

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● のへで

Gravitational Collapse for Newtonian stars

M.R.I. SCHRECKER

Department of Mathematics University College London

Newtonian stars

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Classical model of a star: sphere of gas under Newtonian gravity.

- Balance between pressure and gravity in a static star;
- As gas burns, balance shifts;

Newtonian stars

Classical model of a star: sphere of gas under Newtonian gravity.

- Balance between pressure and gravity in a static star;
- As gas burns, balance shifts;
- Possible collapse? Supernova?

Figure: Image credit: R.J. Hall

Euler-Poisson equations

The Euler-Poisson equations of gas dynamics with Newtonian gravity:

$$\begin{cases} \partial_t \rho + \operatorname{div}_{\mathbf{x}}(\rho \mathbf{u}) = \mathbf{0}, & (t, \mathbf{x}) \in \mathbb{R} \times \mathbb{R}^3, \\ \rho(\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u}) + \nabla_{\mathbf{x}} p(\rho) = -\rho \nabla \Phi, & (t, \mathbf{x}) \in \mathbb{R} \times \mathbb{R}^3, \\ \Delta \Phi = 4\pi\rho, & (t, \mathbf{x}) \in \mathbb{R} \times \mathbb{R}^3. \end{cases}$$
(1)

 ρ is density, ${\bf u}$ is velocity, ${\bf p}$ is pressure, Φ is gravitational potential. We assume the equation of state

$$p = p(\rho) = \rho^{\gamma}, \quad \gamma \in (1, \frac{4}{3}).$$

Euler-Poisson equations

The Euler-Poisson equations of gas dynamics with Newtonian gravity:

$$\begin{cases} \partial_t \rho + \operatorname{div}_{\mathbf{x}}(\rho \mathbf{u}) = \mathbf{0}, & (t, \mathbf{x}) \in \mathbb{R} \times \mathbb{R}^3, \\ \rho(\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u}) + \nabla_{\mathbf{x}} \rho(\rho) = -\rho \nabla \Phi, & (t, \mathbf{x}) \in \mathbb{R} \times \mathbb{R}^3, \\ \Delta \Phi = 4\pi\rho, & (t, \mathbf{x}) \in \mathbb{R} \times \mathbb{R}^3. \end{cases}$$
(1)

 ρ is density, ${\bf u}$ is velocity, ${\bf p}$ is pressure, Φ is gravitational potential. We assume the equation of state

$$p = p(\rho) = \rho^{\gamma}, \quad \gamma \in (1, \frac{4}{3}).$$

Example adiabatic exponents

 $\gamma = \frac{5}{3}$ – monatomic gas, used for fully convective star cores (e.g. red giants); $\gamma = \frac{4}{3}$ – high mass white dwarf stars, main-sequence stars (e.g. the Sun). In general, as γ decreases, density is increasingly weighted towards centre.

Collapse

(日)

Collapse is the formation of a *singularity* at the origin, i.e.

 $ho(t,0)
ightarrow\infty$ as t
ightarrow0-.

- For $\gamma > \frac{4}{3}$, no finite mass and energy collapse possible.
- For $\gamma = \frac{4}{3}$, Goldreich–Weber collapse unsuitable model for outer core.

Supernova expansion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Figure: Image credit: NASA

Self-similar singularity formation

Self-similarity and singularities interact in a wide range of problems.

- Stellar collapse;
- Formation/expansion of shock waves;
- Shock reflection;
- Droplet pinch-off;
- Bacterial growth;
- Geometric wave equations;
- Yang–Mills;
- ...

Self-similar singularity formation

Self-similarity and singularities interact in a wide range of problems.

- Stellar collapse;
- Formation/expansion of shock waves;
- Shock reflection;
- Droplet pinch-off;
- Bacterial growth;
- Geometric wave equations;
- Yang–Mills;
- ...

