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o’ + V(i) + Vip =0 (1)
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make sense in integral form for continuous (v, p):
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for all  with smooth boundary 92 and interior unit normal n’.
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Motivation: Sufficiently smooth solutions conserve energy

Take the dot product of the Euler equations with v*

vt + vV (vjvé) + 0, Vip =0
Vj’l)j =0

Then local conservation of energy holds:

()5 (5 4))

And integration yields conservation of total kinetic energy:
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Motivation: Onsager’s Conjecture (1949)

1. Solutions (v, p) to Euler on T3 obeying a Holder estimate
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Motivation: Onsager’s Conjecture (1949)

1. Solutions (v, p) to Euler on T3 obeying a Holder estimate

ot + V(i) + Vip =0 (5)
Vjvj =0
jv(t, z + Az) — o(t, 2)| < C|Az|* (6)

for some a > 1/3 must conserve energy.

2. If the « in (6) is less than 1/3, then v may fail to conserve
energy

In fact, Onsager's argument leads to an even stronger conjecture
on the existence of dissipative Euler flows.
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Motivation: Hydrodynamic turbulence

Kolmogorov (1941): As v — 0 for solutions to 3D Navier-Stokes:

(7)

A’ + Vvt + Vip = vAvt
Vjvj =0

the energy dissipation rate remains strictly positive as v — 0

: d v, |?
€= llg%)<_dt/ 5 (t,x)da:> > 0.

The velocity fluctuations on average obey a scaling law

(Jo(z 4+ Az) — v(z)[P)/P ~ /3| Ax|/3
for |Az| > (V3/5)1/4

Onsager considered the case v = 0; argued that “frequency
cascades” may lead to dissipation in the absence of viscosity.



Onsager and Ideal Turbulence

Onsager considered the Euler equations in Fourier series form (which
converges for v € L?)

d m - k)k
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He argued that energy can “cascade” from low wavenumbers to high
wavenumbers, and the cascade can happen so rapidly that part of
the energy >, |ax|? escapes to infinite frequency (i.e. vanishes to
small spatial scales) in finite time.

However, only low regularity solutions could behave this way, and
he stated that solutions in C* with o > 1/3 must conserve energy.



Onsager and Ideal Turbulence

Onsager considered the Euler equations in Fourier series form (which
converges for v € L?)

v(z,t) = Zak(t)eik'x
k
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He argued that energy can “cascade” from low wavenumbers to high
wavenumbers, and the cascade can happen so rapidly that part of
the energy >, |ax|? escapes to infinite frequency (i.e. vanishes to
small spatial scales) in finite time.

By a statistical physics argument, a “typical” turbulent flow should
have: 37 <oy lak]? ~ A~2/3 (hence regularity exactly 1/3).
5 <|k|<
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2. If the ain (9) is less than 1/3, then v may fail to conserve
energy

Part 1 is known: (Eyink, '94), (Constantin-E-Titi, '94)
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Motivation: Onsager’s Conjecture (1949)

1. Solutions (v, p) to Euler on T? obeying a Holder estimate

vt + V(i) + Vip =0 (10)
Vil =0
lu(t,z + Azx) —v(t,z)| < C|Az|* (11)

for some o > 1/3 must conserve energy.

2. If the a in (11) is less than 1/3, then v may fail to conserve
energy

3. Energy-dissipating solutions to Euler with Onsager critical
regularity arise in the 0 viscosity limit of Navier-Stokes

The last part implies the Strong Onsager Conjecture by
compactness.



Motivation: Hydrodynamic turbulence

Kolmogorov (1941): As v — 0 for solutions to 3D Navier-Stokes:

At 4+ V;(vIv) + Vip = vA*
vj"l)j =0

the energy dissipation rate remains strictly positive as v — 0

. d v, |?
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The velocity fluctuations on average obey a scaling law

(Jo(z + Ax) = o(@)|")/? ~ '] Ax|'/?
for |Ax| > (V:j/€)1/4

[GQ. Chen, Glimm, '12] “Weak-K41 implies compactness”.



K41 Folklore Conjecture for Navier-Stokes

Conjecture (K41 Folklore Conjecture for N-S)

There is a sequence v, of (regular) solutions to the incompressible
Navier-Stokes equations on I x T3, I a finite interval, with v; — 0
such that

» Scaling law: The norms ||v,, || 13 are uniformly bounded

LC,
» Zeroth law: The sequence exhibits mean rate of energy
dissipation independent of viscosity in the sense that
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Zero viscosity limits dissipate energy locally

Proposition

If v is a strong limit v,; — v in L3 of a sequence of classical
Navier-Stokes solutions with v; — 0, then v is a weak solution to
incompressible Euler that satisfies the local energy inequality
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Zero viscosity limits dissipate energy locally

