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QU +U-VU—-AU+VP=0, zcR3, te(0,7),
V.-U=0,
Ui,0)=Uy, z€cR>.

Ae (0,00),y € R3, s € (0,T/)2),

UO,)\(y) = )‘UO()‘y)7 U/\(ya S) = )‘U()‘ya )‘25)7
P/\(y7 S) = )‘2P(>‘y> )‘23)‘

Criticality | examples of critical norms

|Uls®sxco,ryys  sup UG, O)llpsmsy,  sup VT = t|U(:,1)|| Loo (ms)-
te(0, te(0,1)

T)
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Finite-energy solutions

Energy
2 2 1 2
/|U 2+ //|VU| g/w.
2 Jps

kinetic energy energy dissipation

Leray 1934 | Given U, € L2(RR?), there exists

U € L*(0,00; L3(R?)) N L?(0,00; H' (R?))

a finite-energy global-in-time weak solution, Leray-Hopf solution.
Supercriticality barrier \ for Uy := \U(\-, \2.),

1
E(Uy; 1) = XE(U; )\27'), for X e (0,00).
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‘finite—energy weak; non-unique?

/e e T

lunique and smooth|

U(-,O)IU()ECE?T

For C*(R?) and divergence-free data does the Leray-Hopf
solution remain smooth and unique for all time?
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Blow-up? Non uniqueness?

‘finite—energy weak; non-unique?

x (x0,ty) regular x*
X

€ L>(Qry (0, t0))
T (0., T) -

g M m e mmd e e e e mm—m—,———— - ==

lunique and smooth|

U(',U):U()ECSC&

Regular vs singular point

A point (zg, t) is a regular point if U is bounded in a parabolic cylinder
Qr, (z0,t0) for some o > 0, otherwise it is a singular point.
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Blow-up? Non uniqueness?

‘finite—energy weak; non-unique?

x xX

X

T (2, T*) singular x

T L¥(Qu(x, T))

lunique and smooth|

C](',O) =U, € stg

Regular vs singular point

A point (zg, t) is a regular point if U is bounded in a parabolic cylinder
Qr, (z0,t0) for some o > 0, otherwise it is a singular point.
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> Heuristics due to Sverak

|AU| > |U -VU| = smoothness
|AU| <« |U-VU| = turbulent behavior?

> for |U(z, )| < Mlz|™Y,

M M?

—AU ~ P vs. U-VU ~ W

> Open whether Type | condition

\U(z,t) for M >1

|SL
|z| + v/t

implies space-time point (0, 0) is regular.
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Main results of the talk

New quantitative blow-up rates for critical or slightly supercritical
quantities near potential singularities:

| Blow-up rate in Type | case|

Barker and P. CMP (2021)

We get a new localized quantitative blow-up rate for the critical L3
norm.

’ Blow-up of a supercritical Orlicz norm
Barker and P. JMFM (2021)
This gives a partial positive answer to a conjecture of Tao (2019).
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Qualitative vs. quantitative blow-up of
critical norms
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Qualitative blow-up in the endpoint L3

Escauriaza, Seregin, Sverak (2003)

Assume that 7 is the first blow-up time of U.

Then

limsup [|U(+,?)|| 13(r3) = oo
t—T*

Abstract quantitative estimate
There exists Fy..;, such that for all U,

HUHLQO(Riix(f%,o)) < Funio(|U L°°(—170;L3(R3)))-

> via persistence of singularities from Rusin, Sverak (2011)
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Quantitative regularity and blow-up rate in the
endpoint L*L3

Tao (2019)

’ Quantitative regularity ‘
There exists cyniv > 0,

||UHL°°(R3><(71/2,O)) < exp exp exp (”UHCLMJOH(U_LQLS(RL%)))

| Blow-up rate|
Assume T is a first blow-up time.
Then, there exists ¢/ _. > 0,

Univ

1T ) 23 ws)

lim sup —— = 00.
t—=T* ( log log log (T%_t))(‘“"“’

10/38



Strategy of Tao: frequency bubbles of concentration

’ Heuristics for regularity ‘ Tao (2013)
Let Py be a projector on frequencies ~ N and apply it to the
Navier-Stokes equations

0= 0,(PyU) — PyAU + PyPV - (U ® U)
~ 0;(PyU) — N?*PyU + N(PyU)2.

