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Eduardo Garćıa-Juárez (Universitat de Barcelona),

Yoichiro Mori (University of Pennsylvania).

arXiv:2009.03360 and arXiv:2112.00692

NYU ABU DHABI,
Long Time Behavior and Singularity Formation in PDEs:

Part V,
Wednesday, June 1, 2022.

https://arxiv.org/abs/2009.03360
https://arxiv.org/abs/2112.00692
https://nyuad.nyu.edu/en/events/2022/june/long-time-behavior-and-singularity-formation-in-pdes.html


Dynamical mathematical models with free boundaries

(a) Kelvin-Helmholtz (b) Water waves

(c) Hele-Shaw cell (d) Red blood cells



Main Interests and Questions

• Local-in-time existence and uniqueness

• Regularity of the interface (smoothing effects)

• Global-in-time existence and uniqueness

• Large time behavior

• Non-small initial data (nonlinear effects)

• Critical regularity

• Viscosity (nonlocal effects)



example: Incompressible Porous Medium

Equations (Darcy law)
∂tρ(x , t) + u(x , t) · ∇ρ(x , t) = 0, x ∈ Rd , t ≥ 0

∇ · u(x , t) = 0,

µ
κu(x , t) = −∇p(x , t)− ρ(x , t)ged , (d = 2, 3),

where

- u, p, ρ, µ are the velocity, pressure,
density, and viscosity of the fluid

- κ, g are the permeability of the medium
and the gravitational constant



example: Incompressible Porous Medium

Equations (Hele-Shaw cell)

∂tρ(x , t) + u(x , t) · ∇ρ(x , t) = 0, x ∈ R2, t ≥ 0

∇ · u(x , t) = 0,

12
b2
µu(x , t) = −∇p(x , t) + gρ(x , t)

(
0

−1

)
,

- Homogeneous medium (constant permeability, κ) ≡ fixed width, b



example: The Muskat Problem

Two incompressible and immiscible fluids:

µ(x , t) =

{
µ1, x ∈ D1(t),
µ2, x ∈ D2(t),

ρ(x , t) =

{
ρ1, x ∈ D1(t),
ρ2, x ∈ D2(t),

- Two cases:

• Circle case: ∂D(t) is a closed curve (or surface).

• Flat case: ∂D(t) is a curve (or surface) vanishing at infinity.



example: Muskat and Hele-Shaw problems

Oil pumping Hele-Shaw cell

Viscous fingering



Peskin problem: Stokes immersed boundary problem



Peskin problem: Stokes immersed boundary problem



Peskin problem: Stokes immersed boundary problem
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• Stokes flow in a 2D open domain denoted D and Dc where
Dc = R2\(D ∪ ∂D).

• One dimensional elastic string Γ = ∂D is parametrized by θ.

• Position on Γ is X (t, θ) and the force is F (θ).

Problem: Find the velocity field u(x) and the elastic string
position X (t, θ).



Peskin problem: Immersed elastic string (first formulation)

• Stokes fluid with viscosity µ satisfied in D ∪ Dc :

µ∆u −∇p = 0, ∇ · u = 0.

• Elasticity: jump conditions

[[Σn]] = Fel(X )|∂αX |−1, [[u]] = 0, on ∂D,

where n is the unit normal vector on Γ = ∂D

Σ = µ
(
∇u + (∇u)T

)
− pI in D ∪ Dc .

Above Σ is called the stress tensor.
• [[·]] denotes the jump across Γ = ∂D
• The jump conditions represent the no-slip and force balance
boundary conditions on the interface Γ = ∂D.

• General tension force law (T an arbitrary nonlinear function)

Fel(X ) = ∂θ

(
T (|∂θX |) ∂θX

|∂θX |

)
• Simple tension force law: Fel(X ) = k0∂

2
θX , k0 > 0.

Fel(X ) = k0∂
2
θX , k0 > 0.



