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Motivation: Weak Solutions to the Euler equations

The incompressible Euler equations for a homogeneous fluid:

∂tv
` +∇j(vjv`) +∇`p = 0 (1)

∇jvj = 0 (2)

make sense in integral form for continuous (v, p):

d

dt

∫
Ω
v`(t, x)dx =

∫
∂Ω
p(t, x)n`dσ +

∫
∂Ω
v`(t, x)(v · n)dσ (3)

∫
∂Ω

(v · n)(t, x)dσ(x) = 0 (4)

for all Ω with smooth boundary ∂Ω and interior unit normal n`.
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Motivation: Sufficiently smooth solutions conserve energy

Take the dot product of the Euler equations with v`

v`∂tv
` + v`∇j(vjv`) + v`∇`p = 0

∇jvj = 0

Then local conservation of energy holds:

∂t

(
|v|2

2

)
+∇j

((
|v|2

2
+ p

)
vj
)

= 0

And integration yields conservation of total kinetic energy:

d

dt

∫
Rn

|v|2

2
(t, x)dx = −

∫
Rn

div

[
(
|v|2

2
+ p)v

]
dx = 0
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Motivation: Onsager’s Conjecture (1949)

1. Solutions (v, p) to Euler on T3 obeying a Hölder estimate

∂tv
` +∇j(vjv`) +∇`p = 0 (5)

∇jvj = 0

|v(t, x+ ∆x)− v(t, x)| ≤ C|∆x|α (6)

for some α > 1/3 must conserve energy.

2. If the α in (6) is less than 1/3, then v may fail to conserve
energy

In fact, Onsager’s argument leads to an even stronger conjecture
on the existence of dissipative Euler flows.
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Conjecture (Strong Onsager Conjecture)

There is a solution to the incompressible Euler equations of class

v ∈ L∞t C
1/3
x (I × T3) that satisfies the local energy inequality

∂t

(
|v|2

2

)
+∇j

[(
|v|2

2
+ p

)
vj
]
≤ 0

and does not conserve energy.

Interpretation: A physically admissible solution to Euler is
everywhere prohibited from creating new energy.

More precisely, any vector field that arises as a zero viscosity limit
of Navier-Stokes solutions (in L3

loc) must solve Euler and satisfy
the local energy inequality.
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Motivation: Hydrodynamic turbulence

Kolmogorov (1941): As ν → 0 for solutions to 3D Navier-Stokes:{
∂tv

` +∇j(vjv`) +∇`p = ν∆v`

∇jvj = 0
(7)

the energy dissipation rate remains strictly positive as ν → 0

ε = lim
ν→0

〈
− d

dt

∫
|vν |2

2
(t, x)dx

〉
> 0.

The velocity fluctuations on average obey a scaling law

〈|v(x+ ∆x)− v(x)|p〉1/p ∼ ε1/3|∆x|1/3

for |∆x| ≥
(
ν3/ε

)1/4
Onsager considered the case ν = 0; argued that “frequency
cascades” may lead to dissipation in the absence of viscosity.
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Onsager and Ideal Turbulence

Onsager considered the Euler equations in Fourier series form (which
converges for v ∈ L2)

v(x, t) =
∑
k

ak(t)e
ik·x

dak
dt

= i
∑
m

ak−m · k
[
−am +

(am · k)k

|k|2

]
He argued that energy can “cascade” from low wavenumbers to high
wavenumbers, and the cascade can happen so rapidly that part of
the energy

∑
k |ak|2 escapes to infinite frequency (i.e. vanishes to

small spatial scales) in finite time.

However, only low regularity solutions could behave this way, and
he stated that solutions in Cα with α > 1/3 must conserve energy.
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He argued that energy can “cascade” from low wavenumbers to high
wavenumbers, and the cascade can happen so rapidly that part of
the energy

∑
k |ak|2 escapes to infinite frequency (i.e. vanishes to

small spatial scales) in finite time.

By a statistical physics argument, a “typical” turbulent flow should
have:

∑
λ
2
≤|k|≤2λ |ak|

2 ∼ λ−2/3 (hence regularity exactly 1/3).



Motivation: Onsager’s Conjecture (1949)

1. Solutions (v, p) to Euler on T3 obeying a Hölder estimate

∂tv
` +∇j(vjv`) +∇`p = 0 (8)

∇jvj = 0

|v(t, x+ ∆x)− v(t, x)| ≤ C|∆x|α (9)

for some α > 1/3 must conserve energy.