If IN"!PyU| < 1, then |N(PyU)?| < |N2PyU|;
hence diffusion dominates the nonlinearity.

Main goal

If N=H|PnU|| g, is not small in terms of [|U]| oo (—1,0;25(r3)), then
find an upper bound N, for N;

N, < expexpexp (HUHC”"” 1 O;L3(]R3)))
via backward frequency bubbling, transfer of information to the

enstrophy, unique continuation, backward uniqueness and summing

at final time. 138



A new strategy for quantitative regularity
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Blow-up rate for Type | singularities

Barker, P. (2021)
For M sufficiently large, § € (0, 1), if

T* is the first blow-up time of U,
the space-time point (0,7) is a singularity,
Ul Lo (0,1%;1.3.00 m3)) < M,
then
)
log ((T* —t)"2
[ ez 00,
Bo(R(t)) exp exp( )

forall t € (t.(6, M, T*),T*).

R(t) == O((T* —t)"2")
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Blow-up rate for Type | singularities

Barker, P. (2021)
(Conc)

/B (R(®)) L e R(t) = O((T* —)'7").

exp exp(M1025)

> In the Type | case, we are able to remove two ‘logarithms’ for the
rate of |[U(-,1)||35 (R%)

Tao (2019) (logloglog ((T* —t) 1)) *unie,

log ((T* — t)fg)

Barker, P. (2021) exp exp(M1025) *

> The rate is optimal for Discretely Backward Self-Similar solutions
with sufficient decay

Ulz,t) = \UOw, Xt), forafixed 1< A

13/38



Toy model: quantitative regularity under L; , control

Quantitative estimate

1U || oo m3x (~1/2,0) < GUIU | 25 ®3 x(~1,0)))
with G explicit.
Main goal
If the scale-invariant Weissler-Kato type norm
1
(WK) ()5 U, )] s (may

is not small, i.e. concentrates, then
find a lower bound —¢*(|[U]|; ) > 0 for —¢".

Conclusion

The scale-invariant Weissler-Kato type norm (WK) is uniformly small
fort" € (—t.(||U]|; ), 0); hence e-regularity implies
quantitative boundedness.
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backward propagation using mild solution theory,
Cannone (1997)

/2
o U sy >

. vt e (—1,2t).
Sk (~17) o

1T t") L5 msy >

S
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Toy model: quantitative regularity under L; , control

backward propagation using mild solution theory,
Cannone (1997)

€ e/2
= UG5 >
(—t’)% H ( )HL (R3) (—t”)

summation of scales and lower bound for initial concentration

, vt e (=1,2t).

1U () s rsy >

atl=

2t 5 65 2t 1
||U(.’ t//)” dt// > _t// — dt//
/ X L5(R3) 32/, (—t7)
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Toy model: quantitative regularity under L; , control

backward propagation using mild solution theory,
Cannone (1997)

€ e/2
= UG5 >
(—t’)% H ( )HL (R3) (—t”)

summation of scales and lower bound for initial concentration

, vt e (=1,2t).

1U () s rsy >

atl=

/ ’
2t 65 2t

U -,t” 55 5 dt’ > —— —" -1 dt"
. L3 (R?)

5
101 g1 > [ n/,
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Toy model: quantitative regularity under L; , control

backward propagation using mild solution theory,
Cannone (1997)

€ e/2
= UG5 >
(—t’)% H ( )HL (R3) (—t”)

summation of scales and lower bound for initial concentration

, vt e (=1,2t).

1U () s rsy >

atl=

5 5

2t’
5 € m—1 gn _ € /
HUHLE’)(RSX(fLo)) > 32/_1 (=t dt" = —ﬁlog(—Qt)
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Toy model: quantitative regularity under L; , control

backward propagation using mild solution theory,
Cannone (1997)

, vt e (—1,2¢).