Key Features:

- Non-linearity;
- Intertwining of spatial and time scales;
- Good initial data leads to badly behaved solutions!

Scaling and Self-similarity

Scaling

Let $\rho = \rho(t, r)$, $\mathbf{u} = u(t, r) \frac{\mathbf{x}}{|\mathbf{x}|}$, $r = |\mathbf{x}|$, solve Euler-Poisson, $\lambda > 0$. Then

$$\rho_{\lambda}(t,r) = \lambda^{-\frac{2}{2-\gamma}} \rho(\frac{t}{\lambda^{\frac{1}{2-\gamma}}}, \frac{r}{\lambda}), \quad u_{\lambda}(t,r) = \lambda^{-\frac{\gamma-1}{2-\gamma}} u(\frac{t}{\lambda^{\frac{1}{2-\gamma}}}, \frac{r}{\lambda})$$

is also a solution. (NB: This is a unique scaling!)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Scaling and Self-similarity

Scaling

Let $\rho = \rho(t, r)$, $\mathbf{u} = u(t, r) \frac{\mathbf{x}}{|\mathbf{x}|}$, $r = |\mathbf{x}|$, solve Euler-Poisson, $\lambda > 0$. Then

$$\rho_{\lambda}(t,r) = \lambda^{-\frac{2}{2-\gamma}} \rho(\frac{t}{\lambda^{\frac{1}{2-\gamma}}}, \frac{r}{\lambda}), \quad u_{\lambda}(t,r) = \lambda^{-\frac{\gamma-1}{2-\gamma}} u(\frac{t}{\lambda^{\frac{1}{2-\gamma}}}, \frac{r}{\lambda})$$

is also a solution. (NB: This is a unique scaling!)

Self-similarity

We define a *self-similar* variable

$$\gamma = \frac{r}{(-t)^{2-\gamma}},$$

and search for

$$\rho(t,r) = (-t)^{-2} \tilde{\rho}(y), \quad u(t,r) = (-t)^{1-\gamma} \tilde{u}(y).$$

ŵ

Natural notions of mass and energy for Euler-Poisson:

$$M[\rho] = \int_0^\infty \rho \, r^2 \mathrm{d}r, \quad E[\rho, u] = \int_0^\infty \left(\frac{1}{2}\rho u^2 + \frac{\rho^\gamma}{\gamma - 1} + \frac{1}{2}\rho\Phi\right) \, r^2 \mathrm{d}r,$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

where Φ solves $\Delta \Phi = 4\pi \rho$ is the gravitational potential. Under scaling,

$$\boldsymbol{M}[\rho_{\lambda}] = \lambda^{\frac{4-3\gamma}{2-\gamma}} \boldsymbol{M}[\rho], \quad \boldsymbol{E}[\rho_{\lambda}, \boldsymbol{u}_{\lambda}] = \lambda^{\frac{6-5\gamma}{2-\gamma}} \boldsymbol{E}[\rho, \boldsymbol{u}].$$

Thus $\gamma = \frac{4}{3}$ is *mass-critical*, $\gamma = \frac{6}{5}$ is *energy-critical*.

ODE system

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Defining a convenient variable $\omega(y) = \tilde{u}(y)/y + 2 - \gamma$, self-similar Euler-Poisson becomes

$$\begin{split} \tilde{\rho}' &= \frac{y \tilde{\rho} h(\tilde{\rho}, \omega)}{\gamma \tilde{\rho}^{\gamma - 1} - y^2 \omega^2}, \\ \omega' &= \frac{4 - 3\gamma - 3\omega}{y} - \frac{y \omega h(\tilde{\rho}, \omega)}{\gamma \tilde{\rho}^{\gamma - 1} - y^2 \omega^2}, \end{split}$$
(2)

where $h(\tilde{\rho}, \omega)$ is a quadratic function.

