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Why stochastic differential games?

Interactive decision-making theory

Dynamical systems

Optimization-based systems

Uncertainty and risk quantification (distribution of the variables of interests)

Figure: Engineering applications
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Stochastic differential game of mean-field type

Let Z:= {1,..., 1} be decision-makers interacting through the following SDE:
dx(t) = B(t, x(£), u(t, -), u(£))dt + o(£, x(£), u(t, -), u(£)dB(E), x(0) = x0 ~ po, (1)

where u(t) := (u1(t),...,u/(t)). The accumulative cost for i € Z is as follows:
T
J,‘(LI,', U_,') = ¢f(T7X(T)a :U’(T7 )) + / /,'(t,X(t), M(ta ')7 U(t))dt
0
The non-cooperative stochastic differential game of mean-field type consists of

VieTl: inf E[J,-(u,-, u_,')], s. t. (1)

ujl -

Best-response strategy

m
EN

For some given actions u_;(-) made by decision-makers Z \ {i}:

u(lr)]f E[Ji(ui, u—i)|xo ~ po, u—i(-) € U_j], s. t. (1). (2)

A strategy u}(-) that solves Problem (2) is called a best-response of decision-maker i € 7 and the
set of best-response strategies is denoted by BR(u_;(-)).

|

Nash equilibria
A strategic profile u*(-) := (uy(-),...,u;(-)) €Us X --- x U, is a Nash equilibrium if

ur(-) € BRij(u*;(:)), forallieZ.

y
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Stochastic differential game of mean-field type

If there exits a function v;, for all i € Z, such that

(9 nf [ i)+ (B0, o)
—vi=— i i(t, x, w, u X, b, U
at u;eU; R H o 8,u

< —1 —2 —_— (t u) (l’ u) (t )
> 9 5 Vi y Xy by ) y Xy by , dX),
+ 2 o m o 7 u(t, d

V,-(T,X(T),/L(T))Z ¢i(T7X(T)vM(Tv'))M(T7dX)
\ R

Then v;(0, xo, 10) is the equilibrium cost and u?* is the optimal strategy for decision-maker i € Z.

Hi (6%, 1., S) = inf. / [/f(t,x,u, D)+ (BEx, ), p) 4 STEX DT I u»]u(t, )
'JR

HS
5] o0 0 9% 9
av,-:—H,' t,x,,u,—X—v,',——v,- ,
The PIDE can be re-written as: H

v,-(T,X(T),,u(T)):/’L/},-(T,X(T),M(T,-)),u,(T,dX).
R

Fokker-Plank-Kolmogorov equation: atu + 55 9 [Bu] + % 5 ax2 [a 1] =0, u(0,-) = po.

@ A. Bensoussan, J. Frehse & S. C. P. Yam. Mean field games and mean field type control theory.
Springer Briefs in Mathematics, Vol. 1. New York, 2013

@ H. Tembine. Mean-Field-Type Games.
AIMS Mathematics, 2(4):706-735, 2017
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Non-cooperative LQ case

Consider the following SDE with state-and-input-independent diffusion term:
dx(t) = B(t,x(t),E[x(t)], u(t), E[u(t)])dt + o(t)dB(t), x(0) := xo, E[x(0)] := E[x0],  (3)
and with linear drift term:
B(t,+) = bo(t) + bi(t)x + By (EIx(E)] + > _ bay(B)us(e) + Y Bas(£)E[u (1))
JET jez

Each decision-maker pursues to minimize the following cost functional:

Sy ug) = S@(TIX(TY + 5 aG(T)EL(T)P

.
+ % / (ai(£)x(£)? + Gi(DEIX(D) + ri(t)ui(t)? + Fi(t)E[ui(t)]?) d.
0

The non-cooperative LQ stochastic differential game of mean-field type is

Viel: inf E[J,-(u,-, u_,')], s. t. (3)

uj

It can be solved semi-explicitly using an appropriate ansatz (implementation interests).

@ J. Barreiro-Gomez and H. Tembine Mean-Field-Type Games for Engineers.
CRC Press Taylor & Francis Group, ISBN/EAN: 0367566125/9780367566128 pp. 528. November, 2021
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Application: Evacuation problems

Objective: Study large-number of decision-makers. Optimal policies for evacuation.

