73) in Part 1-b,

|E3(t)| ≲ |Rj |Q1(t). (83)

The main difference between the terms E4 and E2 is that the geometry of Rj is not as
the same as that of Oi

ε. The main challenge is that we have to find a “smallness” in the
same level but from the different geometry facts. The ideas are following: (I) using
dimensional condition to increase a “smallness” for the case d = 3; (II) employing the
invariant property of flux corrector in terms of rotation (requiring all its components to
be rational number) for the case d = 2.
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Boundary-layer corrector II
——main results

Proposition 5 (Boundary-layer corrector II)
Let J1 be given as in (63). Then, for a.e. t ≥ 0, there exists at least one weak solution
to 

∇ · η(·, t) =
∂J1

∂t
−

∑
i

(−
∫

Oi
ε

∂J1

∂t
)1Oi

ε
, in Oε;

η(·, t) = 0, on ∂Oε,

(84)

satisfying the following estimate

∥η∥L2(0,T ;L2(Ωε))
+ ε∥∇η∥L2(0,T ;L2(Ωε))

≲ ε1/2∥f∥L2(0,T ;C1,1/2(Ω̄)), (85)

where the up to constant depends on d, T and the characters of Yf and Ω.
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Boundary-layer corrector II
——construction

For each Oi
ε, we can get a ηi which satisfies the following equation:

∇ · ηi =
∂J1

∂t
− (−

∫
Oi
ε

∂J1

∂t
)1Oi

ε
, in Oi

ε;

ηi = 0, on ∂Oi
ε,

(86)

Moreover, we have the following estimate

∥∇ηi∥L2(Oi
ε)

≤ C∥
∂J1

∂t
− (−

∫
Oi
ε

∂J1

∂t
)1Oi

ε
∥L2(Oi

ε)
≤ C∥∂t J1∥L2(Oi

ε)
, (87)

where the constant C does not depend on ε and i .
Let

η :=
∑

i

ηi ,

and it is not hard to observe that for a.e. t ≥ 0,

∥∇η(t)∥2
L2(Oε)

=
∑

i

∥∇ηi (t)∥2
L2(Oi

ε)
.

This together with (87) leads to

∥∇η(t)∥2
L2(Oε)

≲ ∥∂t J1(t)∥2
L2(Oε)

. (88)
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Boundary-layer corrector II
——the estimate (88)

∫ T

0

∫
Oε

∣∣∂J1

∂t

∣∣2 ≲ ε−2
∫ T

0

∫
Oε

∣∣ ∂
∂t

[(W ε − A) ∗ G]
∣∣2

≲ ε−2
(
∥∂t W ε − A′∥2

L1(0,T ;L2(Oε))
+ ∥W ε(0)− A(0)∥2

L2(Oε)

)
∥G∥2

L2(0,T ;L∞(Oε))
.

(89)

By a rescaling argument used for ∂t W ε and using its periodicity, we note that

∥∂t W ε − A′∥L1(0,T ;L2(Oε))
=

∫ T

0
dt
(∫

Oε

dx |∂t W (x/ε, t)− A′(t)|2
)1/2

≲ ε1/2
∫ T

0
dt |A′(t)|+

∫ T

0
dt
(∫

Oε

dx |∂t W (x/ε, t)|2
)1/2

= ε1/2
{
∥A′∥L1(0,T ) + ∥∂t W∥L1(0,T ;L2(Yf ))

}
;

By the same token, we have

∥W ε(0)− A(0)∥L2(Oε)
≲ ε1/2.

Inserting the above two estimates back into (89), and then together with (88), there
holds

ε2
∫ T

0

∫
Oε

|∇η|2 ≲ ε
{
∥A′∥L1(0,T ) + ∥∂t W∥L1(0,T ;L2(Yf ))

+ 1
}2

∥G∥2
L2(0,T ;L∞(Oε))

.
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