UGt s rsy > = UC)sws) >

3
(~t)s ()3
summation of scales and lower bound for initial concentration

5
5 €
U175 w3 x (—1,0)) > ~33 log(—2t")
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Toy model: quantitative regularity under L; , control

backward propagation using mild solution theory,
Cannone (1997)

10 sy > — 1 = (UG sqgsy > —L2r, Ve € (<1, 2¢).
(_t/)g (_t//)g
summation of scales and lower bound for initial concentration

5
5 € /
U253 (~1,0)) > 33 log(—2t)

Hence:

- > —1 > —exp z =: —1,.
€

1 , 1 32||U||50(R3 (—1,0))
2 2
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Toy model: quantitative regularity under L; , control

backward propagation using mild solution theory,
Cannone (1997)

15 /2
UG swsy > —— = U)oy > —/ T, vt'e(-1,2t)).
(—t')5 (—t")5
summation of scales and lower bound for initial concentration
1,1 32U 25 gox (- 1.0y
§>—t >2exp<— 5 = —1s.

guantitative boundedness via e-regularity on

Q\/Tm(fvo) =B /= p8) % (—%,0) for ¢ € R3,

3 16/|U7
£3 l L5(]R3><(71’0))
U1 oo (r3x (~ t2 0y S — S et exp < €5 )
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Step 3:
N quantitative boundedness\

[initial ‘concentration’]

4!} ,,,,,,,,

Star 9.
/ //,-% :
A AT I/,II

tx

on t.
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High level strategy same as for toy model U € L?(R? x (—1,0)),
with the following main changes:
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Quantitative regularity in the Type | case

Quantitative regularity under:

U1l 5 @3 x (—1,0y) < 00

U+ 0)[[ 3 (ms) < o0
and Type | condition

initial ‘concentration’ )
(UG ) s > e(—t") 75

backward propagation via
mild solution theory

summation of scales via
integration in time on
(—1,2t")
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Quantitative regularity in the Type | case

Quantitative regularity under:

U1l 5 @3 x (—1,0y) < 00

1U(-,0)] £3(ms)y < oo
and Type | condition

initial ‘concentration’ )
UG )]s > ()75

initial spatial concentration of
enstrophy

backward propagation via
mild solution theory

backward propagation via
local-in-space short-time
smoothing

summation of scales via
integration in time on
(—1,2t")

summation of scales at time

t = 0 via quantitative unique

continuation and backward
uniqueness
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Quantitative regularity in the Type | case

Barker, P. (2021)

Let U € C°(R? x (—1,0)).
For M large enough, assume that U satisfies the Type | bound

U] Loo (—1,0;13.00 (3)) < M.
Then, letting

= — MW exp ( _ expexp(M124) / |U<-,o>r3),
B

o(exp(M1923))

we get the quantitative boundedness

M—01)
Ul S :
L (Bo(MOW =8 x(t:/2,0)) ~ /L,
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Quantitative regularity in the Type | case

Assumptions
| |

Ul oo (—1,0:0300r3y) < M and  U(-,0) € L3(R3).

If the scale-invariant enstrophy

(Enstro) V—t! lw(-, )2
By (/~¥/5(M))
with
w=V xU vorticity,
S(M):=01)M™1% and 0< ' <O(1)M >,

is not small, i.e. concentrates, then
find a lower bound on —t*(M, ||U(+,0)||z3) for —¢'.
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Step 1: backward propagation

Backward propagation of enstrophy concentration

Suppose t' € (—1,0) is not too close to —1 and is such that

M2,/
/ w(z, #)Pdz > 2LV SM).
Bo(4/S0) "' (-t)?)

We show that for all ¢” € (—1,¢'), such that —¢" is well-separated from
—t’, we have

M2, /S(M
/ w(a, )2z > VS
L, (=t")?
Bo(44/S(M) " (—t")2)
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0 0

By(y/=FTSD)

" initial concentration
of enstrophy

Main tool: iocal—in—space shof—.j:—time smoothing‘

1 Step 1:
‘backward propagation‘
M548t’
-------- ZOIE oI ’7” d d oncel a O T
v Bsly/=H'1SH(M))
—1
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Key tool: local-in-space short-time smoothing

Barker and P. (2021)

For all M, N > 0 sufficiently large, there exists
0< Sy(M,N)=01)M 3N

for all local energy solution (U, P) associated to the initial data

T—r00

1Uollz2,, ®sy <M and |[Uoll2(s,ay — O

If in addition
1Tl s (Bo(1)) < NV,

then
< A8 AT19
HUHLOO(BO(%)X(%S*(MvN)vS*(M’N))) > A
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Key tool: local-in-space short-time smoothing