Evacuation Procedure Traffic Systems

From initial distribution to the exits (minimize From origin to destination
evacuation time) (minimize travel time)

@ J. M. Lasry and P. L. Lions. Mean field games.
Japanese Journal of Mathematics, 2(2007):229-260, 2007

@ M. Huang, R. P. Malhamé and P. E. Caines. Large population stochastic dynamic games: closed-loop McKean-Vlasov systems.
Communications in information and systems, 6(2006):221-251, 2006

@ A. Bensoussan, J. Frehse and S.C.P. Yam. Mean Field Games and Mean Field Type Control Theory.
Springer Briefs in Mathematics, New York, 2013

@ D. A. Gomes. Mean field games models—a brief survey.
Dynamic Games and Applications, 4(2):110-154, 2014
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Crowd evacuation problem: Main considerations

Evacuation problems
@ Optimizing time horizon

@ Considering fixed-time horizon and optimizing a running cost

Two main approaches within fixed-time horizon problem
e N\

Local C tion Ti .
ocal Longestion ferms Global Congestion Terms

Only agents in a neighborhood
Prevent the formation of agglomeration by
means of velocity penalty

All agents in the problem
Crowd aversion (spread of agents)

E. Cristiani and F. S. Priuli and A. Tosin. Modeling Rationality to Control Self-Organization of Crowds: An Environmental Approach.
SIAM Journal on Applied Mathematics, 75(2):605-629, 2015

B. Djehiche, A. Tcheukam and H. Tembine. A Mean-Field Game of Evacuation in Multilevel Building.
IEEE Transactions on Automatic Control, 62(10):5154-5169, 2017

N. Toumi, R. Malhamé and J. Le Ny. A Tractable Mean Field Game Model for the Analysis of Crowd Evacuation Dynamics.
Proceedings of the 59th IEEE Control Conference on Decision and Control (CDC), DOI: 10.1109/CDC42340.2020.9303802, 2020

J. Barreiro-Gomez, S. E. Choutri and H. Tembine. Risk-awareness in multi-level building evacuation with smoke: Burj Khalifa case study.

Automatica, 129(2021):109625, 2021

[ P P T P

A. Aurell and B. Djehiche. Mean-field type modeling of nonlocal crowd aversion in pedestrian crowd dynamics.

SIAM Journal on Control and Optimization, 56(1):434-455, 2018

J. BARREIRO-GOMEZ (SITE CENTER) Stochastic differential games of mean-field type 2022 7/21

Evacuation preliminaries

Decision-makers Z := {1, ..., I} pursue to evacuate D C R? with exits S C bd(DD).
dxi(t) = ui(t)dt + oi(t)dBj(t), for all t € [0, T], x;(0) € D,
where x;(t), uj(t), and B;i(t) are the position, strategy, and Brownian motion for i € Z.

u(t) := (u1(t), ..., ul(t)),
u_i(t) == (u1(t),...,ui—1(t), uir1(t),. .., u/(t)),

x(t) = (x1(t),...,x/(t))-
The decision-makers can identify the crowd within a radius € € R+
B(xi(t),e) = {y € D\ bd(D) : d(xi(t),y) < ¢}.
The nearest exit that the decision-maker i € Z knows (or can identify)

&i(t) € argmin d(x(t),y), VieZ.
y€es

@ J. Barreiro-Gomez Stochastic differential games for crowd evacuation problems: A paradox.
Automatica, 140(2022):110271, 2022
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Evacuation preliminaries

Figure: Example for the local congestion measurement.
CHx(t),e) = {j € T: x(t) € B(xi(t),e)}, Vi€ET,
CH(x(t),e) = {j € T: x(t) € B(xi(t),e) A d(x(t), &) < d(xi(t),&)},V i€ L.

We will refer to Ci(x(t),e) from now on.

Local congestion term

Let vi(x(t),e) be a local mean-field term for the decision-maker i € Z. Local since v;(x(t),€)
only depends on B(x;(t),¢), e.g., card(Ci(x(t),€)).

