M.R.l. SCHRECKER

Department of Mathematics
University College London



Newtonian stars &

Classical model of a star: sphere of gas under Newtonian gravity.
Balance between pressure and gravity in a static star;
As gas burns, balance shifts;



Newtonian stars &

Classical model of a star: sphere of gas under Newtonian gravity.
Balance between pressure and gravity in a static star;
As gas burns, balance shifts;
Possible collapse? Supernova?

Image credit: R.J. Hall



Euler-Poisson equations "

The Euler-Poisson equations of gas dynamics with Newtonian gravity:

Oip + divg(pu) = 0, (t,x) € R x R3,
p(atu + (U : V)u) + pr(p) = —pVCD, (t,X) €Rx R3a (1)
Ad = 47p, (t,x) € R x R3.

p is density, u is velocity, p is pressure, ¢ is gravitational potential.
We assume the equation of state

4
p=p(p)=p", 7€ (1,5)-
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The Euler-Poisson equations of gas dynamics with Newtonian gravity:

Oip + divg(pu) = 0, (t,x) € R x R3,
p(atu + (u : v)u) + pr(p) = _pv¢7 (t7 X) eRx RSa (1)
Ad = 47p, (t,x) € R x R3.

p is density, u is velocity, p is pressure, ¢ is gravitational potential.
We assume the equation of state

p=p(p)=p", 7€ (Lg)-
Example adiabatic exponents

v = % — monatomic gas, used for fully
convective star cores (e.g. red giants);
v = § — high mass white dwarf stars,
main-sequence stars (e.g. the Sun).
In general, as v decreases, density is
increasingly weighted towards centre.




Collapse is the formation of a singularity at the origin, i.e.
p(t,0) 200 as t—0-—.

° For~ > %, no finite mass and energy collapse possible.

® For~ = %, Goldreich—Weber collapse - unsuitable model for
outer core.




Figure: Image credit: NASA



Self-similar singularity formation

Self-similarity and singularities interact in a wide range of problems.
Stellar collapse;
Formation/expansion of shock waves;
Shock reflection;
Droplet pinch-off;
Bacterial growth;
Geometric wave equations;
Yang—Mills;



Self-similar singularity formation

Self-similarity and singularities interact in a wide range of problems.
Stellar collapse;
Formation/expansion of shock waves;
Shock reflection;
Droplet pinch-off;
Bacterial growth;
Geometric wave equations;
Yang—Mills;

Key Features:
Non-linearity;
Intertwining of spatial and time scales;
Good initial data leads to badly behaved solutions!



Scaling and Self-similarity "

Let p = p(t,r), u = u(t, r)&—‘, r = |x|, solve Euler-Poisson, A > 0.
Then

_ 2 t r _a=1 t r
PN =X 0 7)) =X ()

is also a solution. (NB: This is a unique scaling!)




Scaling and Self-similarity "

Let p = p(t,r), u = u(t, r)&—‘, r = |x|, solve Euler-Poisson, A > 0.
Then

_ 2 t r _a=1 t r
PN =X 0 7)) =X ()

is also a solution. (NB: This is a unique scaling!)

We define a self-similar variable

and search for

p(t.r)=(=1)2p(y), u(t,r)=(=1)"""T(y).




Mass and energy criticality "

Natural notions of mass and energy for Euler-Poisson:

Mip] = /Ooprzdr Elp,u] = /OO (1,0u2 + A + 1p<1>) redr
0 ’ ’ 0 2 Y — 1 2 ’
where ¢ solves A® = 47p is the gravitational potential.
Under scaling,

Mips] = A=5 M[pl, Elpx, ] = A75 E[p, u].

Thus v = % is mass-critical, v = £ is energy-critical.



ODE system "

Defining a convenient variable w(y) = U(y)/y + 2 — ~, self-similar
Euler-Poisson becomes

. y[)h(ﬁ,w)
_ryﬁ')’_1 _y2w2’ 2
w,:4—3'y—3w_ ywh(p,w) @
Yy R

where h(p,w) is a quadratic function.
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Defining a convenient variable w(y) = U(y)/y + 2 — ~, self-similar
Euler-Poisson becomes

. y[)h(ﬁ,w)
_ryﬁ')’_1 _y2w2’ 2
w,:4—3'y—3w_ ywh(p,w) @
Yy R

where h(p,w) is a quadratic function.

