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2D Euler Equation

@ 2D incompressible Euler equation in vorticity form:
we+u-Vw=0 for(t,x) € RT x R?
u=V+iATly, Vi = (=04, 04)-
w(0,-) = wo(")
e Biot-Savart Law: u = V* (wxN) =: V-V, where NV(x) := 5= log |x|.
@ Vortex Patch : If wg = 1p for some bounded domain D, then
w(t,x) = 1p,, where D; = X(D),

where X; : R? — R? is the flow map generated by u.
@ More generally, one can consider w = >, w;lp,

1 .
w =X wilp,

Figure: Linear combination of patches

Jaemin Park (UB) Stationary euler June 01, 2022



@ Stationary solutions:
w(t, x) = wo(x)

@ Trivial stationary solutions: Any radial vorticity is a stationary solution.

@ If w=1p is stationary, then u- 7= 0 on 9D.

Under what condition, must a stationary compactly supported vorticity be radially
symmetric?

o If w=1p and D is simply connected, then D has to be a disk (moving plane
method) Fraenkel ('00).

@ A stationary solution without a stagnation point must be shear flow Hamel,
Nadirashvili ('17, '19)
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Theorem (Gémez-Serrano, P, Shi, Yao '19)

Let w =), wjlp, where w; > 0 be a stationary solution to 2D Euler equation.
Then w is radially symmetric (up to a translation).

Allowing w to change its sign, can we construct a non-radial solution?

@ Trivial/ non-trivial stationary vorticity:

o In T2, there are "many” stationary weak solutions Choffrut, Székelyhidi ('14)

o In T?, there are non trivial stationary solutions near Kolmogorov and Poiseuille
(Coti-Zelati, Elgindi, Widmayer ('20))

o Flexibility results in various domains Constantin, Drivas, Ginsberg ('21)

o In R?, smooth non-radial stationary w without compact support. Musso,
Pacard, Wei ('12)

o In R?, there exists a non-trivial stationary solutions with compact support of
velocity u, where u is continuous but not C'. David Ruiz (forthcoming)
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Theorem ((Infinite kinetic energy) Gémez-Serrano, P, Shi '21)

There exists a non-radial stationary patch solution to the 2D Euler equation with
infinite kinetic energy [, |u]?dx = oc.

Theorem ((finite Kinetic energy) Gémez-Serrano, P, Shi '21)

There exists a non-radial stationary patch solution to the 2D Euler equation with
finite kinetic energy .. |i]?dx < oo and compactly supported velocity field.

@ Locally radial solutions:

A Fact - Jpewdz =0 = [, [ul’de < oo

Figure: Locally radial stationary solution
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Finite energy solutions

Figure: Stationary vorticity with compactly supported velocity and rotating patches

@ The velocity vanishes on the outer boundary.
@ A finite energy solution can be defined in any bounded domain.

@ Stagnation point? Regularity might break down (Rotating patch solutions,
Stokes conjecture (water waves)). In our solutions, the boundary is analytic.
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Problem setting

@ (a, R) determines the flow: vorticity, velocity, stream functions.. etc.
w=w(a,R), d=iaR), V=V(aR).
@ Goal: Choose a > 0 and Ry, R, € H¥(T) so that (denoting R = (R, Rz))
F(a,R) = (normal velocity on the outer boundary) B <u- ﬁl> B (O)

normal velocity on the inner boundary u-fy 0

o Radial vorticity is stationary: F(a,0) = 0.
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Crandall-Rabinowitz theorem

o Crandall-Rabinowitz theorem: Consider F = F(a,R) : R x X — Y for a
Hilbert spaces X, Y. If
(1) F(a,0) =0 forall a e R,
(2) For some a* € R, Ker(DgrF(a*,0)) and Im(DgF(a*,0))" have
one-dimensional.
(3) (Transversality) 9.DrF(a",0)[h] ¢ Im(DgF(a*,0)), for h € Ker(DgrF(a",0)).
Then, there exists a curve s +— (a(s), R(s)) such that F(a(s), R(s)) =0 and

R(s) # 0.

a* Q}h‘ﬁ%s: R—0 @

e Key ingredient of CR (Lyapunov-Schmidt): Under (2), 3 ¢ : R? — R s.t.