ODE system

Defining a convenient variable $\omega(y) = \tilde{u}(y)/y + 2 - \gamma$, self-similar Euler-Poisson becomes

$$\begin{split} \tilde{\rho}' &= \frac{\gamma \tilde{\rho} h(\tilde{\rho}, \omega)}{\gamma \tilde{\rho}^{\gamma - 1} - y^2 \omega^2}, \\ \omega' &= \frac{4 - 3\gamma - 3\omega}{\gamma} - \frac{\gamma \omega h(\tilde{\rho}, \omega)}{\gamma \tilde{\rho}^{\gamma - 1} - y^2 \omega^2}, \end{split}$$
(2)

where $h(\tilde{\rho}, \omega)$ is a quadratic function.

Definition (Sonic point)

Let $(\tilde{\rho}(\cdot), \omega(\cdot))$ be a C^1 -solution to the self-similar Euler-Poisson system on the interval $(0, \infty)$. A point $y_* \in (0, \infty)$ such that

$$\gamma \tilde{\rho}^{\gamma-1}(\mathbf{y}_*) - \mathbf{y}_*^2 \omega^2(\mathbf{y}_*) = \mathbf{0}$$

is called a sonic point.

Theorem

Initial/boundary conditions

For a regular solution, we require

$$ilde{
ho}(0) > 0, \quad \omega(0) = rac{4-3\gamma}{3},$$

 $ilde{
ho}(y) \sim y^{-rac{2}{2-\gamma}} ext{ as } y o \infty, \quad \lim_{y \to \infty} \omega(y) = 2 - \gamma.$

NB: this forces the existence of a sonic point!

Theorem

UC

Initial/boundary conditions

For a regular solution, we require

$$ilde{
ho}(0) > 0, \quad \omega(0) = rac{4-3\gamma}{3},$$
 $ilde{
ho}(y) \sim y^{-rac{2}{2-\gamma}} ext{ as } y o \infty, \quad \lim_{y o \infty} \omega(y) = 2 - \gamma$

NB: this forces the existence of a sonic point!

Theorem (Guo–Hadzic–Jang–S. '21)

For each $\gamma \in (1, \frac{4}{3})$, there exists a global, real-analytic solution $(\tilde{\rho}, \omega)$ of self-similar Euler-Poisson with a single sonic point y_* such that:

$$ilde{arphi}(y)>0 ext{ for all } y\in [0,\infty), \quad -rac{2}{3}y < u(y) < 0 ext{ for all } y\in (0,\infty).$$

In addition, both ρ and ω are strictly monotone:

 $\widetilde{
ho}'(y) < 0 ext{ for all } y \in (0,\infty), \quad \omega'(y) > 0 ext{ for all } y \in (0,\infty).$

Classical and numerical work

- Taylor, Von Neumann, Sedov, Güderley '40s: study implosion and explosion for Euler equations;
- Larson–Penston '69: numerical solution for $\gamma = 1$;
- Hunter '77: family of numerical solutions for $\gamma = 1$;
- Yahil '83: numerical solutions for $\gamma \in [\frac{6}{5}, \frac{4}{3})$;
- Maeda–Harada '01: numerical evidence towards mode stability of Larson–Penston.

Classical and numerical work

- Taylor, Von Neumann, Sedov, Güderley '40s: study implosion and explosion for Euler equations;
- Larson–Penston '69: numerical solution for $\gamma = 1$;
- Hunter '77: family of numerical solutions for $\gamma = 1$;
- Yahil '83: numerical solutions for $\gamma \in [\frac{6}{5}, \frac{4}{3})$;
- Maeda–Harada '01: numerical evidence towards mode stability of Larson–Penston.

Recent works

- Merle–Raphaël–Rodnianski–Szeftel '19: existence of a imploding self-similar solutions for Euler;
- Guo–Hadzic–Jang '20: construction of LP solution.

Regularity

Expect stability tied to regularity (MRRS '19). Requires smoothness through sonic point.