2. If the α in (9) is less than 1/3, then v may fail to conserve
energy

Part 1 is known: (Eyink, ’94), (Constantin-E-Titi, ’94)
Refinements: (Duchon-Robert ’00), (Cheskidov-Constantin-

Shvydkoy-Friedlander ’08): v ∈ L3
tB

1/3
3,c(N), but not L∞t C

1/3
x .
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3. Energy-dissipating solutions to Euler with Onsager critical
regularity arise in the 0 viscosity limit of Navier-Stokes

The last part implies the Strong Onsager Conjecture by
compactness.
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K41 Folklore Conjecture for Navier-Stokes

Conjecture (K41 Folklore Conjecture for N-S)

There is a sequence vνj of (regular) solutions to the incompressible
Navier-Stokes equations on I × T3, I a finite interval, with νj → 0
such that

I Scaling law: The norms ‖vνj‖L∞t C1/3
x

are uniformly bounded

I Zeroth law: The sequence exhibits mean rate of energy
dissipation independent of viscosity in the sense that

lim sup
j→∞

1

|I|

∫
I

[
− d

dt

∫
T3

|vνj |2

2
(t, x)dx

]
dt ≥ ε > 0 (12)

for some ε > 0.

Note: The initial data are not fixed; the solutions and initial data
are smooth, but become increasingly singular as νj → 0.
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Zero viscosity limits dissipate energy locally

Proposition

If v is a strong limit vνj → v in L3 of a sequence of classical
Navier-Stokes solutions with νj → 0, then v is a weak solution to
incompressible Euler that satisfies the local energy inequality

∂t

(
|v|2

2

)
+∇j

[(
|v|2

2
+ p

)
vj
]
≤ 0

Proof: If vν is a classical solution to Navier-Stokes, then the local
energy equality holds

∂t

(
|vν |2

2

)
+∇j

[(
|vν |2

2
+ pν

)
vjν

]
− ν∆

|vν |2

2
= −ν|∇vν |2
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K41 Folklore Conjecture in the inviscid limit

Conjecture (Strong Onsager Conjecture)

There is a weak solution v to the incompressible Euler equations of

class v ∈ L∞t C
1/3
x (I × T3) that satisfies the local energy inequality

∂t

(
|v|2

2

)
+∇j

[(
|v|2

2
+ p

)
vj
]
≤ 0

and does not conserve energy.
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“Proof” using the K41 Folklore Conjecture: The Scaling Law
bounds ‖v‖

L∞t C
1/3
x

, which guarantees uniformly convergent subse-

quences by the Aubin-Lions-Simon Lemma.
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Already difficult question: Are there even incompressible Euler
flows that fail to conserve total kinetic energy?



Weak solutions that fail to conserve energy

I Weak solutions in L2
t,x(R× R2) with compact support in

space and time (Scheffer, ’93)

I Weak solutions in L2
t,x(R× T2) (Shnirelman, ’97)

I Dissipative solutions in L∞t L
2
x(R× T3) (Shnirelman, ’00 )

I Solutions in L∞t,x ∩ CtL2
x with given local energy dissipation

∂t

(
|v|2

2

)
+∇j

((
|v|2

2
+ p

)
vj
)

=
d

dt
e(t)

(De Lellis, Székelyhidi, ’07)
Solutions are nowhere continuous and the argument faces a
major difficulty towards obtaining continuous solutions.
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(De Lellis, Székelyhidi, ’07)
Solutions are nowhere continuous and the argument faces a
major difficulty towards obtaining continuous solutions.



Weak solutions that fail to conserve energy

I Weak solutions in L2
t,x(R× R2) with compact support in

space and time (Scheffer, ’93)

I Weak solutions in L2
t,x(R× T2) (Shnirelman, ’97)

I Dissipative solutions in L∞t L
2
x(R× T3) (Shnirelman, ’00 )

I Solutions in L∞t,x ∩ CtL2
x with given local energy dissipation

∂t

(
|v|2

2

)
+∇j

((
|v|2

2
+ p

)
vj
)

=
d

dt
e(t)

(De Lellis, Székelyhidi, ’07)
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Cα weak solutions with given total kinetic energy

I Solutions in Cαt,x for α < 1/10 with any prescribed smooth

total kinetic energy 1
2

∫
T3 |v|2(t, x)dx = e(t)

(De Lellis, Székelyhidi ’12)

