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Newtonian stars

Classical model of a star: sphere of gas under Newtonian gravity.
• Balance between pressure and gravity in a static star;
• As gas burns, balance shifts;

• Possible collapse? Supernova?

Figure: Image credit: R.J. Hall
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Euler-Poisson equations

The Euler-Poisson equations of gas dynamics with Newtonian gravity:
∂tρ+ divx(ρu) = 0, (t ,x) ∈ R× R3,

ρ
(
∂tu + (u · ∇)u

)
+∇xp(ρ) = −ρ∇Φ, (t ,x) ∈ R× R3,

∆Φ = 4πρ, (t ,x) ∈ R× R3.

(1)

ρ is density, u is velocity, p is pressure, Φ is gravitational potential.
We assume the equation of state

p = p(ρ) = ργ , γ ∈
(
1,

4
3
)
.

Example adiabatic exponents
γ = 5

3 – monatomic gas, used for fully
convective star cores (e.g. red giants);
γ = 4

3 – high mass white dwarf stars,
main-sequence stars (e.g. the Sun).
In general, as γ decreases, density is
increasingly weighted towards centre.
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Collapse

Collapse is the formation of a singularity at the origin, i.e.

ρ(t ,0)→∞ as t → 0− .

• For γ > 4
3 , no finite mass and energy collapse possible.

• For γ = 4
3 , Goldreich–Weber collapse - unsuitable model for

outer core.



Supernova expansion

Figure: Image credit: NASA



Self-similar singularity formation

Self-similarity and singularities interact in a wide range of problems.
• Stellar collapse;
• Formation/expansion of shock waves;
• Shock reflection;
• Droplet pinch-off;
• Bacterial growth;
• Geometric wave equations;
• Yang–Mills;
• ...

Key Features:
• Non-linearity;
• Intertwining of spatial and time scales;
• Good initial data leads to badly behaved solutions!
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Scaling and Self-similarity

Scaling
Let ρ = ρ(t , r), u = u(t , r) x

|x| , r = |x|, solve Euler-Poisson, λ > 0.
Then

ρλ(t , r) = λ−
2

2−γ ρ
( t

λ
1

2−γ

,
r
λ

)
, uλ(t , r) = λ−

γ−1
2−γ u

( t

λ
1

2−γ

,
r
λ

)
is also a solution. (NB: This is a unique scaling!)

Self-similarity
We define a self-similar variable

y =
r

(−t)2−γ ,

and search for

ρ(t , r) = (−t)−2ρ̃(y), u(t , r) = (−t)1−γ ũ(y).
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Mass and energy criticality

Natural notions of mass and energy for Euler-Poisson:

M[ρ] =

∫ ∞
0

ρ r2dr , E [ρ,u] =

∫ ∞
0

(1
2
ρu2 +

ργ

γ − 1
+

1
2
ρΦ
)

r2dr ,

where Φ solves ∆Φ = 4πρ is the gravitational potential.
Under scaling,

M[ρλ] = λ
4−3γ
2−γ M[ρ], E [ρλ,uλ] = λ

6−5γ
2−γ E [ρ,u].

Thus γ = 4
3 is mass-critical, γ = 6

5 is energy-critical.



ODE system

Defining a convenient variable ω(y) = ũ(y)/y + 2− γ, self-similar
Euler-Poisson becomes

ρ̃′ =
y ρ̃h(ρ̃, ω)

γρ̃γ−1 − y2ω2 ,

ω′ =
4− 3γ − 3ω

y
− yωh(ρ̃, ω)

γρ̃γ−1 − y2ω2 ,

(2)

where h(ρ̃, ω) is a quadratic function.

Definition (Sonic point)
Let (ρ̃(·), ω(·)) be a C1-solution to the self-similar Euler-Poisson
system on the interval (0,∞). A point y∗ ∈ (0,∞) such that

γρ̃γ−1(y∗)− y2
∗ω

2(y∗) = 0

is called a sonic point.
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Theorem
Initial/boundary conditions
For a regular solution, we require

ρ̃(0) > 0, ω(0) =
4− 3γ

3
,

ρ̃(y) ∼ y−
2

2−γ as y →∞, lim
y→∞

ω(y) = 2− γ.

NB: this forces the existence of a sonic point!

Theorem (Guo–Hadzic–Jang–S. ’21)
For each γ ∈ (1, 4

3 ), there exists a global, real-analytic solution (ρ̃, ω)
of self-similar Euler-Poisson with a single sonic point y∗ such that:

ρ̃(y) > 0 for all y ∈ [0,∞), −2
3

y < u(y) < 0 for all y ∈ (0,∞).

In addition, both ρ and ω are strictly monotone:

ρ̃′(y) < 0 for all y ∈ (0,∞), ω′(y) > 0 for all y ∈ (0,∞).
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Connection to previous literature

Classical and numerical work
• Taylor, Von Neumann, Sedov, Güderley ’40s: study implosion

and explosion for Euler equations;
• Larson–Penston ’69: numerical solution for γ = 1;
• Hunter ’77: family of numerical solutions for γ = 1;
• Yahil ’83: numerical solutions for γ ∈ [ 6

5 ,
4
3 );

• Maeda–Harada ’01: numerical evidence towards mode stability
of Larson–Penston.