o $(0,0)=0
o If ¢(x,y) = 0 for some (x,y) # 0, then there exists a nontrivial solution to
F(a,r)=0.

e Transversality is just a necessary condition for V¢ 0.
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W, := radial derivative of ¥
Wy := angular derivative of ¥

@ Recall that our functional is F : R x HX(T) s H*=(T),

\Ur|out89R1 + w9|out
V. |[inOgRo +Volin )~

e Ex) W(r,0) (on each boundary) = 9y (V(2+ R1(0),0)) =0
@ At the linear level, (linearization at the vorticity w(a, R)),

DrF(, R)[<Zl>] - (‘fﬁfﬁ:ﬁ”hﬁl) + K(a, R)[H]

= W,(a, R)dph + K(a, R)[H].

F(a, R) = normal velocity on each boundary = (

for some linear operator K(a, R) : H s Hk.
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Finite energy case: [p, |u]?dx < oo

V. =Cou =0

Ch,>0 on inner bdry,
Cout =0 on outer bdry.
Recall DgrF(a,0)[h] = W,0ph + K(a,0)[h] for some K(a,0) : H* — H*.
For instance (H:Hilbert transform):

DrFl(a. 0)[@2)] - (C,-nao:ihi Hh2> N (is%n(n) i(Cinn ? sgn(n») (ZD

Choose C;, = Ci,(a) so that Ker(DgrF(a,0)), Im(DrF(a,0))* are
one-dimensional as a map between H* x H¥ — H* x Hk1.
while F: H* x H* s H*=1 x H*=1 (regularity mismatch).
Im(DgF(a,0))* cannot be finite dimensional.

If a> 0 is chosen s.t. [, wdx =0, then ¥, =
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Compactly supported velocity

o If (a*, R*) defines a stationary solution with finite kinetic energy, then the
velocity vanishes on the exterior domain.

P - Stream function

W, radial derivative of ¥

Q== Supp(w)©
e V(a* R*), solves

AV =0, in Q,
VW = const. on 0N.

The maximum principle: max/min of W is on 9% or at "infinity” ex) log |x|.

fR2 AWVdx = 0 prevents W from having its min/max at "infinity".
W = Const. in €.
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@ Two issues:

e CRis not directly applicable (Lyapunov-Schmidt reduction cannot work) .
e Regularity mismatch at nonlinear/linear level.

@ One dimensionality still holds but in different regularity space...

@ The difficulty can be resolved using: 1) Proof of CR theorem without the
Lyapunov-Schmidt reduction 2) Nash-Moser scheme.
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Newton's method

@ Goal: Given G : X — Y for Hilbert spaces X, Y, find x* € X such that
G(x*)=0.
Y

¥ T2 I Zo
@ Xpi1:= X, — DG(x,) "G (xn)]-
o [G(xni1)| S 1DG(xn) 12 Glxn)]2
@ Requirement: 1) Good initial guess: |G(xo)| < €. 2) Invertibility of DG:
|IDG~Y| = O(1). Then, |G(x,)| ~ €+ 0.
@ The condition 2) can be relaxed using "approximate inverse”: If
T(x): Y — X such that |[DG(x,) o T(x,) — 1| = O(]G(xn)|),, then we still
have

|G 0na1)l S 1T (xa) P16 (xa)P. = [G(xn)| ~ € — 0.
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Newton's method framework: Removing parameter

@ Recall our functional:

F(a, R) = normal velocity on each boundary.

Ker(DrF(3,0)), Im(DgF(4,0))* are one-dimensional as a map between
H* x H* s H* x H*=1, while F : H* x H* s H*"1 x Hk=1.
For € > 0, let G(R) := F(3+ P[R],ev + (I — P)[R]).

where 0 # v € Ker(DrF(3,0)), P : H* — KerDgrF(5,0).

Goal: For small € > 0, find R s.t. G¢(R) =0.
G.(0) = F(4,ev) = O(€?). Good initial guess!. Need to check the
"invertibility” of DG..
Invertibility: DG.(R)[h] = A(R) [h] + V,(R)|outOsh.
——

isomorphism
Dirichlet-Neumann type estimate: |W,|ou:(R)| = O(]Ge|(R)).
A(R)~1! plays a role of an approximate inverse.
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Thank You for Your Attention!