I In Cαt,x for α < 1/5 with compact support (I. ’12) and
prescribed, smooth total kinetic energy e(t)
(Buckmaster, De Lellis, Székelyhidi, ’13)

I In L1
tC

1/3−ε
x with compact support (Buck., DeL, Szé, ’14)

I In Cαt,x for α < 1/3 with compact support (I. ’16)
and with prescribed, smooth total kinetic energy e(t)
(Buckmaster, De Lellis, Székelyhidi, Vicol ’17)

I Solutions with compact support and

|v(t, x+ ∆x)− v(t, x)| . |∆x|
1
3
−( 4

3)
+
√

log log |∆x|−1

log |∆x|−1
(I., ’17)

I Solutions in CtH
1/2− (Buck., Masmoudi, Novack, Vicol)

CtH
1/2− ∩ L∞− ⊆ L∞t B

1/3−
3,∞ (Novack, Vicol)
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I Solutions with compact support and

|v(t, x+ ∆x)− v(t, x)| . |∆x|
1
3
−( 4

3)
+
√

log log |∆x|−1

log |∆x|−1
(I., ’17)

I Solutions in CtH
1/2− (Buck., Masmoudi, Novack, Vicol)

CtH
1/2− ∩ L∞− ⊆ L∞t B

1/3−
3,∞ (Novack, Vicol)



Cα weak solutions with given total kinetic energy

I Solutions in Cαt,x for α < 1/10 with any prescribed smooth

total kinetic energy 1
2

∫
T3 |v|2(t, x)dx = e(t)

(De Lellis, Székelyhidi ’12)
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Significance: Confirmation of energy cascades

Onsager considered the Euler equations in Fourier series form

v(x, t) =
∑
k

ak(t)e
ik·x

dak
dt

= i
∑
m

ak−m · k
[
−am +

(am · k)k

|k|2

]
He argued that energy can “cascade” from low wavenumbers to
high wavenumbers, and the cascade can happen so rapidly that
part of the energy

∑
k |ak|2 escapes to infinite frequency (i.e.

vanishes to small spatial scales) in finite time.

By a statistical physics argument, a “typical” turbulent flow should
have:

∑
λ
2
≤|k|≤2λ |ak|

2 ∼ λ−2/3 (hence regularity exactly 1/3).



Open Problem: Strong Onsager conjecture

Conjecture (Strong Onsager Conjecture)

There is a weak solution v to the incompressible Euler equations of

class v ∈ L∞t C
1/3
x (I × T3) that satisfies the local energy inequality

∂t

(
|v|2

2

)
+∇j

[(
|v|2

2
+ p

)
vj
]
≤ 0

and does not conserve energy.

Note: Requiring local energy dissipation is much stronger than
requiring dissipation of total kinetic energy. (Consider Burgers.)
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Solutions in L∞t,x that exhibit local energy dissipation

Theorem (De Lellis, Székelyhidi, 07)

For any smooth e(t) > 0 there exist (nowhere continuous) weak
solutions solutions (v, p) of class v ∈ L∞t,x ∩ CtL2

x such that

∂t

(
|v|2

2

)
+∇j

((
|v|2

2
+ p

)
vj
)

= ∂te(t)

Moreover, one can choose a family of such solutions emanating
from the same initial datum that form a Baire generic subset of a
complete, separable metric space.



Solutions in L∞t,x that exhibit local energy dissipation

Theorem (De Lellis, Székelyhidi, 07)
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Theorem: First result on the Strong Onsager Conjecture

Theorem (I. ’17)

For any α < 1/15 and d ≥ 3 there exist solutions of class
v ∈ Cαt,x(R× Td) that satisfy the local energy inequality

D[v, p] := ∂t

(
|v|2

2

)
+∇j

((
|v|2

2
+ p

)
vj
)
≤ 0

with strict inequality everywhere.

Moreover, one can choose a Cantor family of solutions with positive
Hausdorff dimension in CtL

2
x that emanate from the same initial

datum and share the same energy dissipation measure D[v, p].

The dissipation measure in this latter remark can be chosen to be
D[v, p] = 0, meaning that the family of nonunique solutions all
satisfy local conservation of energy.
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Theorem: Improvement on the Strong Onsager Conjecture

Theorem (De Lellis, Kwon ’20)

For any α < 1/7 and d ≥ 3 there exist solutions of class
v ∈ Cαt,x(I × Td) that satisfy the local energy inequality

D[v, p] := ∂t

(
|v|2

2

)
+∇j

((
|v|2

2
+ p

)
vj
)
≤ 0

with strict inequality everywhere.