Proposition

If v is a strong limit v,; — v in L3 of a sequence of classical
Navier-Stokes solutions with v; — 0, then v is a weak solution to
incompressible Euler that satisfies the local energy inequality
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Proof: If v, is a classical solution to Navier-Stokes, then the local
energy equality holds

2 2 2
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K41 Folklore Conjecture in the inviscid limit

Conjecture (Strong Onsager Conjecture)
There is a weak solution v to the incompressible Euler equations of
class v € LfOC;/?’(I x T3) that satisfies the local energy inequality
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Conjecture (Strong Onsager Conjecture)
There is a weak solution v to the incompressible Euler equations of
class v € LfOC;/?’(I x T3) that satisfies the local energy inequality
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and does not conserve energy.

“Proof” using the K41 Folklore Conjecture: The Scaling Law
bounds HUHLOO(J”?" which guarantees uniformly convergent subse-
+ T
quences by the Aubin-Lions-Simon Lemma.
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Conjecture (Strong Onsager Conjecture)
There is a weak solution v to the incompressible Euler equations of
class v € L?Ci“([ x T3) that satisfies the local energy inequality
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and does not conserve energy.
(Note: Possible nonuniqueness of solutions.)



K41 Folklore Conjecture in the inviscid limit

Conjecture (Strong Onsager Conjecture)
There is a weak solution v to the incompressible Euler equations of
class v € LfOCi/S(I x T3) that satisfies the local energy inequality

o (5)ew[(29) )

and does not conserve energy.

Already difficult question: Are there even incompressible Euler
flows that fail to conserve total kinetic energy?
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Weak solutions that fail to conserve energy

v

Weak solutions in L7 (R x R?) with compact support in
space and time (Scheffer, '93)

Weak solutions in L7 (R x T?) (Shnirelman, '97)
Dissipative solutions in L L2(R x T3) (Shnirelman, '00 )

Solutions in L5, N C; L2 with given local energy dissipation

o <|UQ|2> +V; (<|U2’2 +p> vj> = %e(t)

(De Lellis, Székelyhidi, '07)
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Weak solutions that fail to conserve energy

» Weak solutions in L7 (R x R?) with compact support in
space and time (Scheffer, '93)

» Weak solutions in L7 (R x T?) (Shnirelman, '97)
» Dissipative solutions in L°L2(R x T3) (Shnirelman, '00 )
» Solutions in L7 N C; L2 with given local energy dissipation

()5 (1)) -

(De Lellis, Székelyhidi, '07)
Solutions are nowhere continuous and the argument faces a
major difficulty towards obtaining continuous solutions.
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Solutions in Cf', for a < 1/10 with any prescribed smooth
total kinetic energy 1 [1s [v|*(t, 2)dz = e(t)

(De Lellis, Székelyhidi '12)

In Cf, for @ < 1/5 with compact support (I. '12) and
prescribed, smooth total kinetic energy e(t)
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Solutions in Cf', for a < 1/10 with any prescribed smooth
total kinetic energy 1 [1s [v|*(t, 2)dz = e(t)

(De Lellis, Székelyhidi '12)

In Cf, for @ < 1/5 with compact support (I. '12) and

prescribed, smooth total kinetic energy e(t)
(Buckmaster, De Lellis, Székelyhidi, '13)

In L%C;/B_E with compact support (Buck., Del, Szé, '14)

In Cf, for a < 1/3 with compact support (1. '16)
and with prescribed, smooth total kinetic energy e(t)
(Buckmaster, De Lellis, Székelyhidi, Vicol '17)

Solutions with compact support and
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Solutions in C;H'/?>~ (Buck., Masmoudi, Novack, Vicol)

C,HY?= N[>~ C L;)OB;’/;_ (Novack, Vicol)



Significance: Confirmation of energy cascades

Onsager considered the Euler equations in Fourier series form

v(z,t) = Zak(t)eik'x
k
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He argued that energy can ‘“cascade” from low wavenumbers to
high wavenumbers, and the cascade can happen so rapidly that
part of the energy >, |ax|? escapes to infinite frequency (i.e.
vanishes to small spatial scales) in finite time.

By a statistical physics argument, a “typical” turbulent flow should
haver 375 ) <oy lag|? ~ A~%/3 (hence regularity exactly 1/3).
2 — V| =



Open Problem: Strong Onsager conjecture

Conjecture (Strong Onsager Conjecture)

There is a weak solution v to the incompressible Euler equations of

class v € L;X’Ci/g([ x T3) that satisfies the local energy inequality
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Open Problem: Strong Onsager conjecture

Conjecture (Strong Onsager Conjecture)
There is a weak solution v to the incompressible Euler equations of
class v € L?OC,i/‘B(I x T3) that satisfies the local energy inequality

o(£) 5 ()=

and does not conserve energy.