> Quantitative version of Jia, Sverak (2014).
> Strategy of the proof:
U = a+ V, a mild solution originating from Uy|g,(1) € L5, V
perturbation; combine
(1) local energy estimates for the perturbation V/
show local in space smallness of the energy for V'
for times ~ S,.(M)
the difficulty is to handle the nonlocal effects of the pressure,
(2) an e-regularity result near a subcritical drift
proof via a compactness argument similar to Lin (1998) or an
iteration similar to Caffarelli, Kohn, Nirenberg (1984).
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#

- Step 2-A:
propagation of concentration at large spatial scales

DL
2 < concentration of enstrophy
M é E at large spatial scales
TzzzzzZZ ZzZ
- ey
Main tool: quantitaﬁiveé unique continuation
-1
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Step 2-B:
‘forward propagation of concentration

E zone of concentration

of enstrophy at timet =0
0 0
t m initial concentration
annulus of regularity
M548t, _____________________________________________________________
"

ZZ Z ZZZmialhiihihihhn
large-scale backward

concentration concentration

Main tool: quantitagtflve backward uniqueness
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zone of concentration
0 of enstrophy at time ¢ =0

Step 2-C:
[summation of scales]

1
13

Main tool:

summation of well-separated scales

implies coercivity on ||U(-,0)| ;s via Biot-Savart
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0
box of quantitative
boundedness Step 3:
quantitative boundedness‘
b)2 L
smallness
of enstrophy

t* ...... ,--..::..-..-..-.---.-..-..-..-.---:5'. ........

maximal jﬁime of
enstrophy concentration

Main tool: local-in-space short-time smoothing‘
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Tao’s and Barker-P’s approach: similarities

| Tao (2019) | Barker, P. (2021) |
concentration of scale-invariant quantities
N7 PyU(, & —t/ w(-, ]2
YU (E, ) L pp——
upper bound N, \ lower bound —t,

for concentration

backward concentration within parabolic domain of dependence

2 — o' = O(VT —¥) | Bo(v/—MOMr)
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Tao’s and Barker-P’s approach: differences

|

Tao (2019)

|

Barker, P. (2021) |

quantitative estimates in terms of

globally defined quantities

|

locally defined quantities

concentration in Fourier space
of globally defined quantities

concentration in physical space
of locally defined quantities

frequency bubbles enstrophy
N-YPNU(, o' V-t w(- )2
[PNU( ) () 401
local-in-space short-time
frequency analysis smoothing

transfer of scale-invariant
information from Fourier space
to enstrophy
scale-invariant control
1U|| Lo (~1,0;18) < 00

concentration is directly on
enstrophy
no need for a global-in-time
scale-invariant bound
time-slice regularity criteria
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Quantification of Seregin’s 2012 qualitative regularity

Barker, P. (2020)

For M sufficiently large, assume that there exists ¢, — 0 such that
IO te)ll sy < M.

We define M° := exp(M®). Then for any well-separated subsequence
t; such that

_t p
sup gt < exp(—2(]\4b)1225)7
JjeN Uy

we have the following quantitative regularity estimate:
_1
U1l oo (3 x (=2 24,0)) < Cuniv(€nr) 2

where
0 <em =¢e(M,(tk)) := _texpexp((]&[b)wm) S exp(—exp eXp(Mb))'
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0

(M) zone of quantitative boundedness

tcxp L‘Xp((;\[?)l‘.ﬂ-l)

— exp(—exp exp exp(M°))
Li1
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Step 1: backward propagation in the time slices case

Backward propagation of enstrophy concentration

Fix any a > M” = exp(M9) and let ¢/, t" € [—1,0) be well-separated.
Assume that

IUC#)|lgs <M and ||U(-,t")||s < M.

If the vorticity concentrates at time ¢’ in the following way

e

/ w(z, )2 de > M2(—t')~2/S(M),

Bo(4/S() ' (~t)?)

then for any s € [t”, 8;%] the vorticity concentrates in the following

sense
(M +1)?

(—5)20106

/ |w(z, 5)|? dz >
Bo (4(73)%05106)
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Blow-up of slightly supercritical Orlicz
norms
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‘Good’ quantitative results in the critical regime imply
slightly supercritical results

> Nonlinear Wave Equation (slightly supercritical nonlinearity): Tao
(2007), Roy (2010), Colombo, Haffter (2019). ..