Second formulation: immersed boundary formulation
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Immersed boundary method:

∆u+∇p =

∫
T
∂θ

(
T (|∂θX |) ∂θX

|∂θX |

)
δ(x−X (θ))dθ, ∇·u = 0.

• The force balance condition at Γ is treated as an external
singular force field supported on Γ(t) = {X (θ) : θ ∈ T}.

• The no-slip condition is satisfied automatically.

This formulation has proven to be very useful computationally.



Third formluation: Contour dynamic formulation

The string moves with the flow:

∂tX (θ, t) = u(X (θ, t), t)

Then invert the Stokes operator in the whole space to obtain

∂tX (θ, t) =
1

4π

∫
T
G (X (θ, t)−X (α, t))∂θ

(
T (|∂θX |) ∂θX

|∂θX |

)
(α, t)dα,

where the kernel G (x) is called the Stokeslet:

G (x) = − log |x |I+ x ⊗ x

|x |2 , x ∈ R2.

Here also I is the identity matrix on R2.



Problem Formulation Error Estimates Convergence Study and Outlook Convergence Study Outlook

Sample Computational Run

We test convergence with a stationary problem.

Yoichiro Mori IB Method Proof
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Almost uniform convergence rates over U\Γ.

Yoichiro Mori IB Method Proof
• Low order numerical convergence rate for the immersed
boundary problem: Mori (CPAM, 2008) Computations above
done by Mori et al (2008).

• Applied mathematicians including Yoichiro Mori (University of
Pennsylvania) and Johnny Guzman (Brown) expressed the
importance of future analytical work.

• Low order numerical convergence rate means that existence
and uniqueness results with low regularity can be very useful
both for theoretical justifications but also perhaps for
motivations to develop new numerical schemes.

• Lowest regularity that can be expected for well-posedness is
possibly critical regularity.



Critical local well-posedness for the fully nonlinear
Peskin problem
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Boundary integral formulation for the Peskin problem

Boundary integral formulation for the general force law:

∂tX (θ) =

∫
T
G (δαX (θ))∂α

(
T (|X ′(θ + α)|) X ′(θ + α)

|X ′(θ + α)|

)
dα.

Here X ′(θ) = ∂θX (θ). Standard partial difference operator

δαX (θ)
def
= X (θ + α)− X (θ).

For z ∈ R2, G (z) is the Stokeslet given by

G (z) = G1(z)+G2(z), G1(z)
def
= − 1

4π
log(|z |)I, G2(z)

def
=

1

4π

z ⊗ z

|z |2 .

In the simple tension case T (r) = k0r the equation takes the form

∂tX (θ) = k0

∫
G (δαX (θ))∂2

αX (θ + α)dα.

This looks very bad to study critical regularity due to ∂2
αX = X ′′.



Boundary integral re-formulation

Propose to write the equation in an equivalent formulation that
will cancel out the terms featuring an ∂2

αX = X ′′. Integrate by
parts against G1(z) while leaving G2(z) alone to obtain

∂tX (θ) =

∫
∂α

(T (|X ′|)
|X ′| ∂α(G1(δαX ))

)
δαX (θ)dα

+

∫
G2(δαX )∂α

(
T (|X ′(θ + α)|) X ′(θ + α)

|X ′(θ + α)|

)
dα

=
1

4π

∫ 2
(
X ′(θ + α) · δαX

|δαX |

)2
− |X ′(θ + α)|2

|δαX |2
T (|X ′(θ + α)|)
|X ′(θ + α)| δαXdα.

This cancellation is very important for our analysis.



Equation for the derivative

The property of the cancellation of the highest order derivatives is
also satisfied by the equation for ∂θX (t, θ) = X ′(t, θ). We derive
that X ′(t, θ) solves the equation

∂tX ′(θ) =

∫
T

dα

α2
K[X ](θ, α)δαT(X ′(θ)),

where T : R2 → R2 is the tension map

T(z)
def
= T (|z |)ẑ , z ∈ R2.