Note: Requiring local energy dissipation is much stronger than
requiring dissipation of total kinetic energy. (Consider Burgers.)



Solutions in L, that exhibit local energy dissipation

Theorem (De Lellis, Székelyhidi, 07)

For any smooth e(t) > 0 there exist (nowhere continuous) weak
solutions solutions (v, p) of class v € Lg%, N CyL2 such that
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Moreover, one can choose a family of such solutions emanating
from the same initial datum that form a Baire generic subset of a
complete, separable metric space.
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Theorem: Improvement on the Strong Onsager Conjecture

Theorem (De Lellis, Kwon '20)

For any o« < 1/7 and d > 3 there exist solutions of class
v e Cp(I x T?) that satisfy the local energy inequality

Dlv,p] := 0, <‘1}2’2) +V; <<]1}2|2 +p> vj> <0

with strict inequality everywhere.

Extension to isentropic compressible Euler [Giri, Kwon, '21]
Idea: Discretize the “Mikado flows" of [Daneri, Székelyhidi, '16]
Open problem: Improve the regularity to 1/3.



Theorem: First result on the Strong Onsager Conjecture

Theorem (I. '17)

For any o < 1/15 and d > 3 there exist solutions of class
v e CP (R x T?) that satisfy the local energy inequality

Dlv,p] == 0, ('1)2'2) +V; (('2'2 +p) vj) <0

with strict inequality everywhere.



Outline

» General idea of convex integration
» Euler-Reynolds flows
» “One-dimensional” waves
» Microlocal Lemma
» Main error terms

> Local energy dissipation ideas

» Dissipative Euler-Reynolds flows
» Arrow of time in the construction
» Trilinear energy cascades (resembles Kraichnan’s LDIA theory)



Continuous Solutions: The Euler-Reynolds Equations

(De Lellis, Székelyhidi): Consider the Euler-Reynolds equations

At + V;(vIv') + Vip = V; RI* (ER)
Vjvj =0



Continuous Solutions: The Euler-Reynolds Equations

(De Lellis, Székelyhidi): Consider the Euler-Reynolds equations

Ot + V(') + Vip = V; R (ER)
Vjvj =0

The symmetric tensor 17‘ measures the error from solving Euler.



Continuous Solutions: The Euler-Reynolds Equations

(De Lellis, Székelyhidi): Consider the Euler-Reynolds equations

At + V;(vIv') + Vip = V; RI* (ER)
Vjvj =0

The symmetric tensor R/ measures the error from solving Euler.
Examples: If (v, p) solves the Euler equations then

> (ve,pe,Rgz), Rﬁz = vgvf — (vjvf)e, vf =7 x v’

» Corollary: Every continuous incompressible Euler flow (v, p)
is the uniform limit of a sequence of C'">° Euler-Reynolds flows
(vg, Pgs Rq) with ||Rg||co — 0 as ¢ — o0



Continuous Solutions: The Euler-Reynolds Equations

(De Lellis, Székelyhidi): Consider the Euler-Reynolds equations
At + V;(vIv') + Vip = V; RI* (ER)
Vjvj =0

The symmetric tensor R/ measures the error from solving Euler.
Examples:

» Any v’ that is incompressible and conveserves momentum
o’ + Vvt = U
/ U(t, z)dz =0
T3
V,R* =U*



Continuous Solutions: Convex Integration for Euler

We construct a sequence (vq, pg, Ry) indexed by ¢ solving

Ol + V;(vivh) + Vip, = V;RI* (ERq)
Vjvg =0

where vgy1 = vg + V4, pgy1 = pg + Py solve (ERg+1) with

much smaller |R,i1| < |R,]



Continuous Solutions: Convex Integration for Euler

We construct a sequence (vq, pg, Ry) indexed by ¢ solving

Ol + V;(vivh) + Vip, = V;RI* (ERq)
Vjvg =0

where vy11 = vy + Vj, pg+1 = pg + Py solve (ERq+1) with
much smaller |R,i1| < |R,]

In the limit as ¢ — oo, we get continuous solutions

IRqllco = 0. Vgl ~ [Rgl /2, |Py| ~ |Ry|



Continuous Solutions: Convex Integration for Euler

Start with any smooth solution to Euler-Reynolds on R x T?

Aot + V(') + Vip = V; RI*
Vjvj =0

and add high-frequency corrections
V=" + ‘/a ﬁ =p+ P7

that are designed to “get rid of” RJ‘.



Continuous Solutions: Convex Integration for Euler

Get new solutions 0 = v+ V, p = p + P to Euler-Reynolds

80" + V(20") + Vi = VR’
Vil =0

with H}?HC? much smaller than ||R|[co .



