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2D Euler Equation

2D incompressible Euler equation in vorticity form:
ωt + u · ∇ω = 0 for (t, x) ∈ R+ × R2

u = ∇⊥∆−1ω, ∇⊥ = (−∂x2 , ∂x1).

ω(0, ·) = ω0(·)

Biot-Savart Law: u = ∇⊥ (ω ∗ N ) =: ∇⊥Ψ, where N (x) := 1
2π log |x |.

Vortex Patch : If ω0 = 1D for some bounded domain D, then

ω(t, x) = 1Dt , where Dt = Xt(D),

where Xt : R2 7→ R2 is the flow map generated by u.
More generally, one can consider ω =

∑
i ωi1Di

ω = 1ω = −2 ω = 3
ω =

∑n
i=1 ωi1Di

Figure: Linear combination of patches
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Stationary solutions:

ω(t, x) = ω0(x)

Trivial stationary solutions: Any radial vorticity is a stationary solution.

If ω = 1D is stationary, then u · ~n = 0 on ∂D.

Questions
Under what condition, must a stationary compactly supported vorticity be radially
symmetric?

If ω = 1D and D is simply connected, then D has to be a disk (moving plane
method) Fraenkel (’00).

A stationary solution without a stagnation point must be shear flow Hamel,
Nadirashvili (’17, ’19)
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Theorem (Gómez-Serrano, P, Shi, Yao ’19)

Let ω =
∑

i ωi1Di where ωi ≥ 0 be a stationary solution to 2D Euler equation.
Then ω is radially symmetric (up to a translation).

Questions
Allowing ω to change its sign, can we construct a non-radial solution?

Trivial/ non-trivial stationary vorticity:

In T2, there are ”many” stationary weak solutions Choffrut, Székelyhidi (’14)
In T2, there are non trivial stationary solutions near Kolmogorov and Poiseuille
(Coti-Zelati, Elgindi, Widmayer (’20))
Flexibility results in various domains Constantin, Drivas, Ginsberg (’21)
In R2, smooth non-radial stationary ω without compact support. Musso,
Pacard, Wei (’12)
In R2, there exists a non-trivial stationary solutions with compact support of
velocity u, where u is continuous but not C 1. David Ruiz (forthcoming)
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Theorem ((Infinite kinetic energy) Gómez-Serrano, P, Shi ’21)

There exists a non-radial stationary patch solution to the 2D Euler equation with
infinite kinetic energy

∫
R2 |~u|2dx =∞.

Theorem ((finite Kinetic energy) Gómez-Serrano, P, Shi ’21)

There exists a non-radial stationary patch solution to the 2D Euler equation with
finite kinetic energy

∫
R2 |~u|2dx <∞ and compactly supported velocity field.

Locally radial solutions:

ω = −Θ < 0

ω = 1

R2

ω = 1

R2

ω = −Θ < 0

Fact :
∫
R2 ωdx = 0 ⇐⇒

∫
R2 |u|2dx <∞

Figure: Locally radial stationary solution
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Finite energy solutions

~u = 0

ω = ωin > 0

ω = −ωout < 0

m = 3

m = 5

Figure: Stationary vorticity with compactly supported velocity and rotating patches

The velocity vanishes on the outer boundary.

A finite energy solution can be defined in any bounded domain.

Stagnation point? Regularity might break down (Rotating patch solutions,
Stokes conjecture (water waves)). In our solutions, the boundary is analytic.
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Problem setting

θ

ω = a > 0
ω = −1

2 +R1(θ)

1 +R2(θ)

~n1

~n2

(a,R) determines the flow: vorticity, velocity, stream functions.. etc.
ω = ω(a,R), ~u = ~u(a,R), Ψ = Ψ(a,R).

Goal: Choose a > 0 and R1,R2 ∈ Hk(T) so that (denoting R = (R1,R2))

F (a,R) =

(
normal velocity on the outer boundary
normal velocity on the inner boundary

)
=

(
u · ~n1
u · ~n2

)
=

(
0
0

)
.

Radial vorticity is stationary: F (a, 0) = 0.
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Crandall-Rabinowitz theorem

Crandall–Rabinowitz theorem: Consider F = F (a,R) : R× X 7→ Y for a
Hilbert spaces X ,Y . If
(1) F (a, 0) = 0 for all a ∈ R,
(2) For some a∗ ∈ R, Ker(DRF (a∗, 0)) and Im(DRF (a∗, 0))⊥ have

one-dimensional.
(3) (Transversality) ∂aDRF (a∗, 0)[h] /∈ Im(DRF (a∗, 0)), for h ∈ Ker(DRF (a∗, 0)).