Here the kernel K(θ, α) = K[X ](θ, α) is given by

K[X ](θ, α)
def
=

1

4π

X ′(θ + α) · P(DαX (θ))X ′(θ)

|DαX (θ)|2 I

− 1

4π

X ′(θ + α) · R(DαX (θ))X ′(θ)

|DαX (θ)|2 R(DαX (θ))

+
1

4π

X ′(θ + α) · (P(DαX (θ))− I)X ′(θ)

|DαX (θ)|2 P(DαX (θ)).



Kernel of the equation for the derivative

K[X ](θ, α)
def
=

1

4π

X ′(θ + α) · P(DαX (θ))X ′(θ)

|DαX (θ)|2 I

− 1

4π

X ′(θ + α) · R(DαX (θ))X ′(θ)

|DαX (θ)|2 R(DαX (θ))

+
1

4π

X ′(θ + α) · (P(DαX (θ))− I)X ′(θ)

|DαX (θ)|2 P(DαX (θ)).

Then I is the identity matrix on R2, and the reflection matrices are

R(z)
def
= ẑ ⊗ ẑ⊥ + ẑ⊥ ⊗ ẑ , P(z)

def
= ẑ ⊗ ẑ − ẑ⊥ ⊗ ẑ⊥,

where ẑ⊥ ∈ R2 is the unit vector perpendicular to the unit ẑ . And

DαX (θ)
def
=

δαX (θ)

α
=

X (θ + α)− X (θ)

α
.



Model: vector valued fractional porous medium equation

For small α, the integrand for the ∂tX ′ equation is approximately

K[X ](θ, α)

α2
δαT(X ′(θ)) ≈ δαT(X ′)

4πα2
.

Thus the basic model equation for the general tension case should
be a vector version of the fractional porous medium equation

∂tU = −(−∆)1/2T(U).

To the best of our knowledge, this equation has not been studied
before.

The positivity and monotonicity assumptions that we make on the
tension T are both physically motivated, as well as the same
assumptions that typically appear on the porous media equation in
order to ensure “ellipticity” for the problem.



Scalar fractional porous media equation

• Caffarelli, Soria, and Vázquez, Regularity of solutions of the
fractional porous medium flow, JEMS (2013),
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nonlinear fractional diffusion equations, JEMS (2017),

Local vector valued porous media equation

• Hong Jun Yuan, The Cauchy problem for a quasilinear
degenerate parabolic system, Nonlinear Anal. (1994),

• Hong-Ming Yin, On a degenerate parabolic system, J.
Differential Equations (2008),

• Tariel A. Sanikidze and Anatoli F. Tedeev, On the temporal
decay estimates for the degenerate parabolic system,
Commun. Pure Appl. Anal. (2013),



Scaling critical spaces

Here we give a list of some scaling critical spaces for the Peskin
problem under the rescaling Xλ(t, θ) = λ−1X (λt, λθ) for λ > 0:

• the chord arc number

|X |∗ def
= inf

θ,α∈T,α ̸=0

∣∣∣∣X (θ + α)− X (θ)

α

∣∣∣∣ .
• the Lipshitz space Ẇ 1,∞(T)
• the Wiener algebra A1(T)
• BMO1 and VMO1

• the homogeneous Besov spaces Ḃ
1+ 1

p
p,r (T) for all p, r ∈ [1,∞]

We emphasize the spaces Ḃ
3
2
2,r (T) for 1 ≤ r ≤ ∞ and Ḣ

3
2 (T).



Solution Spaces

LqTL
p
θ mixed Lebesgue space norm:

||f ||LqT (Lpθ)
def
=

(∫ T

0

(∫
T
|f (t, θ)|p dθ

)q/p

dt

)1/q

, 1 ≤ p, q < ∞.