Continuous Solutions: Convex Integration for Euler

The corrected 0 = v+ V, p = p + P satisfy
0t + V(0 + V=0 Vi .+ V;(VIVE 4 P&t 4 RIY
= not in the form ij%je
Vit =0



Continuous Solutions: Convex Integration for Euler

The corrected 0 = v+ V, p = p + P satisfy
0t + V(0 + V=0 Vi .+ V;(VIVE 4 P&t 4 RIY
= not in the form ij%‘je
Vit =0

so we will have to solve a divergence equation:
ViR =0,V + V(0 V) + V; (Vi) + V;(VIVE + PoIt + RIY)

to define ]*%



Continuous Solutions: Convex Integration for Euler

The corrected v = v + V, p = p + P satisfy
0t + V(0 + V=0 Vi .+ V;(VIVE 4 P&t 4 RIY
= not in the form ij%je
Vil =0
so we will have to solve a divergence equation:
ViR = 9,V + V(0 V) + (Vi) + V;(VIVE 4 P&+ RIY)

to define ]*%

The new error H]*%HCO will only be small when V' and P are very
oscillatory and are designed carefully depending on the given v*
and RI‘.



The Error terms

Let (v,p, R) be a smooth solution to Euler-Reynolds.

It + V;(wivh) + Vip = V;RI*

Then v = v+ V and p = p + P satisfy
D0t + Vi (070°) + Vi = 9,V + V(v V) + V; (Vi)
+ V;(VIVE 4 P§it + RIY)
want = Vj}*%ﬂ

with || R]co < A7

where V¢ oscillates at large frequency \.



The Error terms

We name the terms as follows: R7¢ = R{% + Réz + R%

Transport term:
ViR =9,V + V(0 V) + V;(Vivh)
Stress term:
VjRJ; = LFreq[V;(VIV! + P§7* + RIY)]
High-Frequency Interference terms:

VRl = HFreq[V;(VIV! + P§7*)]

Each one of Ry, Rg and Ry must be H}*%HCO <AL



The Error terms

. pjt _ pit ¥4 ¥4 Jjé
We name the terms as follows: R/® = Ry, + Rg + Ry + Ry,

Transport term:
ViRy = 0V + V0V + V(7))
Stress term:
V;RY = LFreq[V;(VIV + P& + RIY)]
High-Frequency Interference terms:

VRl = HFreq[V;(VIV! + P§7Y)]
Each one of Ry, Rs, Ry and Ry must be ||}*2HCO <AL

(There is also another term involving errors from mollifying v — v,
and R — R, that we are neglecting here.)



The High-Frequency Correction

The correction V* is a high-frequency, divergence free wave.
For example, in (I. Vicol, '13), it has the form

VE=D (e oV =)V
1 1
VVt=0 (by choice of small 6V)
(0 +v!V;)ér =0 (= nonlinear phase functions)

Vér-vr =0 (required for VEVIE =0)



The High-Frequency Correction

The correction V* is a high-frequency, divergence free wave.
For example, in (I. Vicol, '13), it has the form

V=Y (Mof V) = YV
1 1
VvV =0 (by choice of small §V)
(0 +v!V;)ér =0 (= nonlinear phase functions)

Vér-vr =0 (required for VEVIE =0)



The High-Frequency Correction

The correction V* is a high-frequency, divergence free wave.
For example, in (I. Vicol, '13), it has the form

vi= DD+ avi) = 3oV
I I
VVt=0 (by choice of small 6V)
(0 +v!V;)ér =0 (= nonlinear phase functions)

Vér-vr =0 (required for VEVIE =0)



The High-Frequency Correction

The correction V* is a high-frequency, divergence free wave.
For example, in (I. Vicol, '13), it has the form

V=Y (Mof V) = YV
1 1
VVt=0 (by choice of small 6V)
(0 +v!V;)ér =0 (= nonlinear phase functions)

Vér v =0 (required for V,Vf = 0)



The High-Frequency Correction

The correction V* is a high-frequency, divergence free wave.
For example, in (I. Vicol, '13), it has the form

V=Y (Mof V) = YV
1 1
VVt=0 (by choice of small 6V)
(0 +v!V;)ér =0 (= nonlinear phase functions)

Vér-vr =0 (required for VEVIE =0)

More precisely, Vi = P;[e"*¢7v;] where P; is a Leray projection
localized at frequency of order A\, and vy includes a cutoff in time
to keep V& within O({;) of its initial datum.