Recent works
• Merle–Raphaël–Rodnianski–Szeftel ’19: existence of a

imploding self-similar solutions for Euler;
• Guo–Hadzic–Jang ’20: construction of LP solution.
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Overview of key difficulties

Regularity
Expect stability tied to regularity (MRRS ’19). Requires smoothness
through sonic point.

Non-linearity
Methods need to be adapted to specific non-linearities (no general
recipe for solving such problems).

Non-autonomous system
Non-autonomous forces evolving phase portrait. No fixed phase
portrait analysis for invariant regions.
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Reference solutions and sonic point

Two explicit solutions
Far-field solution (ρf , ωf ) and Friedman solution (ρF , ωF ):

(ρf (y), ωf (y)) = (kγy−
2

2−γ ,2− γ), (ρF (y), ωF (y)) = (
1

6π
,

4
3
− γ).

• Sonic points at yf (γ) < yF (γ).
• Far-field satisfies asymptotic boundary condition as y →∞.
• Friedman satisfies boundary condition at origin.

Idea: Use ωf = 2− γ, ωF = 4
3 − γ as barriers.
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Sonic point

Taylor expansion
For a candidate sonic point y∗ > 0, try to solve with Taylor expansion:

ρ(y ; y∗) =
∞∑
j=0

ρj (y − y∗)j , ω(y ; y∗) =
∞∑
j=0

ωj (y − y∗)j .

Zero order
Recall EP in form

ρ′ =
yρh(ρ, ω)

G(y ; ρ, ω)
, ω′ =

4− 3γ − 3ω
y

− yωh(ρ, ω)

G(y ; ρ, ω)

with G(y ; ρ, ω) = γργ−1 − y2ω2.
Require h(ρ0, ω0) = G(y∗; ρ0, ω0) = 0.
Smooth one-to-one mapping between ω0 ∈ [ 4

3 − γ,2− γ] and
y∗ ∈ [yf (γ), yF (γ)].
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First order coefficients I

In case γ = 1, apparently two branches of (ρ1, ω1): LP and Hunter

Figure: Plot of R = ρ1y∗
ρ0

as function of ω0 for γ = 1.



First order coefficients II

For γ ∈ (1, 4
3 ), branch separation:

Figure: Plot of R = ρ1y∗
ρ0

as function of ω0 as γ increases from 1 to 4
3

Theorem
For all γ ∈ (1, 4

3 ), there exists ν > 0 such that for all
y∗ ∈ [yf (γ), yF (γ)], there exists an analytic solution to self-similar
Euler-Poisson on (y∗ − ν, y∗ + ν) with a single sonic point at y∗.
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Solving to the right

Lemma
For each γ ∈ (1, 4

3 ), each y∗ ∈ [yf (γ), yF (γ)], the local solution
(ρ(·; y∗), ω(·; y∗)) obtained by Taylor expansion extends globally to the
right on [y∗,∞), remains supersonic, and satisfies the asymptotic
boundary conditions.

Key ideas
• Use structure of h(ρ, ω) and G(y ; ρ, ω) to derive dynamical

invariances to the right.
• Show ω remains trapped between 4

3 − γ and 2− γ.
• Extend dynamical invariance to show flow remains supersonic.
• Asymptotics follow easily from structure of flow.
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Solving to the left

Aim
Find ȳ∗ such that local solution (ρ(·; ȳ∗), ω(·; ȳ∗)) extends smoothly to
y = 0.
Aim for solution with

4
3
− γ ≤ ω(y ; ȳ∗) < 2− γ, lim

y→0
ω(y ; ȳ∗) =

4
3
− γ.

Idea
Look for critical ȳ∗ as infimum of

Y =
{

y∗ ∈ (yf , yF ) | ∃y such that ω(y ; ỹ∗) =
4− 3γ

3
∀ ỹ∗ ∈ [y∗, yF )

}
.

Key idea: Prove monotonicity for both ρ(·; y∗) and ω(·; y∗) as long as
y∗ ∈ Y and ω(·; y∗) ≥ 4

3 − γ.
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Find ȳ∗ such that local solution (ρ(·; ȳ∗), ω(·; ȳ∗)) extends smoothly to
y = 0.
Aim for solution with

4
3
− γ ≤ ω(y ; ȳ∗) < 2− γ, lim

y→0
ω(y ; ȳ∗) =

4
3
− γ.

Idea
Look for critical ȳ∗ as infimum of
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Monotonicity Argument

For y∗ ∈ Y , define first touching time

yc(y∗) = inf{y ≤ y∗ |ω(ỹ ; y∗) >
4− 3γ

3
∀ỹ ∈ (y , y∗)}.

Suppose ∃ maximal ỹ∗ ∈ Y such that ∃ y0 ∈ [yc(ỹ∗), ỹ∗] with
ω′(y0; ỹ∗) = 0.

0 ỹ∗

4−3γ
3

yc(ỹ∗)

ω0(ỹ∗)
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Future Programme

Linear Stability
• Appropriate self-similar coordinates;
• Non-self-adjoint problem (complex eigenvalues);
• Sonic degeneracy and issues with dissipativity (monotonicity).

Future directions
• Non-linear stability;
• Einstein-Euler (relativistic self-similar fluid implosion) and its

stability (cf. Guo–Hadžić–Jang ’21).
• Continuation and expansion?
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Thank you!