Global congestion term

Let x(t) be a global mean-field term for any decision-maker i € Z. This term is global since
x(t) = ﬁ(z) ZjeIXj(t) depends on all the decision-makers in the set Z.
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General evacuation problem

Let us consider the following cost function:

Kinetic Potential
T A\ N\
Gilu, €) = ilx(T), %(T), &(T)) +5 / 5 e(0), £)un(2), ui(1) + F(x(1), (1), (1)) .
Term;vgl cost f0 Runn;; cost

The evacuation problem is given by

|?£ _E[G,-(u,g,-(t))], s. t. dxj(t) = uj(t)dt + o;(t)dB;(t), t € [to, T], x;(0) € D.

uj i

where U; set of measurable feasible control inputs for j € 7.

Best-response strategy

The planning strategy u(t) to evacuate I is a best-response strategy if it solves

0 ELGi(wi, i, €(8)) | uiO]

subject to SDE. The set of best-response strategies BR;(u—;(t)), for all i € Z.

v

Nash equilibria

Strategic profile u*(t) = (uf(t),...,uf(t)) Nash equilibrium if u*(t) € BR;(u* ;(t)), for all i € T.

v
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The optimal cost functional is denoted by v;(t, x;) from t up to T as follows:
T

(e x) = inf Buia(T)LR(T), 6(T) + 5 /v:(X(S),6)<Ui(S),Ui(S)>+ﬁ(><i(5),>'<(5),€i(5))d5]

ui(-

The HIB PDE is given by

2
%Vi(taxi) = —H; (t,X, %Vi, 86_><,.2vi> , vi(T,xi) = i(xi(T),x(T),&(T)),

where the Hamiltonian is as follows:

Hi(t,x,p,S) = inizj E[%y;(x,s)(u,—,u,—) + ({ui,p) + = f(x,,x &)+ = (Sa,(t) oi(t)) |-

uij i

Optimizing in u;, the Hamiltonian becomes

1
H;(t,x,p,S):—m< p)+ = f(x,,x &)+ = (Sa,(t) oi(t)).

It follows that, the HJB PDE is re-written

0= %v;(t, %) + gﬁ(x,-(t),%(t),gi(t))

1 0 ) 1 92
B 2vi(x(t),¢) <8x, vi(t, %), Ox; a0 Vit X’)> <3 2 vi(t, xi)oi(t), U/(t)>

The corresponding optimal cost G;(u*,&;) = v;(0, x;(0)).
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The optimal control input for the decision-maker i € Z is given by

1 0
i(x(8),€) 9%

where v;(t, x;) is the optimal value function from time t up to terminal time T

uj (t) =

—vi(t, xi),

0 1 _ 1 0 0
av,-(t,x,-) = —Ef,-(x,-(t),x(t),f,-) + W < v,(t xi), a—Xiv,'(t, x,-)>

1/ &2
S <(9( BE vi(t, xi)oi(t), J,(t)>; te[0,T),

with terminal boundary condition given by
vi(T,xi) = %i(xi(T),x(T),&(T)).
The term ;i(x(t),e) = > Ly eB(x(r),c) creates some difficulties.

JjET

@ B. Djehiche, A. Tcheukam and H. Tembine. A Mean-Field Game of Evacuation in Multilevel Building.
IEEE Transactions on Automatic Control, 62(10):5154-5169, 2017
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Receding-horizon philosophy

Let N € N time intervals in receding-horizon control. Every At = T /N decision-makers design a
new evacuation planning.

Gik(uk: &ijk) = Yik (x(T k), x(T1k), k)

T
+ % / Vil (x(to(k)), e)(ui(tlk), ui(t|k)) + fij (x(tlk), x(t[k), &iji) dt,
to(k)

where k € [0..N], &, = &i(to(k)) and to(k) = kAt.

Figure: Simple diagram to explain the receding-horizon control philosophy.

@ J. Barreiro-Gomez Stochastic differential games for crowd evacuation problems: A paradox.
Automatica, 140(2022):110271, 2022
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Receding-horizon philosophy

Let N € N time intervals in receding-horizon control. Every At = T /N decision-makers design a
new evacuation planning.

Gi|k(uka §i|k) = 1/’i|K(X(T’k)a x(Tlk), 5i|k)

T
+ % / Yijk (x(to(k)), )(ui(tl k), ui(tlk)) + fix(x(tl k), x(t| k), & k) dt,
to(k)

where k € [0..N], &, = &(to(k)) and to(k) = kAt.

i(t[F)

Figure: Simple diagram to explain the receding-horizon control philosophy.