Microlocal Lemma

Lemma (Microlocal Lemma)
IFUf = e, and for k = 0,1,2, [[|h|* K (R)||p1gay S A7F, then
for Vi = [, Uf(x — h)K (h)dh we have an expansion

Vi = e (K& ()0 (x) + 0] )

']
Vv

where §v} ~ x Tt @- (Special case: IA{(AV&) - 7T<LVEI>')




Microlocal Lemma

Lemma (Microlocal Lemma)
IfUf = et and for k = 0, (M)l (ray S <A, then
for Vi = [, Uf(x — h)K (h)dh we have an expansion

Y ’

Vi = e (K& ()0 (x) + 0] )

']
VvI

where §v} ~ + M. (Special case: K(AVEf) = 7T<LVEJ>')
Proof: Write e—Mérvf Jra e 1@ Uz — h)K (h)dh

e~ INT L / ei/\(fz(x*h)*&(x))ug(m — h)K(h)dh
]Rd

~ / e~ AVE @ hy L () K (h)dh
R4

eVt = K(AVE (2))ub(z) + sul(z)



The High-Frequency Correction

The correction V* is a high-frequency, divergence free wave.
For example, in (I. Vicol, '13), it has the form

VE=D (e 4oV =YV
1 1

ViV =0 (by choice of small §V)
(0 +vIV;)é =0 (= nonlinear phase functions)
Vér-vr =0 (required for Vgi =0)

More precisely, Vi = P;[e**¢v;] where P; is a Leray projection
localized at frequency of order A\, and vy includes a cutoff in time
to keep V&7 within O(1) of its initial datum.



The High-Frequency Correction

The correction V* is a high-frequency, divergence free wave.
For example, in (I. Vicol, '13), it has the form

VE=D (e 40V = >V
I I
VVP =0 (by choice of small §V)
(0 +vIV;)é =0 (= nonlinear phase functions)

Vér-vr =0 (required for V,Vf = 0)

More precisely, Vi = P;[e**¢v;] where P; is a Leray projection
localized at frequency of order A\, and vy includes a cutoff in time
to keep V&7 within O(1) of its initial datum.



The High-Frequency Correction

The correction V* is a high-frequency, divergence free wave.
For example, in (I. Vicol, '13), it has the form

VE=D (e 40V = >V
I I
ViV =0 (by choice of small §V)
(0 +v!V;)ér =0 (= nonlinear phase functions)
Vér-vr =0 (required for Vgi =0)
More precisely, Vi = P;[e**¢v;] where P; is a Leray projection

localized at frequency of order A\, and vy includes a cutoff in time
to keep V&7 within O(1) of its initial datum.



The High-Frequency Correction

The correction V* is a high-frequency, divergence free wave.
For example, in (I. Vicol, '13), it has the form

VE=D (el 0V =)V
I I
ViV =0 (by choice of small §V)
(0 +vIV;)é =0 (= nonlinear phase functions)
Vér-vp =0 (required for V,Vf = 0)

More precisely, Vi = P;[e**¢v;] where P; is a Leray projection
localized at frequency of order A\, and vy includes a cutoff in time
to keep V&7 within O(1) of its initial datum.



The High-Frequency Correction

The correction V* is a high-frequency, divergence free wave.
For example, in (I. Vicol, '13), it has the form

VE=D (e 40V = >V
I I
ViV =0 (by choice of small §V)
(0 +vIV;)é =0 (= nonlinear phase functions)
Vér-vr =0 (required for Vgi =0)

More precisely, Vi = P;[e"**7v;] where P; is a Leray projection
localized at frequency of order A\, and vy includes a cutoff in time
to keep V&7 within O(1) of its initial datum.



The High-Frequency Correction

The correction V* is a high-frequency, divergence free wave.
For example, in (I. Vicol, '13), it has the form

VE=D (e 40V =YV
I I
ViV =0 (by choice of small §V)
(0 +vIV;)é =0 (= nonlinear phase functions)
Vér-vr =0 (required for Vgi =0)

More precisely, Vi = P;[e**¢v;] where P; is a Leray projection
localized at frequency of order A\, and vy includes a cutoff in time
to keep V&7 within O(1) of its initial datum.



Recalling the Error terms again

Each one of Ry, Rg and Ry must have size Hé”co <! and
requires solving a divergence equation:
Transport term:
ViRY = V' + V;(0IV) + V;(Vf)
Stress term:
V,;RY = LFreq[V;(VIV! 4 P&/ + RI%)]
High-Frequency Interference terms:

V,;RiE = HFreq[V,;(VIV! 4 P6§7*)]



Recalling the Error terms again

Each one of Ry, Rg and Ry must have size ||}*%||Co <71, and
requires solving a divergence equation:
Transport term:
ViRE =0,V + V;(0IV) + v, (Vi)
Stress term:
V,;RY = LFreq[V;(VIV! 4 P&/ + RI%)]
High-Frequency Interference terms:

V,;RiE = HFreq[V,;(VIV! 4 P6§7*)]



The Main Error Terms

With this Ansatz the Transport term is under control:
Letting D; := (0; + vﬁV ;) be the “advective derivative” we have

Ve +V,;(IVE) + Vi (VIuh) = (9, + vIV,)VE + VIV 0!
~ Z Dy[vbe1) + M1l ot

1
ViR =Y (Difof] + o] V0l ¢4
I low high

Applying div™! yields || R7|o < A~" and Freq(R7) ~ .