Besov spaces for 0 < s < 1 and p, q, r ∈ [1,∞):

||f ||Ḃs
p,r

def
=

(∫
T

dβ

|β|

( ||δβf ||Lp(T)
|β|s

)r)1/r

,

Chemin-Lerner mixed regularity spaces

||f ||
L̃qT (Ḃ

s
p,r )

def
=

(∫
T

dβ

|β|1+sr
||δβf ||rLqT (Lpθ)

)1/r

.



Solution Spaces with logarithmic regularity

Besov spaces with regularity on the logarithmic scale for 0 < s < 1
and p, r ∈ [1,∞]:

||f ||Ḃs,µ
p,r

def
=

(∫
T

dβ

|β|

(
µ(|β|−1)

||δβf ||Lp(T)
|β|s

)r)1/r

.

Here the log scale derivative is defined as follows:

Definition

We consider functions µ : [0,∞) → [1,∞) which satisfy the
following three assumptions:

• µ is increasing and limµ(r) = ∞ when r goes to +∞;

• there is a positive constant c0 such that µ(2r) ≤ c0µ(r) for
any r ≥ 0;

• the function r 7→ µ(r)/ log(4 + r) is decreasing on [0,∞).



A Scaling Critical Besov Space for 2D Peskin

||X ′||
Ḃ

1/2
2,1

def
=

∫
T

dβ

|β|3/2 ||δβX
′||L2(T).



Definition of a weak solution

Let X ′
0 ∈ Ḃ

1
2
2,1(T;R2) with |X0|∗ > 0. We say that

X : [0,T ]× T → R2 is a weak solution of the Peskin problem with

tension T and initial data X0 if T(X ′) ∈ L2t (L
∞
θ ∩ Ḣ

1/2
θ ) with

inf0≤t≤T |X (t)|∗ > 0, and for any function Y : [0,T ]× T → R2

with Y ′ ∈ L2t (L
∞
θ ∩ Ḣ

1/2
θ ), we have∫

T
dθ Y ′(T , θ) · X ′(T , θ)−

∫
T
dθ Y ′

0(θ) · X ′
0(θ)

=

∫ T

0
dt

∫
T
dθ ∂tY ′(t, θ) · X ′(t, θ)

− 1

2

∫ T

0
dt

∫
T
dθ

∫
T

dα

α2
δαY ′(t) · K[X ](t, θ, α)δαT(X ′(t)).



Definition of a strong solution

We say that X : [0,T ]× T → R2 is a strong solution if
X ∈ C 2((0,T ]× T → R2) solves the equation pointwise with
inf0≤t≤T |X (t)|∗ > 0 and

lim
t→0

||X ′(t)− X ′
0||L∞ = 0.



Critical local existence theorem

Theorem (Cameron-S (2021) arXiv:2112.00692)

Let X0 : T → R2 with X ′
0 ∈ Ḃ

1
2
2,1 and |X0|∗ > 0. Let the scalar

tension T : (0,∞) → (0,∞) be such that T ∈ C 1,1
loc (0,∞) with

T ′(r) > 0 for all 0 < r < ∞. Then there is a T > 0 such that
there exists a unique weak solution X : [0,T ]× T → R2 to the
Peskin problem, which is also a strong solution.
Furthermore for any 0 < β < 1, X ∈ C 2,β

loc ((0,T ]× T;R2).

Additionally, if T ∈ C k,γ
loc (0,∞) for some k ≥ 2 and 0 < γ < 1

then we have that X ∈ C k+1,γ
loc ((0,T ]× T;R2).