≜UCL

・ロット (雪) (日) (日) (日)

Regularity

Expect stability tied to regularity (MRRS '19). Requires smoothness through sonic point.

Non-linearity

Methods need to be adapted to specific non-linearities (no general recipe for solving such problems).

Regularity

Expect stability tied to regularity (MRRS '19). Requires smoothness through sonic point.

Non-linearity

Methods need to be adapted to specific non-linearities (no general recipe for solving such problems).

Non-autonomous system

Non-autonomous forces evolving phase portrait. No fixed phase portrait analysis for invariant regions.

Two explicit solutions

Far-field solution (ρ_f , ω_f) and Friedman solution (ρ_F , ω_F):

$$(\rho_f(\mathbf{y}),\omega_f(\mathbf{y}))=(k_{\gamma}\mathbf{y}^{-\frac{2}{2-\gamma}},2-\gamma),\qquad (\rho_F(\mathbf{y}),\omega_F(\mathbf{y}))=(\frac{1}{6\pi},\frac{4}{3}-\gamma).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Two explicit solutions

Far-field solution (ρ_f , ω_f) and Friedman solution (ρ_F , ω_F):

$$(
ho_f(\mathbf{y}),\omega_f(\mathbf{y}))=(\mathbf{k}_{\gamma}\mathbf{y}^{-rac{2}{2-\gamma}},\mathbf{2}-\gamma),\qquad (
ho_F(\mathbf{y}),\omega_F(\mathbf{y}))=(rac{1}{6\pi},rac{4}{3}-\gamma).$$

- Sonic points at $y_f(\gamma) < y_F(\gamma)$.
- Far-field satisfies asymptotic boundary condition as y → ∞.
- Friedman satisfies boundary condition at origin.

Idea: Use $\omega_f = 2 - \gamma$, $\omega_F = \frac{4}{3} - \gamma$ as barriers.

Sonic point

≜UC I

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Taylor expansion

For a candidate sonic point $y_* > 0$, try to solve with Taylor expansion:

$$\rho(\mathbf{y};\mathbf{y}_*) = \sum_{j=0}^{\infty} \rho_j (\mathbf{y} - \mathbf{y}_*)^j, \quad \omega(\mathbf{y};\mathbf{y}_*) = \sum_{j=0}^{\infty} \omega_j (\mathbf{y} - \mathbf{y}_*)^j.$$

Sonic point

Taylor expansion

For a candidate sonic point $y_* > 0$, try to solve with Taylor expansion:

$$\rho(\mathbf{y};\mathbf{y}_*) = \sum_{j=0}^{\infty} \rho_j (\mathbf{y} - \mathbf{y}_*)^j, \quad \omega(\mathbf{y};\mathbf{y}_*) = \sum_{j=0}^{\infty} \omega_j (\mathbf{y} - \mathbf{y}_*)^j.$$

Zero order

Recall EP in form

$$\rho' = \frac{y\rho h(\rho, \omega)}{G(y; \rho, \omega)}, \quad \omega' = \frac{4 - 3\gamma - 3\omega}{y} - \frac{y\omega h(\rho, \omega)}{G(y; \rho, \omega)}$$

with $G(y; \rho, \omega) = \gamma \rho^{\gamma-1} - y^2 \omega^2$. Require $h(\rho_0, \omega_0) = G(y_*; \rho_0, \omega_0) = 0$. Smooth one-to-one mapping between $\omega_0 \in [\frac{4}{3} - \gamma, 2 - \gamma]$ and $y_* \in [y_f(\gamma), y_F(\gamma)]$.

UC

In case $\gamma = 1$, apparently two branches of (ρ_1, ω_1) : LP and Hunter

Figure: Plot of $R = \frac{\rho_1 y_*}{\rho_0}$ as function of ω_0 for $\gamma = 1$.