The Main Error Terms

With this Ansatz the Transport term is under control:
Letting Dy := (8¢ + v!V;) be the “advective derivative” we have

Ve + V,;(wIVh) + Vi (VIoh) = (8 + vIV,)VE + VIV 0!
~ Z Dy[vbe1) 4 M1l ot

I
VjRQf = Z (Di[vl] + U}Vjvf) e
I low high

(Used V;V7 =0.)



The Main Error Terms

The Stress term should ideally be controlled as follows:
LFreq[V;(VIV* + P57 + RIY)]

= LFreq|V;( Yo V7V + P’ + RI') |
1,J

= LFreq _Vj ( Z VI]W + Pyt 4 RZZ)}
) I

=V, Z vivt + P(t,z)67 + R{ﬂ
ST
=V;[0] =0

Here we solve for the v} at each point subject only to the
constraint that vy - V& = 0 and ||VE&r — VEr]jo < 1/10.



The Main Error Terms

The remaining High-Frequency Interference term has the form

HFreq[V,;(VIVH)] =V, | Y Vive
| JAT

~ V|3 N

| JAT

ViRl =2\ eMEti(V,6 + V€ )vjv’ + OK
JAT




The Main Error Terms

The remaining High-Frequency Interference term has the form

HFreq[V,;(VIVH)] =V, | Y Vive
| JAT

~ V|3 N

| JAT

ViRl =2\ eMrte0i(Ve + V6 )ujv + OK
JAT




The Main Error Terms

The remaining High-Frequency Interference term has the form

HFreq[V,;(VIV)] =V, | Y Vive
| JAT

~V; Z eM(&JrEJ)U}Uﬂ
| JAT
ViRl =\ eMrtei(ve + V6 )ujv + OK
JAT
OK if vy - V&; = 0. So we require that all phase functions align
V&r = nyeq for all 1.




The Main Error Terms

The Stress term still has two “components” remaining:
LFreq[V;(VIV* + P57 + RIY)]

= LFreq :Vj ( Z VIij + P&t + Rzg)}
1,J

= LFreq _Vj ( Z VIJVIZ + P&t + Rﬁéﬂ
) I

=V, :Z viol + P(t,2)0% + Rgﬂ
I

= V,[Psly + Rly + Rl] #0

where 6[k], R[k} (t,.TU) S <€k>J‘ ® <€k>J‘ fork=2,3



Theorem: First result on the Strong Onsager Conjecture

Theorem (I. '17)

For any o < 1/15 and d > 3 there exist solutions of class
v e CP (R x T?) that satisfy the local energy inequality

Dlv,p| := <‘”2|2) +V; <(|”2|2 +p> vj> <0

with strict inequality everywhere.



Dissipative Euler Reynolds flow

Idea: Relax the local energy inequality

Ot + Vi (vih) + Vip = V; RI
Vjvj =0

Dlv,p| := 0, <|U2|2> +V; <<|U; +p> vj> <f

~
Approximate dissipation

Design a scheme such that both R and f tend to zero.

(Not actually going to work.)



Dissipative Euler Reynolds flow

Definition
A dissipative Euler-Reynolds flow is a tuple (v, p, R, k, ¢, 1)
ot + V(i) + Vip = V;RI*, Vil =0

‘UP ’UP j G0 j
Ot B +Vj 74‘]) (% SDtI{+Vj[UgR ]+V]99

» Unresolved flux density: &,
» Unresolved flux current: ¢’

» Dissipation measure: 1 > 0

it = —Dlv,p] + Dik + V[v,RI) + V7



Plan of attack

Plan:
Given a dissipative Euler-Reynolds flow (v, p, R, k, @, )

625Ué + Vj(vjvé) + Vép = VjRﬂ, Vjvj =0
Dlv,p] < Dyki + V[ve R + V47

Construct v =v+V, p=p+ P with (R, k,p) much smaller, i.e.
Dlv + V,p+ P] < Dyic + V;[00 R + V¢

With all of (]*%, Kk, @) much smaller than (R, k, ®)



Plan of attack

Plan:
Given a dissipative Euler-Reynolds flow (v, p, R, k, @, )

8tvé + Vj(vjvé) + Vép = VjRjé, Vjvj =0
Dlv,p] < Dyki + V[ve R + V47

Construct v =v+V, p=p+ P with (R, k,p) much smaller, i.e.
Dlv + V,p+ P] < Dyit + V;[00 R + V ;¢

With all of (]*%, Kk, @) much smaller than (R, k, ®)



Approximate dissipation:

Recall that
Dlv, p] = 0, ('U2|2> +V; (<|U2|2 +p) vj)
is both quadratic and cubic. After adding corrections,
Dlv+ V,p+ P] =Dy +Ds+ Dy + Dy + Dy + - -
will have linear, bilinear and trilinear terms. The goal is for

Dl + V,p+ P < Diis + V;[60R) + V¢



The new terms:

15[@+V,p+P]ZDT+DS+DH+DR+D¢+...