Then, there exists a curve s 7→ (a(s),R(s)) such that F (a(s),R(s)) = 0 and
R(s) 6= 0.

a

X

trivial solutions: R=0a∗

(a(s), R(s))

F = 0

Key ingredient of CR (Lyapunov-Schmidt): Under (2), ∃ φ : R2 7→ R s.t.
φ(0, 0) = 0
If φ(x , y) = 0 for some (x , y) 6= 0, then there exists a nontrivial solution to
F (a, r) = 0.
Transversality is just a necessary condition for ∇φ 6= 0.
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θ

ω = a > 0
ω = −1

2 + R1(θ)

1 + R2(θ)

~n1

~n2

Ψr := radial derivative of Ψ

Ψθ := angular derivative of Ψ

Recall that our functional is F : R× Hk(T) 7→ Hk−1(T),

F (a,R) = normal velocity on each boundary = u·~n =

(
Ψr |out∂θR1 + Ψθ|out

Ψr |in∂θR2 + Ψθ|in

)
.

Ex) Ψ(r , θ) (on each boundary) =⇒ ∂θ (Ψ(2 + R1(θ), θ)) = 0
At the linear level, (linearization at the vorticity ω(a,R)),

DRF (a,R)[

(
h1
h2

)
] =

(
Ψr |out∂θh1
Ψr |in∂θh2

)
+ K (a,R)[h]

= Ψr (a,R)∂θh + K (a,R)[h].

for some linear operator K (a,R) : Hk 7→ Hk .
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Finite energy case:
∫
R2 |u|2dx <∞

ω = a > 0

ω = −1

Ψr = Cin > 0
Ψr = Cout = 0

If a > 0 is chosen s.t.
∫
R2 ωdx = 0, then Ψr =

{
Cin > 0 on inner bdry,

Cout = 0 on outer bdry.

Recall DRF (a, 0)[h] = Ψr∂θh + K (a, 0)[h] for some K (a, 0) : Hk 7→ Hk .
For instance (H:Hilbert transform):

DRF (a, 0)[

(
h1
h2

)
] =

(
Hh1

Cin∂θh2 + Hh2

)
=

(
−isgn(n) 0

0 i(Cinn − sgn(n))

)(
h1
h2

)
.

Choose Cin = Cin(a) so that Ker(DRF (a, 0)), Im(DRF (a, 0))⊥ are
one-dimensional as a map between Hk × Hk 7→ Hk × Hk−1.
while F : Hk × Hk 7→ Hk−1 × Hk−1 (regularity mismatch).
Im(DRF (a, 0))⊥ cannot be finite dimensional.
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Compactly supported velocity

If (a∗,R∗) defines a stationary solution with finite kinetic energy, then the
velocity vanishes on the exterior domain.

Ψ : Stream function

Ψr :radial derivative of Ψ

ω = −1

ω = a∗ > 0

1 +R∗
2

2 +R∗
1

Ω := Supp(ω)c

Ψ(a∗,R∗), solves {
∆Ψ = 0, in Ω,

Ψ = const. on ∂Ω.

The maximum principle: max/min of Ψ is on ∂Ω or at ”infinity” ex) log |x |.∫
R2 ∆Ψdx = 0 prevents Ψ from having its min/max at ”infinity”.

Ψ = Const. in Ω.
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Two issues:

CR is not directly applicable (Lyapunov-Schmidt reduction cannot work) .
Regularity mismatch at nonlinear/linear level.

One dimensionality still holds but in different regularity space...

The difficulty can be resolved using: 1) Proof of CR theorem without the
Lyapunov-Schmidt reduction 2) Nash-Moser scheme.
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Newton’s method

Goal: Given G : X 7→ Y for Hilbert spaces X ,Y , find x∗ ∈ X such that
G (x∗) = 0.

Y

X
x∗ x0x1x2

xn+1 := xn − DG (xn)−1[G (xn)].

|G (xn+1)| . |DG (xn)−1|2|G (xn)|2.

Requirement: 1) Good initial guess: |G (x0)| ≤ ε. 2) Invertibility of DG :
|DG−1| = O(1). Then, |G (xn)| ∼ ε2n 7→ 0.

The condition 2) can be relaxed using ”approximate inverse”: If
T (x) : Y 7→ X such that |DG (xn) ◦ T (xn)− I | = O(|G (xn)|),, then we still
have

|G (xn+1)| . |T (xn)|2|G (xn)|2. =⇒ |G (xn)| ∼ ε2
n

→ 0.
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Newton’s method framework: Removing parameter

Recall our functional:

F (a,R) = normal velocity on each boundary.

Ker(DRF (ã, 0)), Im(DRF (ã, 0))⊥ are one-dimensional as a map between
Hk × Hk 7→ Hk × Hk−1, while F : Hk × Hk 7→ Hk−1 × Hk−1.

For ε > 0, let Gε(R) := F (ã + P[R], εv + (I − P)[R]).

where 0 6= v ∈ Ker(DRF (ã, 0)), P : Hk 7→ KerDRF (ã, 0).

Goal: For small ε > 0, find R s.t. Gε(R) = 0.

Gε(0) = F (ã, εv) = O(ε2). Good initial guess!. Need to check the
”invertibility” of DGε.

Invertibility: DGε(R)[h] = A(R)︸ ︷︷ ︸
isomorphism

[h] + Ψr (R)|out∂θh.

Dirichlet-Neumann type estimate: |Ψr |out(R)| = O(|Gε|(R)).

A(R)−1 plays a role of an approximate inverse.
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Thank You for Your Attention!
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