◆□ > ◆■ > ◆ ■ > ◆ ■ > ● ● ● ●

First order coefficients II

For $\gamma \in (1, \frac{4}{3})$, branch separation:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Figure: Plot of $R = \frac{\rho_1 y_*}{\rho_0}$ as function of ω_0 as γ increases from 1 to $\frac{4}{3}$

First order coefficients II

For $\gamma \in (1, \frac{4}{3})$, branch separation:

Figure: Plot of $R = \frac{\rho_1 y_*}{\rho_0}$ as function of ω_0 as γ increases from 1 to $\frac{4}{3}$

Theorem

For all $\gamma \in (1, \frac{4}{3})$, there exists $\nu > 0$ such that for all $y_* \in [y_f(\gamma), y_F(\gamma)]$, there exists an analytic solution to self-similar Euler-Poisson on $(y_* - \nu, y_* + \nu)$ with a single sonic point at y_* .

Solving to the right

≜UCL

Lemma

For each $\gamma \in (1, \frac{4}{3})$, each $y_* \in [y_f(\gamma), y_F(\gamma)]$, the local solution $(\rho(\cdot; y_*), \omega(\cdot; y_*))$ obtained by Taylor expansion extends globally to the right on $[y_*, \infty)$, remains supersonic, and satisfies the asymptotic boundary conditions.

Lemma

For each $\gamma \in (1, \frac{4}{3})$, each $y_* \in [y_f(\gamma), y_F(\gamma)]$, the local solution $(\rho(\cdot; y_*), \omega(\cdot; y_*))$ obtained by Taylor expansion extends globally to the right on $[y_*, \infty)$, remains supersonic, and satisfies the asymptotic boundary conditions.

Key ideas

- Use structure of h(ρ, ω) and G(y; ρ, ω) to derive dynamical invariances to the right.
- Show ω remains trapped between $\frac{4}{3} \gamma$ and 2γ .
- Extend dynamical invariance to show flow remains supersonic.
- Asymptotics follow easily from structure of flow.

Solving to the right

Key ideas

- Use structure of h(ρ, ω) and G(y; ρ, ω) to derive dynamical invariances to the right.
- Show ω remains trapped between $\frac{4}{3} \gamma$ and 2γ .
- Extend dynamical invariance to show flow remains supersonic.
- Asymptotics follow easily from structure of flow.

Solving to the left

Aim

Find \bar{y}_* such that local solution $(\rho(\cdot; \bar{y}_*), \omega(\cdot; \bar{y}_*))$ extends smoothly to y = 0. Aim for solution with

$$\frac{4}{3} - \gamma \leq \omega(\mathbf{y}; \bar{\mathbf{y}}_*) < 2 - \gamma, \qquad \lim_{\mathbf{y} \to \mathbf{0}} \omega(\mathbf{y}; \bar{\mathbf{y}}_*) = \frac{4}{3} - \gamma.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Solving to the left

Aim

Find \bar{y}_* such that local solution $(\rho(\cdot; \bar{y}_*), \omega(\cdot; \bar{y}_*))$ extends smoothly to y = 0. Aim for solution with

$$\frac{4}{3} - \gamma \leq \omega(\mathbf{y}; \bar{\mathbf{y}}_*) < 2 - \gamma, \qquad \lim_{\mathbf{y} \to \mathbf{0}} \omega(\mathbf{y}; \bar{\mathbf{y}}_*) = \frac{4}{3} - \gamma.$$

Idea

Look for critical \bar{y}_* as infimum of

$$Y = \Big\{ y_* \in (y_f, y_F) \, | \, \exists y \text{ such that } \omega(y; \tilde{y}_*) = \frac{4 - 3\gamma}{3} \, \forall \, \tilde{y}_* \in [y_*, y_F) \Big\}.$$

Key idea: Prove monotonicity for both $\rho(\cdot; y_*)$ and $\omega(\cdot; y_*)$ as long as $y_* \in Y$ and $\omega(\cdot; y_*) \ge \frac{4}{3} - \gamma$.