Extension to isentropic compressible Euler [Giri, Kwon, ’21]
Idea: Discretize the “Mikado flows” of [Daneri, Székelyhidi, ’16]
Open problem: Improve the regularity to 1/3.
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Outline

I General idea of convex integration
I Euler-Reynolds flows
I “One-dimensional” waves
I Microlocal Lemma
I Main error terms

I Local energy dissipation ideas
I Dissipative Euler-Reynolds flows
I Arrow of time in the construction
I Trilinear energy cascades (resembles Kraichnan’s LDIA theory)



Continuous Solutions: The Euler-Reynolds Equations

(De Lellis, Székelyhidi): Consider the Euler-Reynolds equations

∂tv
` +∇j(vjv`) +∇`p = ∇jRj` (ER)

∇jvj = 0



Continuous Solutions: The Euler-Reynolds Equations

(De Lellis, Székelyhidi): Consider the Euler-Reynolds equations

∂tv
` +∇j(vjv`) +∇`p = ∇jRj` (ER)

∇jvj = 0

The symmetric tensor Rj` measures the error from solving Euler.



Continuous Solutions: The Euler-Reynolds Equations

(De Lellis, Székelyhidi): Consider the Euler-Reynolds equations

∂tv
` +∇j(vjv`) +∇`p = ∇jRj` (ER)

∇jvj = 0

The symmetric tensor Rj` measures the error from solving Euler.
Examples: If (v, p) solves the Euler equations then

I (vε, pε, R
j`
ε ), Rj`ε = vjεv`ε − (vjv`)ε, v

`
ε = ηε ∗ v`

I Corollary: Every continuous incompressible Euler flow (v, p)
is the uniform limit of a sequence of C∞ Euler-Reynolds flows
(vq, pq, Rq) with ‖Rq‖C0 → 0 as q →∞



Continuous Solutions: The Euler-Reynolds Equations

(De Lellis, Székelyhidi): Consider the Euler-Reynolds equations

∂tv
` +∇j(vjv`) +∇`p = ∇jRj` (ER)

∇jvj = 0

The symmetric tensor Rj` measures the error from solving Euler.
Examples:

I Any v` that is incompressible and conveserves momentum

∂tv
` +∇j(vjv`) = U `∫
T3

U `(t, x)dx = 0

∇jRj` = U `



Continuous Solutions: Convex Integration for Euler

We construct a sequence (vq, pq, Rq) indexed by q solving

∂tv
`
q +∇j(vjqv`q) +∇`pq = ∇jRj`q (ERq)

∇jvjq = 0

where vq+1 = vq + Vq, pq+1 = pq + Pq solve (ERq+1) with

much smaller |Rq+1| � |Rq|

In the limit as q →∞, we get continuous solutions

‖Rq‖C0 → 0, |Vq| ∼ |Rq|1/2, |Pq| ∼ |Rq|
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Continuous Solutions: Convex Integration for Euler

Start with any smooth solution to Euler-Reynolds on R× T3

∂tv
` +∇j(vjv`) +∇`p = ∇jRj`

∇jvj = 0

and add high-frequency corrections

∗
v = v + V,

∗
p = p+ P,

that are designed to “get rid of” Rj`.



Continuous Solutions: Convex Integration for Euler

Get new solutions
∗
v = v + V ,

∗
p = p+ P to Euler-Reynolds

∂t
∗
v` +∇j(

∗
vj
∗
v`) +∇` ∗p = ∇j

∗
Rj`

∇j
∗
vj = 0

with ||
∗
R||C0

t,x
much smaller than ||R||C0

t,x
.

The new error ‖
∗
R‖C0 will only be small when V and P are very

oscillatory and are designed carefully depending on the given v`

and Rj`.
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The Error terms

Let (v, p,R) be a smooth solution to Euler-Reynolds.

∂tv
` +∇j(vjv`) +∇`p = ∇jRj`

Then
∗
v = v + V and

∗
p = p+ P satisfy

∂t
∗
v` +∇j(

∗
vj
∗
v`) +∇` ∗p = ∂tV

` +∇j(vjV `) +∇j(V jv`)

+∇j(V jV ` + Pδj` +Rj`)

want = ∇j
∗
Rj`

with ‖
∗
R‖C0 . λ−1

where V ` oscillates at large frequency λ.