. 2 ‘
Dr = 9y(v V) + vj(wv%ﬂ) +V; (<|U2‘ +p) VJ>

Ds = V; |v>_ ViV{+ P5i* + R
I

Dy = Vj vg[z VIjVJe]
s

SUCRRICN

> (Vi)eViVie + PV + ng]

Dy, =V
IJK




The new terms:

Dlv+V,p+ P] =Dy +Ds+ Dy + Dy + Dy + - --

. ) 2 .
DT - OL(WVE) + Vj(wVévj) + v} <<|Q2‘ er) VJ)

Ds = V; |v>_ ViV{+ P5i* + R
1

Dy =V, |wlY ViV
JAI

12 2 .
DH:at <“/2’+H>+V]<<H/2‘+H> 'UJ>

Do =V, | Y (VD)VIVic + PVI + ¢
1,J,K




The new terms: The Transport term

The terms linear in V' can be treated as follows:

, 2 .
Dr = 0i(vV*) + V;(0V ) + V; <<|U2‘ “’) VJ)



The new terms: The Transport term

The terms linear in V' can be treated as follows:

. 2 .
Dr = aav) + Vs(uavsd) +9; (15 +..) v7)

+ Diiy + V[0



The new terms: The Transport term

The terms linear in V' can be treated as follows:

. 2 .
Dr = aav) + Vs(uavsd) +9; (15 +..) v7)



The new terms: The Transport term

The terms linear in V' can be treated as follows:

. 2 .
Dr = dh(vaV?) + Y (0aVed) + 7, ((m i pe) w)

2
— v (V! + VIVil) +Ve (Diek + V')
~—_——
e = LHS of Euler-Reynolds

j£
=V, R}



The new terms: The Transport term

The terms linear in V' can be treated as follows:

Dy = O(veV) + V(v Vi0I) + V; ((’”;’ + pe> Vﬂ)

= vV Ry + Vi(ViRI 4 )



The new terms: The Transport term

The terms linear in V' can be treated as follows:

. 2 .
Dr = aav) + Vs(uavsd) +9; (15 +..) v7)

= vV R + Vi(V;R +---)
= V[ R — Vv RY 4+ Vi(VRIE 4 )

freq. =



The new terms: The Transport term

The terms linear in V' can be treated as follows:

. 2 .
Dr = aav) + Vs(uavsd) +9; (15 +..) v7)

= vV Ry + Vi(ViRI 4 )
= V,[veeRY] — Vv R+ Vo(V;RI + )
freq. =

The latter terms can be absorbed into ¢ by applying div—?.
The first term is part of V,[0,R7‘] + V ;7.



Getting rid of the Unresolved Flux Current ¢

We need to cancel out both the unresolved flux density and current

2 2
Dy, = 0 <|‘g+/€>+vj<<|v2‘+ﬂ>vj>

Dy =V; | Y (VI)VIVi + PVI+ ¢
1,J,K



Getting rid of the Unresolved Flux Current ¢

We need to cancel out both the unresolved flux density and current

2 2
Dy, = 0 <|‘/2‘+H>+Vj<<|‘/2‘+l‘i>vj>

Dy =V; | Y (V)VIVi + PV +
1,J,K

Let's start by canceling out the unresolved flux current 7.



Getting rid of the Unresolved Flux Current ¢

Recall V. =Y, Vi, Vi = etop + ...

Dy = Dyr + Dyn

Dy =Vj

Don =V

> (VVIVic+ &
(I,JK)ET

S (VDVIVic+ PV (¢ — )
(I,J,K)¢T

|



Getting rid of the Unresolved Flux Current ¢

Recall V. =Y, Vi, Vi = etop + ...

Dy = Dyr + Dyn

Dyr, =V; Z v vy + @l
(I,J,K)eT

Do =V | Y. (VD)eViVie+ PVI 4 (& — o)
(I,,K)¢T

(Compare with the “Lagrangian Direct Interaction Approximation”
of Kraichnan)



Getting rid of the Unresolved Flux Current ¢

Recall V. =Y, Vi, Vi = etop + ...

Dy = Dyr + Dyn

L, A
Dy =V; Z VRV + @l
(I,J,K)eT

Do =V | Y. (VD)eViVie+ PVI 4 (& — o)
(I,J,K)¢T

(Compare with the “Lagrangian Direct Interaction Approximation”
of Kraichnan)



Getting rid of the Unresolved Flux Current ¢

Recall V. =Y, Vi, Vi = etop + ...

