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Background

The Hunter-Saxton equation was introduced in (J. K. Hunter and R. Saxton,
SIAM J. Appl. Math., 51(6), 1991): for (x , t) ∈ R× R,

ut + uux =
1

2

∫ x

−∞
u2y (y , t)dy ,

or

ut + uux =
1

4

(∫ x

−∞
u2y (y , t)dy −

∫ ∞

x

u2y (y , t)dy

)
.

Arises in the theoretical study of nematic liquid crystals.

Both equations are similar, but NOT completely equivalent!!

The major difference is the asymptotic behavior of RHS at ∞.
Differentiating both equations with respect to x , we obtain the SAME
equation:

(ut + uux)x =
1

2
u2
x .
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What are integrable systems/equations?

Having infinitely many conservation laws?

Having a Lax pair?

A pair of operators (L,P) that satisfies Lax’s equation

d

dt
L+ [L,P] = 0,

where [L,P] := LP − PL.

AKNS pair, action-angle variables, etc.

Extract from Percy Deift’s Three Lectures on “Fifty Years of KdV: An
Integrable System” (Page 9):
... There is, for example, the story of Henry McKean and Herman Flashka
discussing integrability, when one of them, and I’m not sure which one, said
to the other: “So you want to know what is an integrable system? I’ll tell
you! You didn’t think I could solve it. But I can!” ...

du

dt
= tan u

x = sin u←−−−−→ dx

dt
= x .
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Formal calculations: finite-time blowup

Differentiating the Hunter-Saxton equation

ut + uux =
1

2

∫ x

−∞
u2y (y , t)dy

with respect to x yields

uxt + uuxx = −1

2
u2x .

This is a Riccati type equation, so smooth solutions may blow up in finite time.

Inviscid Burgers’ equation

For ut + uux = 0, a direct differentiation (in x) yields

uxt + uuxx = −u2x ,

so for any smooth solution u := u(x , t) subject to the initial data u|t=0 = ū,

ux(ξ + tū(ξ), t) =
ūx(ξ)

1 + tūx(ξ)
.

u is classical for all t ≥ 0 if and only if ū is C 1 and ūx > 0 in R.
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ūx(ξ)

1 + tūx(ξ)
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Energy conservation and structural similarity

Energy conservation: Multiplying uxt + uuxx = − 1
2u

2
x by ux yields

(u2x )t + (uu2x )x = 0.

Question: Is ∥ux(·, t)∥L2 actually conserved?

Structural similarity: Differentiating the Hunter-Saxton equation with
respect to x twice yields

uxxt + 2uxuxx + uuxxx = 0.

Set m := uxx . Then

mt + 2mux +mxu = 0, m = uxx .

It resembles the Camassa-Holm equation:

mt + 2mux +mxu = 0, m = u − uxx .

Remark: Both of these equations are integrable equations.
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Flow map

Let the initial datum ū be smooth and ūx ∈ L2(R). Consider the flow map:

∂

∂t
X (ξ, t) = u(X (ξ, t), t), X (ξ, 0) = ξ.

Then
∂2

∂t2
X (ξ, t) = (ut + uux)(X (ξ, t), t),

and by (u2x )t + (uu2x )x = 0,

∂

∂t

∫ X (ξ,t)

−∞
u2x (y , t)dy = u2x (X (ξ, t), t)

∂

∂t
X (ξ, t)︸ ︷︷ ︸

=u(X (ξ,t),t)

+

∫ X (ξ,t)

−∞
(u2x )t(y , t)︸ ︷︷ ︸
=−(uu2

x )x (y ,t)

dy = 0.

This implies that the acceleration
∫ X (ξ,t)

−∞ u2x (y , t)dy is conserved along the flow

map!! Using the Hunter-Saxton equation ut + uux = 1
2

∫ x

−∞ u2y (y , t)dy yields

∂2

∂t2
X (ξ, t) =

1

2

∫ X (ξ,t)

−∞
u2x (y , t)dy ≡

1

2

∫ ξ

−∞
ū2x (y)dy .
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Method of characteristics

Solving 
∂2

∂t2
X (ξ, t) =

1

2

∫ ξ

−∞
ū2x (y)dy ,

X (ξ, 0) = ξ, and
∂

∂t
X (ξ, 0) = ū(ξ),

we have

X (ξ, t) = ξ + ū(ξ)t +
t2

4

∫ ξ

∞
ū2x (y)dy

,

and hence,

u(X (ξ, t), t) =
∂

∂t
X (ξ, t) = ū(ξ) +

t

2

∫ ξ

∞
ū2x (y)dy .

Furthermore, a direct computation yields

Xξ(ξ, t) =
[
1 +

t

2
ūx(ξ)

]2
≥ 0.

Remark: These formulae make sense, as long as ξ 7→ X (ξ, t) is invertible (e.g.,
Xξ > 0).
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Finite time blow up

Recall that uxt + uuxx = − 1
2u

2
x , so

∂

∂t
ux(X (ξ, t), t) = −1

2
u2x (X (ξ, t), t).