> Surface Quasi-Geostrophic (slightly supercritical diffusion):
Dabkowski, Kiselev, Silvestre, Vicol (2014), Coti Zelati, Vicol
(2016). ..

> Hypodissipative Navier-Stokes (slightly supercritical diffusion):
Tao (2010), Barbato, Morandin, Romito (2014), Colombo, De
Lellis, Massaccesi (2020), Colombo, Haffter (2021)...
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If T* is a first blow-up time, there exists ¢/, . >0,

Ut
(Tao 2019) timsup — 1 )”Li(Rg) — =
=T+ (logloglog (7=—)) "™

Tao (2019): conjecture

limsup || U (-, t) 0.
_)

t T |25 108 t0g log £)~<%inie (&3) =
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A partial positive answer to Tao’s conjecture

Barker, P. (2021)

Let Uy € L*(R3) N L4(R?). Assume that U first blows-up at 7*.
Then,

3
lim sup/ Uz, ) dzr = oo.

o e 0
=T R3 (logloglog ((log(eese + \U(x,t)]))%))

> Conjecture by Tao: three log instead of four.

> Log improvement of LPS Chan, Vasseur (2007), Bjorland,
Vasseur (2011), Lei, Zhou (2013): regularity under

dxds < 0.
//Rslogl—i—|U| vas = 00
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A partial positive answer to Tao’s conjecture

Barker, P. (2021)
Let Uy € L*(R3) N L*(R3). Assume that U first blows-up at 7*.
Then,

3
limsup/ U=, ?)] - s dx = oo.
=T i (logloglog ((log(e=™ + |U(x,1))))?) )
Proof via:
(1) estimating the L3~#(R?) norm for a carefully tuned parameter
w >0,

(2) and a regularity result in terms of the supercritical norms L3~# for
u close to 0.
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Mild criticality breaking

Barker, P. (2021)

For M and E sufficiently large, there exists 6(1, E) € (0, 3] such that
the following holds.
If

100l 2r3y, 100l amsy < M,
and
1U1| oo (0,00, 13- 5(01.5) (R3)) < E.
Then U is smooth on R3 x (0, ).
> Inspired by Bulut (2020) for NLS.
> We have an explicit estimate

(M, E) < (log ]V[)_% exp exp exp(—Clynip E“m).

> Non effective regularity criteria; ‘mild’ criticality breaking.

> Not enough to rule out Type | blow-ups. .



Proof of mild criticality breaking

| Assumptions |
[Uollr2®sy,  Uollzasy <M and Ul poo (0 00,1850, (r3)) < E.

\Aim of the game\
Show there exists (an explicit) constant K (M, E) such that for 7' > 0,
U oo 0,704 (m3Y) < K (M, E).

L*-energy estimates on small intervals I; = (t;,t;+1) C (0,T)

15 < NUC )| 7aggsy + ClNU N L5 @31, Ea,g-

Quantitative estimate of the subcritical L? norm

Cuniv )

||UHL5 (R3x(0,T)) ~ (log M) €Xp €XPp exXp ( univ ||U”Loo(0,T;L3(R3))
via Tao’s quantitative regularity, initial and eventual regularity.
3— _46
Interpolation [|U|| e (0,713 (R3)) < E%(K(M, E)) &5,
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Proof of mild criticality breaking

Propagate the subcritical information U, € L* forward in time.
(1) Split (0,7") into m disjoint intervals (0,7") = Jj., I; such that

1U| s @sx1,) = e

(2) Use the quantitative L° regularity to estimate m:

e’m < (log M) exp exp exp (E% (K(M, E)) 3+35)

(3) Carry out L*-energy estimates on each interval I; = (¢,t41)
E1j S NUC ) ey + ClU N Lo @sx;)Ead
< HU('7tj>H4L4(R3) + ety

(4) An iteration gives
||U||%4(R3X(O,T)) S M42m'
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Take-away messages

Connection between quantitative regularity and concentration

the global scale-critical standing assumption
U e L¥°L>™ and
UelL, U(-,0) e L? UeLFL?
prevents the following scale-critical quantities
(U Dl | VTSP | NP U, )
to concentrate to close to final time
Hence smallness implies regularity.

Quantification of the critical case implies slight criticality breaking.
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Thank you for your attention!
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