The Error terms

We name the terms as follows:
∗
Rj` = Rj`T +Rj`S +Rj`H

Transport term:

∇jRj`T = ∂tV
` +∇j(vjV `) +∇j(V jv`)

Stress term:

∇jRj`S = LFreq[∇j(V jV ` + Pδj` +Rj`)]

High-Frequency Interference terms:

∇jRj`H = HFreq[∇j(V jV ` + Pδj`)]

Each one of RT , RS and RH must be ‖
∗
R‖C0 . λ−1.



The Error terms

We name the terms as follows:
∗
Rj` = Rj`T +Rj`S +Rj`H +Rj`M

Transport term:

∇jRj`T = ∂tV
` +∇j(vjεV `) +∇j(V jv`ε)

Stress term:

∇jRj`S = LFreq[∇j(V jV ` + Pδj` +Rj`ε )]

High-Frequency Interference terms:

∇jRj`H = HFreq[∇j(V jV ` + Pδj`)]

Each one of RT , RS , RM and RH must be ‖
∗
R‖C0 . λ−1.

(There is also another term involving errors from mollifying v 7→ vε
and R 7→ Rε that we are neglecting here.)



The High-Frequency Correction

The correction V ` is a high-frequency, divergence free wave.
For example, in (I. Vicol, ’13), it has the form

V ` =
∑
I

(eiλξIv`I + δV `
I ) =

∑
I

V `
I

∇`V ` = 0 (by choice of small δV `
I )

(∂t + vjε∇j)ξI = 0 (⇒ nonlinear phase functions)

∇ξI · vI = 0 (required for ∇`V `
I = 0)

More precisely, VI = PI [eiλξIvI ] where PI is a Leray projection
localized at frequency of order λ, and vI includes a cutoff in time
to keep ∇ξI within O( 1

10) of its initial datum.
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Microlocal Lemma

Lemma (Microlocal Lemma)

If U `I = eiλξIv`I , and for k = 0, 1, 2, ‖|h|kK(h)‖L1(Rd) . λ−k, then

for V `
I =

∫
Rd U

`
I (x− h)K(h)dh we have an expansion

V `
I = eiλξI

(
K̂(λ∇ξI(x))v`I(x) + δv`I

)
where δv`I ≈

∇v`I
λ + ∇2ξIvI

λ . (Special case: K̂(λ∇ξI) = π⊥〈∇ξI〉.)

Proof: Write e−iλξIV ` =
∫
Rd e

−iλξI(x)U `(x− h)K(h)dh

e−iλξIV ` =

∫
Rd
eiλ(ξI(x−h)−ξI(x))u`I(x− h)K(h)dh

≈
∫
Rd
e−iλ∇ξI(x)·hu`I(x)K(h)dh

e−iλξIV ` = K̂(λ∇ξI(x))u`I(x) + δu`I(x)
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Recalling the Error terms again

Each one of RT , RS and RH must have size ‖
∗
R‖C0 . λ−1, and

requires solving a divergence equation:

Transport term:

∇jRj`T = ∂tV
` +∇j(vjεV `) +∇j(V jv`ε)

Stress term:

∇jRj`S = LFreq[∇j(V jV ` + Pδj` +Rj`ε )]

High-Frequency Interference terms:

∇jRj`H = HFreq[∇j(V jV ` + Pδj`)]
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The Main Error Terms

With this Ansatz the Transport term is under control:
Letting Dt := (∂t + vjε∇j) be the “advective derivative” we have

∂tV
` +∇j(vjεV `) +∇j(V jv`ε) = (∂t + vjε∇j)V ` + V j∇jv`ε
≈
∑
I

Dt[v
`
Ie
iλξI ] + eiλξIvjI∇jv

`
ε

∇jRj`T =
∑
I

(Dt[v
`
I ] + vjI∇jv

`
ε)︸ ︷︷ ︸

low

eiλξI︸︷︷︸
high

Applying div−1 yields ‖RT ‖0 . λ−1 and Freq(RT ) ≈ λ.



The Main Error Terms

With this Ansatz the Transport term is under control:
Letting Dt := (∂t + vjε∇j) be the “advective derivative” we have

∂tV
` +∇j(vjεV `) +∇j(V jv`ε) = (∂t + vjε∇j)V ` + V j∇jv`ε
≈
∑
I

Dt[v
`
Ie
iλξI ] + eiλξIvjI∇jv

`
ε

∇jRj`T =
∑
I

(Dt[v
`
I ] + vjI∇jv

`
ε)︸ ︷︷ ︸

low

eiλξI︸︷︷︸
high

+ · · ·

(Used ∇jV j = 0.)