Due to the structure of equation, X ∈ C k+1,γ
loc is the optimal

regularity for T ∈ C k,γ
loc . We prove this theorem by proving a

quantitative version under more restrictive assumptions on the
tension.

https://arxiv.org/abs/2112.00692


Main quantiative critical local existence theorem

Theorem (Quantitative existence, Cameron-S (2021))

Consider initial data X0 : T → R2 such that ||X ′
0||

Ḃ
1
2 ,µ

2,1

≤ M for

some µ and for any M > 0, and |X0|∗ > 0. Let the tension map
T : R2 → R2 be such that DT ∈ W 1,∞(R2;R2×2) satisfying the
ellipticity condition DT(z) ≥ λI > 0.
Then there exists a time T > 0 depending only on M, µ, |X0|∗, λ
and ||DT||W 1,∞ such that there exists a strong solution,
X : [0,T ]× T → R2 to the Peskin problem with tension T and
initial data X0. This solution satisfies for some universal constant
c > 0 that∫

T

dβ

|β| 32
µ(|β|−1)

(
||δβX ′||L∞T L2θ

+ c
√
λ||δβΛ

1
2X ′||L2TL2θ

)
≤ 4

∫
T

dβ

|β| 32
µ(|β|−1)||δβX ′

0||L2θ .



Smoothing

Theorem (Quantitative smoothing, Cameron-S (2021))

Further for any small time τ > 0 and any 0 < β < 1,
X ∈ C 2,β([τ,T ]× T;R2), with its norm depending only on τ, β,
and the previously mentioned constants.
If we additionally have that T ∈ C k,γ(R2;R2) for some k ≥ 2 and
0 < γ < 1. Then for any small time τ > 0,
X ∈ C k+1,γ([τ,T ]× T;R2) with the C k+1,γ norm controlled by
M, µ, |X0|∗, λ, γ, ||T||C k,γ , and τ .



Theorem (Uniqueness, Cameron-S (2021))

Consider X0 and Y0 such that X ′
0,Y

′
0 ∈ Ḃ

1
2
,µ

2,1 (T;R2) with

|X0|∗ > 0 and |Y0|∗ > 0. Let the tension map T : R2 → R2 satisfy
the same conditions and consider the corresponding solutions
X ,Y : [0,T ]× T → R2. Choose any ν(r) satisfying the previous

definition such that there exists r∗ ≥ 1 so that ν(r)
µ(r) is decreasing

for r ≥ r∗ and in particular lim
r→∞

ν(r)

µ(r)
= 0. Then for any ε > 0,

there exists δ∗ > 0 such that for any 0 < δ ≤ δ∗ then
||X ′

0 − Y ′
0||L2θ < δ implies that∫

T

dβ

|β| 32
ν(|β|−1)||δβ(X ′ − Y ′)||L∞T L2θ

< ε.

In particular if ||X ′
0 − Y ′

0||L2θ = 0 then the solution is unique in

L̃∞T (Ḃ
1
2
,ν

2,1 ).

We can take for example ν(r) = µ(r)γ for any 0 < γ < 1.



Theorem (Strong continuity, Cameron-S (2021))

We consider the two strong solutions X ,Y : [0,T ]× T → R2 to
the Peskin problem with initial data X0, Y0. Suppose the tension
map T satisfies DT ∈ W 2,∞(R2;R2×2) and the ellipticity
condition DT(z) ≥ λI > 0.
Then there exists TM > 0 depending only on M, |X0|∗, |Y0|∗, µ,
λ, and ||DT||W 2,∞ such that for any 0 < T ≤ TM , we have the
following strong continuity estimate

||X ′ − Y ′||Bν
T
+ 2λ

1
2 ||X ′ − Y ′||Dν

T
≤ 8||X ′

0 − Y ′
0||Bν .

||X ′||Bν
T
≈
∫
T

dβ

|β| 32
µ(|β|−1)||δβX ′||L∞T L2θ

.

||X ′||Dν
T
≈
∫
T

dβ

|β| 32
µ(|β|−1)||δβΛ

1
2X ′||L2TL2θ .



Proof overview (Main apriori estimate)

The heart of our argument is the a priori estimate. We make use
of our new equation for ∂tX ′. Because K(θ, α) is symmetric in
θ, θ + α, our equation has divergence form symmetry making L2

based energy estimates a natural choice. By making use of Besov
spaces, we’re interested then in keeping careful track of the time
evolution of differences ||δβX ′||L2θ(t) where β ∈ T is arbitrary. We

have that δβX ′(θ) solves

∂tδβX ′(θ) + ΛδβT(X ′)(θ) =

∫
T

dα

α2
δβ
(
A(θ, α)δαT(X ′)(θ)

)
.