Solving to the left

Idea

Look for critical \bar{y}_* as infimum of

$$Y = \Big\{ y_* \in (y_f, y_F) \, | \, \exists y \text{ such that } \omega(y; \tilde{y}_*) = \frac{4 - 3\gamma}{3} \, \forall \, \tilde{y}_* \in [y_*, y_F) \Big\}.$$

Key idea: Prove monotonicity for both $\rho(\cdot; y_*)$ and $\omega(\cdot; y_*)$ as long as $y_* \in Y$ and $\omega(\cdot; y_*) \ge \frac{4}{3} - \gamma$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

For $y_* \in Y$, define first touching time

$$y_c(y_*) = \inf\{y \leq y_* \mid \omega(\tilde{y}; y_*) > \frac{4 - 3\gamma}{3} \forall \tilde{y} \in (y, y_*)\}.$$

Suppose \exists maximal $\tilde{y}_* \in Y$ such that $\exists y_0 \in [y_c(\tilde{y}_*), \tilde{y}_*]$ with $\omega'(y_0; \tilde{y}_*) = 0$.

≜UCL

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

For $y_* \in Y$, define first touching time

$$y_c(y_*) = \inf\{y \leq y_* \mid \omega(\tilde{y}; y_*) > \frac{4 - 3\gamma}{3} \forall \tilde{y} \in (y, y_*)\}.$$

Suppose \exists maximal $\tilde{y}_* \in Y$ such that $\exists y_0 \in [y_c(\tilde{y}_*), \tilde{y}_*]$ with $\omega'(y_0; \tilde{y}_*) = 0$.

h < 0 on [*y_c*, *ỹ_{*}*], hence ω'(*y_c*) > 0, so that *y*₀ ∈ (*y_c*, *ỹ_{*}*);

≜UCL

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

For $y_* \in Y$, define first touching time

$$y_c(y_*) = \inf\{y \leq y_* \mid \omega(\tilde{y}; y_*) > \frac{4 - 3\gamma}{3} \,\forall \tilde{y} \in (y, y_*)\}.$$

Suppose \exists maximal $\tilde{y}_* \in Y$ such that $\exists y_0 \in [y_c(\tilde{y}_*), \tilde{y}_*]$ with $\omega'(y_0; \tilde{y}_*) = 0$.

• $\exists \delta_1 > 0$ such that $\omega'(y; \tilde{y}_*) < 0$ on $(y_0 - \delta_1, y_0)$;

For $y_* \in Y$, define first touching time

$$y_c(y_*) = \inf\{y \leq y_* \mid \omega(\tilde{y}; y_*) > \frac{4 - 3\gamma}{3} \forall \tilde{y} \in (y, y_*)\}.$$

Suppose \exists maximal $\tilde{y}_* \in Y$ such that $\exists y_0 \in [y_c(\tilde{y}_*), \tilde{y}_*]$ with $\omega'(y_0; \tilde{y}_*) = 0$.

ω'(y; y_{*}) is uniformly continuous with respect to (y, y_{*}) on a neighbourhood of (y₀, ỹ_{*}).

≜UCL

・ロト ・ 戸 ・ イヨト ・ ヨー ・ つくで

Linear Stability

- Appropriate self-similar coordinates;
- Non-self-adjoint problem (complex eigenvalues);
- Sonic degeneracy and issues with dissipativity (monotonicity).

≜UCL

・ロト ・ 戸 ・ イヨト ・ ヨー ・ つくで

Linear Stability

- Appropriate self-similar coordinates;
- Non-self-adjoint problem (complex eigenvalues);
- Sonic degeneracy and issues with dissipativity (monotonicity).

Future directions

- Non-linear stability;
- Einstein-Euler (relativistic self-similar fluid implosion) and its stability (cf. Guo–Hadžić–Jang '21).
- Continuation and expansion?

Thank you!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