The Main Error Terms

The Stress term should ideally be controlled as follows:

LFreq[∇j(V jV ` + Pδj` +Rj`ε )]

= LFreq
[
∇j
(∑
I,J

V j
I V

`
J + Pδj` +Rj`ε

)]
= LFreq

[
∇j
(∑

I

V j
I V

`
I + Pδj` +Rj`ε

)]
:= ∇j

[∑
I

vjIv
`
I + P (t, x)δj` +Rj`ε

]
= ∇j [0] = 0

Here we solve for the vjI at each point subject only to the

constraint that vI · ∇ξI = 0 and ‖∇ξI −∇ξ̂I‖0 ≤ 1/10.



The Main Error Terms

The remaining High-Frequency Interference term has the form

HFreq[∇j(V jV `)] = ∇j

∑
J 6=Ī

V j
I V

`
J


≈ ∇j

∑
J 6=Ī

eiλ(ξI+ξJ )vjIv
`
J


∇jRj`H = λ

∑
J 6=Ī

eiλ(ξI+ξJ )i(∇jξI +∇jξJ)vjIv
`
J + OK

OK if vI · ∇ξJ = 0. So we require that all phase functions align
∇ξI ≈ nIe1 for all I.
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The Main Error Terms

The Stress term still has two “components” remaining:

LFreq[∇j(V jV ` + Pδj` +Rj`ε )]

= LFreq
[
∇j
(∑
I,J

V j
I V

`
J + Pδj` +Rj`ε

)]
= LFreq

[
∇j
(∑

I

V j
I V

`
I + Pδj` +Rj`ε

)]
:= ∇j

[∑
I

vjIv
`
I + P (t, x)δj` +Rj`ε

]
= ∇j [Pδj`[2] +Rj`[2] +Rj`[3]] 6= 0

where δ[k], R[k](t, x) ∈ 〈ek〉⊥ ⊗ 〈ek〉⊥ for k = 2, 3



Theorem: First result on the Strong Onsager Conjecture

Theorem (I. ’17)

For any α < 1/15 and d ≥ 3 there exist solutions of class
v ∈ Cαt,x(R× Td) that satisfy the local energy inequality

D[v, p] := ∂t

(
|v|2

2

)
+∇j

((
|v|2

2
+ p

)
vj
)
≤ 0

with strict inequality everywhere.



Dissipative Euler Reynolds flow

Idea: Relax the local energy inequality

∂tv
` +∇j(vjv`) +∇`p = ∇jRj`

∇jvj = 0

D[v, p] := ∂t

(
|v|2

2

)
+∇j

((
|v|2

2
+ p

)
vj
)

︸ ︷︷ ︸
Approximate dissipation

≤ f

Design a scheme such that both R and f tend to zero.

(Not actually going to work.)



Dissipative Euler Reynolds flow

Definition
A dissipative Euler-Reynolds flow is a tuple (v, p,R, κ, ϕ, µ)

∂tv
` +∇j(vjv`) +∇`p = ∇jRj`, ∇jvj = 0

∂t

(
|v|2

2

)
+∇j

((
|v|2

2
+ p

)
vj
)
≤ Dtκ+∇j [v`Rj`] +∇jϕj

I Unresolved flux density: κ,

I Unresolved flux current: ϕj

I Dissipation measure: µ ≥ 0

µ = −D[v, p] +Dtκ+∇j [v`Rj`] +∇jϕj



Plan of attack

Plan:
Given a dissipative Euler-Reynolds flow (v, p,R, κ, ϕ, µ)

∂tv
` +∇j(vjv`) +∇`p = ∇jRj`, ∇jvj = 0

D[v, p] ≤ Dtκ+∇j [v`Rj`] +∇jϕj

Construct
∗
v = v + V ,

∗
p = p+ P with (R, κ, ϕ) much smaller, i.e.