Here A(θ, α) is part of the kernel K[X ]. When we calculate
∂t ||δβX ′||2

L2θ
, we then get one good diffusive term −λ||δβX ′||2

Ḣ1/2

from the ΛδβT(X ′) (along with additional error terms).



Proof overview

We then treat the remaining terms as error, and are left to bound
integrals of the form∫

T

∫
T
dθdα

|δβδαX ′|2 |δαX ′|q
α2

,

or ∫
T

∫
T
dθdα

|δβδαX ′| |δβX ′| |δαX ′|q+1

α2
,

where q = 1, 2. If we were to bound the first term naively, we
would get

||δβX ′||2
Ḣ1/2 ||X ′||qL∞θ ,

which would make it impossible to close the estimate, as this is of
the same order as our good diffusive term but with a possibly large
coefficient in front for large data.



Proof overview

∫
T

∫
T
dθdα

|δβδαX ′|2 |δαX ′|q
α2

,

However, the norm for Ḃ
1
2
,µ

2,1 both controls the size of the norm

Ḃ
1
2
2,1 and the rate of decay for

r →
∫
|α|<r

dα
||δαf ||L2θ
|α|3/2 ≲

||f ||
Ḃ

1/2,µ
2,1

µ(r−1)
.

Thus splitting the integral in our error term between |α| < η and
|α| > η for some η sufficiently small depending on µ, ||X ′

0||Ḃ1/2,µ
2,1

,

and other relevant constants, we are able to bound this error term
as

ϵ||δβX ′||2
Ḣ1/2 + C ||δβX ′||2L2θ ,

which we can handle.



Proof overview

∫
T

∫
T
dθdα

|δβδαX ′| |δβX ′| |δαX ′|q+1

α2
,

For the second type of error term, the story is similar except that
we are forced to bound the |δβX ′| in L∞θ , as it has no decay as
α → 0. Thus we end up with an error term of the form

ϵ||δβX ′||2
Ḣ1/2 + C ||δβX ′||2L2θ + ϵ||δβX ′||2L∞θ .

This L∞ error term at first seems very bad, as notably the Sobolev
embedding fails and ||δβX ′||2L∞θ is not controlled by our good

diffusive piece −λ||δβX ′||2
Ḣ

1
2
. However, once we integrate in β

against µ(|β|−1)|β|−3/2 the Sobolev embedding is again true:∫
T

dβ

|β| 32
µ(|β|−1)||δβX ′||L∞θ ≤ Cµ

∫
T

dβ

|β| 32
µ(|β|−1)||Λ 1

2 δβX ′||L2θ

and we can control this error term at the end of the estimate.



Higher regularity

Our higher regularity proofs are based on the proof of higher
regularity for the scalar fractional porous medium equation:

Juan Luis Vázquez, Arturo de Pablo, Fernando Quirós, and Ana
Rodŕıguez, Classical solutions and higher regularity for nonlinear
fractional diffusion equations, J. Eur. Math. Soc. (JEMS) 19
(2017), no. 7, 1949–1975, doi:10.4171/JEMS/710

http://dx.doi.org/10.4171/JEMS/710


Global well-posedness for the Peskin problem with
viscosity contrast



Peskin problem with viscosity contrast

• Incompressibility condition

∇ · u = 0, in D ∪ Dc , Dc = R2\(D ∪ ∂D)

• Stokes with viscosities µ1 and µ2 (µ1 ̸= µ2)

µ1∆u −∇p = 0, in D,

µ2∆u −∇p = 0, in Dc ,

• Elasticity: jump conditions

[[Σn]] = Fel(X )|∂αX |−1, [[u]] = 0, on ∂D,

where

Σ =

{
µ1

(
∇u + (∇u)T

)
− pI in D

µ2

(
∇u + (∇u)T

)
− pI in Dc

.