Let (5(-),w(-)) be a C'-solution to the self-similar Euler-Poisson
system on the interval (0, c0). A point y.. € (0, c0) such that

N (y) — YRR (y) = 0

is called a sonic point.



Theorem &

For a regular solution, we require
4 —3vy

p(0)>0, w(0)=—5—,

py)~y 7T asy oo, lim w(y)=2-17.

NB: this forces the existence of a sonic point!



Theorem &

For a regular solution, we require 43
p(0) >0, w(0)= ; 7’
ply) ~y 7 as y — oo, ylmmw(y)zg_%

NB: this forces the existence of a sonic point!

For each € (1, 3), there exists a global, real-analytic solution (j,w)
of self-similar Euler-Poisson with a single sonic point y, such that:

py) >0 forally € [0,0), —gy <u(y)<O0forally € (0,00).

In addition, both p and w are strictly monotone:

p'(y)<Oforally € (0,00), w'(y)>0forally e (0,c0).



Connection to previous literature "

Taylor, Von Neumann, Sedov, Glderley '40s: study implosion
and explosion for Euler equations;

Larson—Penston '69: numerical solution for v = 1;

Hunter *77: family of numerical solutions for v = 1;

Yahil 83: numerical solutions for v € [, 3);

Maeda—Harada '01: numerical evidence towards mode stability
of Larson—Penston.




Connection to previous literature "

Taylor, Von Neumann, Sedov, Glderley '40s: study implosion
and explosion for Euler equations;

Larson—Penston '69: numerical solution for v = 1;

Hunter *77: family of numerical solutions for v = 1;

Yahil 83: numerical solutions for v € [, 3);

Maeda—Harada '01: numerical evidence towards mode stability
of Larson—Penston.

Merle—Raphaél-Rodnianski—Szeftel '19: existence of a
imploding self-similar solutions for Euler;

Guo—Hadzic—Jang '20: construction of LP solution.




Overview of key difficulties "

Expect stability tied to regularity (MRRS ’19). Requires smoothness
through sonic point.
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Methods need to be adapted to specific non-linearities (no general
recipe for solving such problems).




Overview of key difficulties "

Expect stability tied to regularity (MRRS ’19). Requires smoothness
through sonic point.

Methods need to be adapted to specific non-linearities (no general
recipe for solving such problems).

Non-autonomous forces evolving phase portrait. No fixed phase
portrait analysis for invariant regions.




Reference solutions and sonic point "

Far-field solution (pf,ws) and Friedman solution (pg, we):

).

w| b
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Reference solutions and sonic point "

Far-field solution (pf,ws) and Friedman solution (pg, we):

).

w| b

(o). rn)) = (oy 7.2 =9), (pr(), e () = (5=

Sonic points at y(v) < ye(7)-
Far-field satisfies asymptotic boundary condition as y — oc.
Friedman satisfies boundary condition at origin.

Idea: Use wy = 2 — v, wr = § — 7 as barriers.



For a candidate sonic point y, > 0, try to solve with Taylor expansion:

y Y* ij Yy - }/* Y}’* ZWJ Y- y* .
j=0



For a candidate sonic point y, > 0, try to solve with Taylor expansion:

y Y* ij Yy - }/* Y}’* ZWJ Y- y* .
j=0

Recall EP in form

y _Yyph(p,w) — _4-37-3w ywh(p,w)
G(y:p,w)’ y G(y: p,w)

with G(y; p,w) = vp' 1 — y2u?.
Require h(po,wo) = G(Vx; po,wo) = 0.
Smooth one-to-one mapping between wy € [g —~,2—~] and

Ve € (), Ye()]-




First order coefficients | &

In case v = 1, apparently two branches of (p1,w1): LP and Hunter

Plot of R = % as function of wg for v = 1.



First order coefficients Il &

For v € (1, %), branch separation:

R

\ .

Plotof R = % as function of wg as v increases from 1 to §



First order coefficients Il &

For v € (1, %), branch separation:

R

\ .

Plotof R = % as function of wg as v increases from 1 to §

Forally € (1,3), there exists v > 0 such that for all
¥« € yr(7), ye(7)], there exists an analytic solution to self-similar
Euler-Poisson on (y. — v, ¥« + v) with a single sonic point at y..