@ J. Barreiro-Gomez Stochastic differential games for crowd evacuation problems: A paradox.
Automatica, 140(2022):110271, 2022
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Receding-horizon philosophy

Let N € N time intervals in receding-horizon control. Every At = T /N decision-makers design a
new evacuation planning.

Gik(uk: &ijk) = Yik (x(T k), x(T1k), k)

T
+ % / Vil (x(to(k)), e)(ui(tlk), ui(t|k)) + fij (x(tlk), x(t[k), &iji) dt,
to(k)

where k € [0..N], &, = &i(to(k)) and to(k) = kAt.

z;([k + 1]At)

Figure: Simple diagram to explain the receding-horizon control philosophy.

@ J. Barreiro-Gomez Stochastic differential games for crowd evacuation problems: A paradox.
Automatica, 140(2022):110271, 2022
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Results: Illustrative example

Total crowd of card(Z) = 200.

Table: Summary of evacuation times for the two scenarios and both
evacuation strategies.

Evacuation Time

Scenario Local MFT  Local/Global MFT e e G e
Multiple exits 2[min] 1.5[min] S
l |
P TN Fowe &é&@@a %.

Tier13 T
S5 LoD Loz 12 LML Ll

o &&%&&

Lk 2 L s Lok 0175 Lo
> \ y 18 L Lovels 27-31

B U\ YUY Wl B owowowoewas

1000

y-position
2
o

s
: P 2000 2500
_— 1000 1500
) ) 3l 7g 500
time [min] x-position
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Neural network differential games of mean-field type

97
Some important considerations. Decision-makers: (@(tk), )— ¢ Fua(ty)
@ do not have knowledge about the model urlte)— "
@ only have access to data of the system behavior : : u(ty)
@ can interact with the system to “learn” from it ((ty), ) —
This leads to the need ot Al techniques u(t)— 97 [ u(t)

Figure: Computation architecture.

Layer functions, input dim di, output dim d>, and activation func h; : R = R, j € {0,..., n}, by

di
h; .
Ly 4 = {¢ 'R — R%2|3b € R2,IW € R2XU Vi€ {1,...,da},d(2)i = hj(bi +Z Vl/,-ka)}
k=1
where z := (z1, ..., z4,) input vector.

@ J. Barreiro-Gomez, S. E. Choutri, and B. Djehiche Stability of Stochastic Mean-Field-Type Games Via Non-Cooperative Neural Networks
Adversarial Training. Preprint, 2022

@ R. Carmona and M. Lauriére Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games:

lI-the finite horizon case. Annals of Applied Probability, (to appear)

@ R. Carmona and M. Lauriére Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of Mean Field Control and Games
I: The Ergodic Case. SIAM Journal on Numerical Analysis, 59(3):1455-1485, 2021
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Neural network differential games of mean-field type

Set of NNs with n hidden layers and one output
. - hj . .
uiNN = {gig - R% —)Rdn+1|v_j € {0...,n;},§|¢fi € I[Adj.’djﬂ, gl.9 = ¢7, 1 o¢7: o...o¢?},
for all i € Z. Parameters to be trained 6; := {VVI.(O), bfo), VV’.(I), bfl), et V\/i(n_l), bfn_l)}, and

gg ::(gle,...,g,e)EU{“N><---><Z/{,NN.
For a finite T > 0 and N7 € N*, let At = T/Nt and t, = kAt, ke {0,..., Nt —1}.

N Ny —1
1 : ) .
JI-N(Ui, U_i) = N Z (¢i(XJ(tNT)7 MX(tNT)) + Z gi(tkaxj(tk)7IJ'X(tk)a U,{(tk): :uu,'(tk))At)a

j=1 k=0

where, N N

1 - 1 i
fx(te) = NZXJ(tk), g, (t) = NZUI’.(tk), for all i € T
J=1 j=1

and pu(ti) := (puy (tk)s - - - 5 oy ())-

@ J. Barreiro-Gomez, S. E. Choutri, and B. Djehiche Stability of Stochastic Mean-Field-Type Games Via Non-Cooperative Neural Networks
Adversarial Training. Preprint, 2022
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Discretized Stochastic Differential Game Problem