D[v + V, p+ P ] ≤
∗
Dt
∗
κ+∇j [

∗
v`
∗
Rj`] +∇j

∗
ϕj

With all of (
∗
R,
∗
κ,
∗
ϕ) much smaller than (R, κ, ϕ)
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Approximate dissipation:

Recall that

∗
D[v, p] = ∂t

(
|v|2

2

)
+∇j

((
|v|2

2
+ p

)
vj
)

is both quadratic and cubic. After adding corrections,

∗
D[v + V, p+ P ] = DT +DS +DH +Dκ +Dϕ + · · ·

will have linear, bilinear and trilinear terms. The goal is for

∗
D[v + V, p+ P ] ≤

∗
Dt
∗
κ+∇j [

∗
v`
∗
Rj`] +∇j

∗
φj



The new terms:

∗
D[v + V, p+ P ] = DT +DS +DH +Dκ +Dϕ + · · ·

DT = ∂t(v`V
`) +∇j(v`V `vj) +∇j

((
|v|2

2
+ p

)
V j

)
DS = ∇j

[
v`[
∑
I

V j
I V

`
I + Pδj` +Rj`]

]

DH = ∇j

v`[∑
J 6=Ī

V j
I V

`
J ]


Dκ = ∂t

(
|V |2

2
+ κ

)
+∇j

((
|V |2

2
+ κ

)
vj
)

Dϕ = ∇j

∑
I,J,K

(VI)`V
j
J V

`
K + PV j + ϕj


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The new terms: The Transport term

The terms linear in V can be treated as follows:

DT = ∂t(v`V
`) +∇j(v`V `vj) +∇j

((
|v|2

2
+ p

)
V j

)

The latter terms can be absorbed into
∗
ϕ by applying div−1.

The first term is part of ∇j [
∗
v`
∗
Rj`] +∇j

∗
ϕj .
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2
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((
|vε|2

2
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V j

)
= vε`

(
DtV

` + V j∇jv`ε
)

︸ ︷︷ ︸
=∇jRj`T

+V` (Dtv
`
ε +∇`pε)︸ ︷︷ ︸

≈ LHS of Euler-Reynolds
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DT = ∂t(vε`V
`) +∇j(vε`V `vjε ) +∇j

((
|vε|2

2
+ pε

)
V j

)
= vε`∇jRj`T + V`(∇jRj`ε + · · · )

= ∇j [vε`Rj`T ]−∇jvε`Rj`T + V`︸ ︷︷ ︸
freq. ≈λ

(∇jRj`ε + · · · )

The latter terms can be absorbed into
∗
ϕ by applying div−1.

The first term is part of ∇j [
∗
v`
∗
Rj`] +∇j

∗
ϕj .



Getting rid of the Unresolved Flux Current ϕ

We need to cancel out both the unresolved flux density and current

Dκ = ∂t

(
|V |2

2
+ κ

)
+∇j

((
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2
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)
vj
)

Dϕ = ∇j

∑
I,J,K

(VI)`V
j
J V

`
K + PV j + ϕj
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∑
I,J,K

(VI)`V
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J V

`
K + PV j + ϕj


Let’s start by canceling out the unresolved flux current ϕj .
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(Compare with the “Lagrangian Direct Interaction Approximation”
of Kraichnan)
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Getting rid of the Unresolved Flux Current ϕ

Recall V =
∑

I VI , VI = eiλξIvI + . . .

Dϕ = DϕL +DϕH

DϕL = ∇j

 ∑
(I,J,K)∈T

vI`v
j
Jv

`
K + ϕjε


DϕH =

∑
(I,J,K)/∈T

V j
J∇j [(VI)`V

`
K ] + V j∇jP +∇j(ϕj − ϕjε)

The last terms may be absorbed into
∗
ϕj after applying div−1.



Getting rid of the unresolved flux density κ

We want our waves to cancel out the unresolved flux density κ

Dκ = ∂t

(
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2
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+∇j
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)
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)

Dϕ = ∇j

∑
I,J,K

(VI)`V
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Getting rid of the unresolved flux density κ

We want our waves to cancel out the unresolved flux density κ

Dκ = DκL +DκH

DκL = Dt

[∑
I

VI · VI
2

+ κε

]

DκH = Dt

∑
J 6=Ī

VI · VJ
2

+ (κ− κε)

+ · · ·

The highlighted term is positive and cannot cancel out a general κ.



Getting rid of the unresolved flux density κ

We want our waves to cancel out the unresolved flux density κ

Dκ = DκL +DκH

DκL = Dt

[∑
I

vI · vI
2

+ κε

]
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∑
J 6=Ī
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+ · · ·

The highlighted term is positive and cannot cancel out a general κ.



Getting rid of the unresolved flux density κ

Choose a non-negative, nonincreasing function e(t) ≥ 0:

DκL = Dt

[∑
I

vI · vI
2

+ κε − e(t)

]
+Dte(t)︸ ︷︷ ︸

≤0



Getting rid of the unresolved flux density κ

Choose a non-negative, nonincreasing function e(t) ≥ 0:

DκL = Dt

[∑
I

vI · vI
2

+ κε − e(t)

]
+Dte(t)︸ ︷︷ ︸

≤0

This point is where the arrow of time comes into play.