Solving to the right &

Foreach~ € (1,%), each y. € [ys(v), yr(v)], the local solution

(p(-; ¥«),w(+; y«)) obtained by Taylor expansion extends globally to the
right on [y., 00), remains supersonic, and satisfies the asymptotic
boundary conditions.



Solving to the right &

Foreach~ € (1,%), each y. € [ys(v), yr(v)], the local solution

(p(-; ¥«),w(+; y«)) obtained by Taylor expansion extends globally to the
right on [y., 00), remains supersonic, and satisfies the asymptotic
boundary conditions.

Use structure of h(p,w) and G(y; p,w) to derive dynamical
invariances to the right.

Show w remains trapped between % —~yand 2 — .
Extend dynamical invariance to show flow remains supersonic.
Asymptotics follow easily from structure of flow.




Solving to the right &

4-3y
3

Use structure of h(p,w) and G(y; p,w) to derive dynamical
invariances to the right.

Show w remains trapped between % —~yand 2 — .
Extend dynamical invariance to show flow remains supersonic.
Asymptotics follow easily from structure of flow.




Solving to the left n

Find y. such that local solution (p(-; ), w(:; ¥x)) extends smoothly to
y=0.
Aim for solution with

4 _ . 4
2V SwW)<2-7,  limwyif)=5-17
3 y—0 3




Solving to the left n

Find y. such that local solution (p(-; ), w(:; ¥x)) extends smoothly to

y=0.
Aim for solution with
4

4 _ . _
3 VSeny)<2-v limw(yiy) =5

Look for critical y, as infimum of

. 4-8y .
Y= {y* € (yr,yF) |3y such thatw(y; 1) = — 1vy. e [Y*>YF)}-

Key idea: Prove monotonicity for both p(-; y.) and w(-; y«) as long as
Ve € Yand w(-; i) > % — .




Solving to the left n

wo (Y1)
wo(¥e
/ /.WO(y*Q)
0 yi() Ya ¥ Y2 ye(v)
Look for critical y, as infimum of
- 4 -3y .
Y = {y* € (¥r, ¥F) | 3y such that w(y; y.) = 3 V. € [y*,yF)}.

Key idea: Prove monotonicity for both p(-; y.) and w(-; y.) as long as
y. € Yandw(:; y.) > % — .




Monotonicity Argument

For y. € Y, define first touching time

43y
3 19y € (v, )}

Ye(¥«) = inf{y < yulw(y; ys) >

Suppose 3 maximal y. € Y such that 3 yp € [ye(¥.), ¥] with
W’(VO;}N’*) =0.

4-3y




Monotonicity Argument

For y. € Y, define first touching time

4 — 3y
3

Ye(yi) = infly < yu|w(yiye) > vy e (y, ¥}

Suppose 3 maximal j. € Y such that 3 yy € [ye(¥s), ¥] with
w'(Yoi ¥.) = 0.
h < 0on [ye, ¥, hence w'(y;) > 0, so that yo € (¥e, ¥+);




Monotonicity Argument

For y. € Y, define first touching time

4 — 3y
3

Ye(yi) = infly < yu|w(yiys) > vy e (y, ¥}

Suppose 3 maximal y. € Y such that 3 yy € [ye(Js), V-] with
w'(Yo; =) = 0.
31 > 0 such that w’(y; ) < 0o0n (Vo — 61, %0);




Monotonicity Argument

For y. € Y, define first touching time

— 3y
3

) N 4 -
Ye(ys) = inf{y < yufw(¥iy) > vy € (y. ¥}
Suppose 3 maximal y. € Y such that 3 yy € [ye(¥s), V] with
w'(Yo; ) = 0.
w'(y; ¥«) is uniformly continuous with respect to (y, y.) on a
neighbourhood of (yo, y/.)-




Future Programme "

Appropriate self-similar coordinates;
Non-self-adjoint problem (complex eigenvalues);
Sonic degeneracy and issues with dissipativity (monotonicity).



Future Programme "

Appropriate self-similar coordinates;
Non-self-adjoint problem (complex eigenvalues);
Sonic degeneracy and issues with dissipativity (monotonicity).

Non-linear stability;

Einstein-Euler (relativistic self-similar fluid implosion) and its
stability (cf. Guo—Hadzi¢—Jang '21).
Continuation and expansion?




Thank you!