• Simple tension force law: Fel(X ) = k0∂
2
θX , k0 > 0.

• The string moves with the flow:

∂tX (θ, t) = u(X (θ, t), t)



Contour dynamic formulation with viscosity contrast

Inverting the Stokes operator in the whole space

∂tX (θ, t) =
1

4π

∫
T
G (X (θ, t)− X (α, t))F (X )(α, t)dα,

G (x) = − log |x |I+ x ⊗ x

|x |2 ,

and the net force (due to elasticity and viscosity contrast)

Fi (θ) + 2Aµ∂θX⊥
j

∫
T
Hijk(X (θ)− X (α))Fk(α)dα = 2AeFel ,i (θ).

where i , j , k ∈ {1, 2} and

Aµ =
µ2 − µ1

µ1 + µ2
, Ae =

k0
µ2 + µ1

, Hijk = − 1

π

xixjxk

|x |4
,



Linearization

Unique equilibria: uniformly parametrized circles,

Xc(α) = a

(
1
0

)
+ b

(
0
1

)
+ c

(
cosα
sinα

)
+ d

(
− sinα
cosα

)
Linearization around equilibrium Z = X − Xc :

∂tZ (α) = −Ae

2

(
ΛZ (α)− HZ (α)⊥

)
+ N(Z ,Xc)(α).

Here H is the Hilbert transform, and Λ = (−∆)1/2.

Obstacle: no dissipation for 0,±1 frequencies. Here, we cannot
choose the parametrization.



Functional spaces

Generalizing the Wiener algebra of functions with absolutely
convergent Fourier series, we define the homogeneous Ḟ s,1

ν and
nonhomogeneous F s,1

ν norms as

∥X∥Ḟ s,1
ν

=
∑

k∈Z\{0}

eν(t)|k||k |s |X̂ (k)|, s ∈ R,

and

∥X∥F s,1
ν

= |X̂ (0)|+
∑

k∈Z\{0}

eν(t)|k||k|s |X̂ (k)|, s ≥ 0,

with ν∞ > 0 is chosen sufficiently small we define

ν(t) = ν∞
t

1 + t
≥ 0,

When ν ≡ 0, we denote Ḟ s,1
0 = Ḟ s,1 and F s,1

0 = F s,1.
When s = 1 the Ḟ s,1 norm is critical for the Peskin problem.



Strong solution

Definition (Strong solution)

Let
X ∈ C ([0,T ];F1,1) ∩ C 1((0,T ];F0,1),

and

|X |∗(t) = inf
θ,η∈S,θ ̸=η

|X (θ, t)−X (η, t)|
|θ − η| > 0,

for 0 ≤ t ≤ T . Then, X is a strong solution to the
viscosity-contrast Peskin problem with initial value X (0) = X 0 if it
satisfies the contour dynamic formlation pointwise for 0 < t ≤ T
and X (t) → X 0 in F1,1 as t → 0.



Theorem (Garćıa-Juárez, Mori, S (2021) Anal. PDE)

Let Aµ ∈ (−1, 1) and X0 ∈ F1,1. Let Z0 = X0 − X0,c . Assume
that initially the deviation X0 satisfies the medium-size condition

∥Z0∥Ḟ1,1 < k(Aµ),

where k(Aµ) > 0, and the area enclosed by X0 is π. Then, for any
T > 0, there exists a constant ν∞ > 0 such that there exists a
unique global strong solution X (t), which lies in the space

X ∈ C ([0,T ];F1,1
ν ) ∩ C 1((0,T ];F0,1

ν ) ∩ L1([0,T ]; Ḟ2,1
ν ),

In particular, it becomes instantaneously analytic. Moreover,

∥Z∥Ḟ1,1
ν
(t) +

Ae

4
C
∫ t

0
∥Z∥Ḟ2,1

ν
(τ)dτ ≤ ∥Z0∥Ḟ1,1 , 0 ≤ t ≤ T .

with C = C
(
∥Z0∥Ḟ1,1 ,Aµ, ν∞

)
> 0.