The non-cooperative problem:

viel: i?éuJiN(u;, u_i), s. t.xI(ty1) = > (tw) + F(ti, X (th), (th), & (), pu(te))) At + O'B{(,

uj
x4 ~ po, Bl ~N(0,At), k€ {0,...,Ny —1}, j€{1,...,N}, and x} ~ po.
Neural network as best-response functions:

N Nt—1

MO =D |lef o (1) — " (1)

j=1 k=0

|, for all i € T,

Minimize LN(0) by suitable NNs gg(z) eUNN x - x UNN
VieZ: inf L,N(O,-), s. t. : compatible architecture gg, and u{*, j=1,...,N, given.
0;
The optimal weight and bias parameters are obtained as

0; € arg rr(;in LN(9)).

@ J. Barreiro-Gomez, S. E. Choutri, and B. Djehiche Stability of Stochastic Mean-Field-Type Games Via Non-Cooperative Neural Networks
Adversarial Training. Preprint, 2022
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Toy LQ Example

Let us consider the following two-decision-maker Z = {1, 2} discrete-time dynamics:

X(tiy1) = bix(ti) + bLE[x(t)] + borui(tx) + barElu1 (k)] + booua(ti) + booE[u2(tk)] + o Bk,

and the cost functional for the i—th decision-maker:

Ji(ui, u—i) = qi(tny ) (x(tny) — Elx(tn,)])? + @i(twy )Elx(tny )]
Ny —1

+Z (qf(fk)(x(fk) — E[x(t:)]) + @i(t)Elx(t)]* + ri(ti) (ui(te) — Elui(t)])* + Fi(lfk)IE[Uf(fk)]z)

k=0
Parameters: by =1, 1_31 = 0.5, by;1 =1, 1_321 = 1.5, by = 2, 1_322 =25 0=1,qg1 =5, g1 =5,
g=10,0=10,n =1, =1, n=2, =2, forall k=0,...,N7.

Table: Considered neural network architectures

Non-cooperative computation

Decision-maker 1: g19 Decision-maker 2: g29
Layers 3 5
Neurons per layer {3,10,2} {3, 10,10, 10,2}
Total number of neurons 14 34
Activation functions {lin, tanh, lin} {lin, tanh, tanh, tanh, lin}
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Stability: Closed-loop using the NN

Non-Cooperative Computation Non-Cooperative Computation

200
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8 — u
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0 2 -100
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Figure: Closed-loop behavior using the trained neural network, and stability characterization.
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Other SITE Applications

@ Water distribution network

@ S. E. Choutri and B. Djehiche. Stochastic Maximum Principle for Mean-Field Control with Almost Sure Pure State Constraints.
On Going Research, 2022

@ J. Barreiro-Gomez and H. Tembine. Mean-Field-Type Model Predictive Control: An Application to Water Distribution Networks.
IEEE Access, 7, 135332-135339, 2019

@ COVID-19 propagation

@ H. Tembine. COVID-19: data-driven mean-field-type game perspective.
Games, 11(4):51, 2020

@ Z. El Oula Frihi, J. Barreiro-Gomez, S. E. Choutri and H. Tembine. Toolbox to Simulate and Mitigate COVID-19 Propagation.
SoftwareX, 100673, 2021

@ Price dynamics for smart grids

@ Z. E. O. Frihi, S. E. Choutri, J. Barreiro-Gomez, H. Tembine. Hierarchical Mean-Field Type Control of Price Dynamics for Electricity in

Smart Grid.
Journal of Systems Science and Complexity, 35(1):1-17, 2022

@ Leadership design

@ Z. E. O. Frihi, J. Barreiro-Gomez, S. E. Choutri, H. Tembine. Hierarchical structures and leadership design in mean-field-type games with

polynomial cost.
Games, 11(3):30, 2020

@ Opinion Dynamics

@ J. Barreiro-Gomez et al. Distributed data-driven UAV formation control via evolutionary games: Experimental results.
Journal of the Franklin Institute, 358 (10), 5334-5352, 2021

J. BARREIRO-GOMEZ (SITE CENTER) Stochastic differential games of mean-field type 2022 20 /21




Thank you very much for your attention

Julian BARREIRO-GOMEZ

& jbarreiro@nyu.edu el https://wp.nyu.edu/jbarreirogomez
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