Dy = Dyr + Dyn

Dy, =V, Z iU +

(LLK)ET
Don= ), VIV [(VD)eVE] + VIVP + V(9! — @)
(I,J,K)%'T

The last terms may be absorbed into ¢/ after applying div™!.



Getting rid of the unresolved flux density

We want our waves to cancel out the unresolved flux density s

2 2 .
Dy =0, <‘V2‘+I€> +Vj<<“/2‘+/€> ’UJ>

Dy =V; | > (V)ViVic + PV 4+ ¢
1,J K



Getting rid of the unresolved flux density

We want our waves to cancel out the unresolved flux density s

Dn = DKL + DKH

— Vi Vi
D/{L:Dt Z ]2 [+I€e
I

—_ Vi-V.
D =D |y~ + (k=) |+
| J#AI

The highlighted term is positive and cannot cancel out a general k.



Getting rid of the unresolved flux density

We want our waves to cancel out the unresolved flux density s

Dn = DKL + DKH

—_— ’UI'W
Dyr = Dy Z 9 + Ke
I

—_ Vi-V.
D =D |y~ + (k=) |+
| J#AI

The highlighted term is positive and cannot cancel out a general k.



Getting rid of the unresolved flux density

Choose a non-negative, nonincreasing function e(t) > 0:

_ vr - UTr —
DRL — Dt Z I2 ! + Re — e(t) + Dte(t)
I SIO



Getting rid of the unresolved flux density

Choose a non-negative, nonincreasing function e(t) > 0:

— vy - FI .
Dpr, =Dy | 5 +he—e(t)| + Die(t)
1 SVO

This point is where the arrow of time comes into play.
We can absorb Dye(t) < 0 into the new dissipation measure fi.
(Recall that D[v, p] < Dik + V[vgR7*] + V47 allows for inequality

in the relaxed local energy inequality.)

Now it is possible to cancel out k. except...



Getting rid of the unresolved flux density

Conflict: We need to simultaneously satisfy two equations

> " vjul + Pt )87 + RIF = 0
I

ST elt) =0
I

The summation in the second is half the trace of the summation in
the first equation.



Getting rid of the unresolved flux density

Conflict: We need to simultaneously satisfy two equations

> " vjul + Pt )87 + RIF = 0
I

ST e =0
I

The summation in the second is half the trace of the summation in
the first equation. However, we can uniquely specify the pressure
increment P(t,z) = (2/3)(—e(t) + ke — trR¢/2) so that the first
equation implies the second equation.



Conflict: Eliminate the Unresolved Flux Current and Stress

Another conflict: Recall that we solved

Z vlgvf‘,vf( + ‘sz =0
I, J,K)eT

And need to solve

_ ” ”
Z vivh + P(t, ac)éfu + Rfl]g =0
I



Conflict: Eliminate the Unresolved Flux Current and Stress

Another conflict: Recall that we solved

Z vmv?,vﬂ + ‘Pgm =0
I,,K)eT

And need to solve

> wjvh + P(t,)dl + Rl =0

To do both, use waves in Z,, to eliminate the current ¢[;] then
Z U}E = P(SM R]Z Z ”1”1
141, IeT,

absorb the 7, terms as a slightly lower order term.
Ok as long as [|¢y][|*/3 is lower order!



Dangerous terms

The requirement that || [|/% be lower order than || Ry | is
problematic and threatens the success of the iteration.

It means that for the next stage we need to ensure Hc,2[2}||2/3 is

lower order compared to Hé[z]H-

For example ¢ contains a dangerous interaction term of the form
ViRY = Vi(Pdly + Rly +--+), where 53 = e1 ® e1 + (e3 @ €3)/2
is a component of §7¢ 5%] 6{26} taking values in (e2)® ® (eg)t.
The vector field VgPé[z] takes values in (e3)! as desired, but has

the same order of magnitude as \|ﬁ[2]|]3/2.



Dangerous terms: algebraic cancellation saving the day

What saves us from this difficulty is that the divergence of WP(S[Q]
has a good cancellation:

vj[wpéﬂ ZAB G 51)1)1@]35[2] T



Dangerous terms: algebraic cancellation saving the day

What saves us from this difficulty is that the divergence of VgP(S[Q]
has a good cancellation:

Vj[VePéﬂ Z)\e A Zv fj)U]gP(S[Z] + -

We have that V¢&; Z (e1), vr Z (e9,€3) and
djg) = €1 ® e1 + (e3 ® e3)/2, so the leading order term
approximately vanishes.

We then apply div™! to obtain an acceptable contribution to the
new unresolved current /. Other error terms exhibit similar
favorable cancellations or can be directly absorbed into ¢7.



Thank you!