Theorem (Garćıa-Juárez, Mori, S (2021) Anal. PDE)

In addition,

∥Z∥Ḟ1,1
ν
(t) ≤ ∥Z0∥Ḟ1,1e

−Ae
4
Ct .

The zero frequency Ẑc(0) remains uniformly bounded for all times
as follows

|Ẑc(0)| ≤ |Ẑ0,c(0)|+ C̃∥Z0∥2Ḟ1,1 ,

with C̃ = C̃
(
∥X0∥Ḟ1,1 ,Aµ

)
> 0, while

1− 1

2
∥Z∥2Ḟ1,1

ν
≤ |Ẑc(1)|2 ≤ 1 +

1

2
∥Z∥2Ḟ1,1

ν
.

The decay to zero of the deviation Z shows the exponentially fast
convergence to a uniformly parametrized circle with the same area
as the initial one.



Allowable size of the inital data: 103k(Aµ)



Closely related recent references

• Francisco Gancedo, Eduardo Garćıa-Juárez, Neel Patel, and
Robert M. Strain, On the Muskat problem with viscosity
jump: Global in time results, Adv. Math. 345 (2019),
552–597, doi:10.1016/j.aim.2019.01.017.

• Francisco Gancedo, Eduardo Garćıa-Juárez, Neel Patel, and
Robert M. Strain, Global regularity for gravity unstable
Muskat bubbles, Mem. Amer. Math. Soc. (2021) in press,
87 pages, arXiv:1902.02318.

http://dx.doi.org/10.1016/j.aim.2019.01.017
http://arxiv.org/abs/arXiv:1902.02318


Results

Ideas:

• Linearize around a time-dependent uniformly parametrized
circle, a(t), b(t), c(t), d(t)

• Diagonalize the linear operator

• Use the incompressibility condition

• Project the equation into the space of equilibria and its
orthogonal complement

Result: For any value of Aµ ∈ (−1, 1), and a perturbation from the
uniformly parametrized circles not too far in F1,1 (critical
regularity), global well-posedness, instant analyticity, and
exponential convergence.



Proof idea: Fourier

Basic idea to estimate ∥Z∥Ḟ1,1
ν
(t): (Zt = −LZ + N(Z ))

d

dt
∥Z∥Ḟ1,1

ν
=

d

dt

(∫
|ξ|eνt|ξ||Ẑ (ξ)|dξ

)
= ν

∫
|ξ|2etν|ξ||Ẑ (ξ)|dξ

+

∫
|ξ|eνt|ξ| 1

2

Ẑt(ξ)Ẑ (ξ) + Ẑ (ξ)Ẑ t(ξ)

|Ẑ (ξ)|
dξ

≤ (ν − 1

2
Ae)

∫
|ξ|2eνt|ξ|| Ẑ (ξ)|dξ +

∫
|ξ|eνt|ξ||N̂(Z )(ξ)|dξ

= (ν − 1

2
Ae)︸ ︷︷ ︸

<0

∥Z∥Ḟ2,1
ν

+ ∥N∥Ḟ1,1
ν

Goal: Find ∥N∥Ḟ1,1
ν

≤ c(∥ f ∥Ḟ1,1
ν
,Aµ)Ae∥Z∥Ḟ2,1

ν
.



Thank you!

Eduardo Garćıa-Juárez, Yoichiro Mori, and Robert M. Strain,

The Peskin Problem with Viscosity Contrast,

Anal. PDE (2021 in press), 54 pages, arXiv:2009.03360.

Stephen Cameron and Robert M. Strain,

Critical local well-posedness for the fully nonlinear Peskin
problem,

(2021), 73 pages, arXiv:2112.00692.

http://arxiv.org/abs/arXiv:2009.03360
https://arxiv.org/abs/2112.00692