We can absorb Dte(t) ≤ 0 into the new dissipation measure
∗
µ.

(Recall that D[v, p] ≤ Dtκ+∇j [v`Rj`] +∇jφj allows for inequality
in the relaxed local energy inequality.)

Now it is possible to cancel out κε except...



Getting rid of the unresolved flux density κ

Conflict: We need to simultaneously satisfy two equations∑
I

vjIv
`
I + P (t, x)δj` +Rj`ε = 0

∑
I

vI · vI
2

+ κε − e(t) = 0

The summation in the second is half the trace of the summation in
the first equation.



Getting rid of the unresolved flux density κ

Conflict: We need to simultaneously satisfy two equations∑
I

vjIv
`
I + P (t, x)δj` +Rj`ε = 0

∑
I

vI · vI
2

+ κε − e(t) = 0

The summation in the second is half the trace of the summation in
the first equation. However, we can uniquely specify the pressure
increment P (t, x) = (2/3)(−e(t) + κε − trRε/2) so that the first
equation implies the second equation.



Conflict: Eliminate the Unresolved Flux Current and Stress

Another conflict: Recall that we solved∑
(I,J,K)∈T

vI`v
j
Jv

`
K + ϕjε[1] = 0

And need to solve∑
I

vjIv
`
J + P (t, x)δj`[1] +Rj`[1]ε = 0

To do both, use waves in Iϕ to eliminate the current ϕ[1] then∑
I /∈Iϕ

vjIv
`
J = −Pδj`[1] −R

j`
[1]ε −

∑
I∈Iϕ

vjIv
`
I

absorb the Iϕ terms as a slightly lower order term.
Ok as long as ‖ϕ[1]‖2/3 is lower order!



Conflict: Eliminate the Unresolved Flux Current and Stress

Another conflict: Recall that we solved∑
(I,J,K)∈T

vI`v
j
Jv

`
K + ϕjε[1] = 0

And need to solve∑
I

vjIv
`
J + P (t, x)δj`[1] +Rj`[1]ε = 0

To do both, use waves in Iϕ to eliminate the current ϕ[1] then∑
I /∈Iϕ

vjIv
`
J = −Pδj`[1] −R

j`
[1]ε −

∑
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absorb the Iϕ terms as a slightly lower order term.
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Dangerous terms

The requirement that ‖φ[1]‖2/3 be lower order than ‖R[1]‖ is
problematic and threatens the success of the iteration.

It means that for the next stage we need to ensure ‖ ∗ϕ[2]‖2/3 is

lower order compared to ‖
∗
R[2]‖.

For example,
∗
ϕ contains a dangerous interaction term of the form

V`R
j`
S = V`(Pδ

j`
[2] +Rj`[2] + · · · ), where δ[2] = e1 ⊗ e1 + (e3 ⊗ e3)/2

is a component of δj` = δj`[1] + δj`[2] taking values in 〈e2〉⊥ ⊗ 〈e2〉⊥.

The vector field V`Pδ
j`
[2] takes values in 〈e2〉⊥ as desired, but has

the same order of magnitude as ‖
∗
R[2]‖3/2.



Dangerous terms: algebraic cancellation saving the day

What saves us from this difficulty is that the divergence of V`Pδ
j`
[2]

has a good cancellation:

∇j [V`Pδj`[2]] =
∑
I

λeiλξI (i∇jξI)vI`Pδj`[2] + · · ·

We have that ∇ξI
≈
∈ 〈e1〉, vI

≈
∈ 〈e2, e3〉 and

δ[2] = e1 ⊗ e1 + (e3 ⊗ e3)/2, so the leading order term
approximately vanishes.

We then apply div−1 to obtain an acceptable contribution to the
new unresolved current

∗
ϕj . Other error terms exhibit similar

favorable cancellations or can be directly absorbed into
∗
ϕj .
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We have that ∇ξI
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≈
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δ[2] = e1 ⊗ e1 + (e3 ⊗ e3)/2, so the leading order term
approximately vanishes.

We then apply div−1 to obtain an acceptable contribution to the
new unresolved current

∗
ϕj . Other error terms exhibit similar

favorable cancellations or can be directly absorbed into
∗
ϕj .



Thank you!