Using the method of characteristics again, we also have

ux(X (ξ, t), t) =
2ūx(ξ)

2 + tūx(ξ)
,

where X (ξ, t) = ξ + ū(ξ)t + t2

4

∫ ξ

∞ ū2x (y)dy was obtained on the last slide.

Hence,
if inf

x∈R
ūx(x) < 0, then

inf
x
ux(x , t)→ −∞ as t → T0 := −

2

infx∈R ūx(x)
.

Question: How about ∥ux(·, t)∥L2?
Question: Can we further extend the solution after the blowup time?
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Initial data for an explicit example

Consider

ū(x) =


0, x ≤ 0,

− x , 0 < x < 1,

− 1, x ≥ 1,

ūx(x) =


0, x ≤ 0,

− 1, 0 < x < 1,

0, x ≥ 1.

is
'

1-

¥ '
x ¥. I >

g. .

UH , 1)
1.

"

i
"
"
Uxlx ,

-1 -

÷ i
z Uxlx , 1)

¥ "

11 111
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Explicit example

Consider

ū(x) =


0, x ≤ 0,

− x , 0 < x < 1,

− 1, x ≥ 1,

ūx(x) =


0, x ≤ 0,

− 1, 0 < x < 1,

0, x ≥ 1.

For t ∈ [0, 2), we have

u(x , t) =


0, x ≤ 0,

− x

1− t/2
, 0 < x < (1− t/2)2 ,

− (1− t/2), x > (1− t/2)2 ,

ux(x , t) =

−
1

1− t/2
, 0 < x < (1− t/2)2 ,

0, otherwise,

∥ux(·, t)∥L2 = 1.

Question: What will happen after t = 2? Conservative or dissipative?
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Energy can be conserved or “disappeared”!!

is
'

1-

¥ '
x ¥. I >

g. .

UH , 1)
1.

"

i
"
"
Uxlx ,

-1 -

÷ i
z Uxlx , 1)

¥ "

11 111

u(x , t)
Cb(R)−→ 0, u2x (·, t)dx

∗
⇀ δ0 as t → 2−.

\

1-
4 I

I :* :
>

÷ ;
.

"" ' 1)
I -

"

I
,

"
"
Uxlx,o)

✗

¥ :

2
-

'
* Uxlx , 1)

111 :(
conservative XK .tl dissipative XH.tl
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What was happening (for the conservative solution)?

Due to the semi-group property, WLOG, we can RESTART the problem at the
problematic time (i.e., t = 2 on the previous slide). Now, imagine we can take an

initial data ū such that ū2xdx = δ0. Question: What does the conservative
solution look like?
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Initial data: ū such that ū2xdx = δ0.

Since ū ≡ 0 and
∫ x

−∞ u2y (y , t)dy = 0 for x < 0, all the characteristics on the left

are vertical straight lines. (Recall: the acceleration at x is 1
2

∫ x

−∞ u2y (y , t)dy .)
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Initial data: ū such that ū2xdx = δ0.

Since ū(0) = 0 and
∫
(−∞,0)

u2y (y , t)dy = 0, the leftmost characteristic curve at

x = 0 is also a vertical line. (Recall: the acceleration is 1
2

∫ 0

−∞ u2y (y , t)dy .)
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Initial data: ū such that ū2xdx = δ0.

Since ū(0) = 0 and
∫
(−∞,0]

u2y (y , t)dy = 1, the rightmost characteristic curve at

x = 0 is the purple curve below. (Recall: the acceleration is 1
2

∫ 0

−∞ u2y (y , t)dy .)
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Initial data: ū such that ū2xdx = δ0.

Since ū ≡ 0 and
∫ x

−∞ u2y (y , t)dy = 1 for all x > 0, all the characteristics on the
right are the green curves below. Question: What should be in the middle?
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Initial data: ū such that ū2xdx = δ0.

Since ū(0) = 0, if we “define” a :=
∫ 0

−∞ u2y (y , t)dy to be any number α ∈ (0, 1),
then all the characteristics in the middle are the blue curves below.
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Conservative and dissipative solutions

Dissipative and conservative:
Hunter-Zheng (ARMA 1995, ARMA 1995, ūx ∈ BV (R+); chopped-BV, method
of regularized characteristics, zero-viscosity/dispersion limit for special solutions)
Zhang-Zheng (1998, 1999; 0 ≤ ūx ∈ Lp(R+), p ≥ 2; ARMA 2000; ūx ∈ L2(R+);
methods of Young measures)

Dissipative:
Bressan-Constantin (SIMA 2005; existence, uniqueness, stability)
Dafermos (JHDE 2011, 2012; uniqueness, monotone increasing case)
Tieślak-Jamróz (Adv. Math. 2016; uniqueness, general case)

Conservative:
Bressan-Zhang-Zheng (ARMA 2007; existence, uniqueness, stability)
Bressan-Holden-Raynaud (JMPA 2010; Lipschitz stability)
Carrillo-Grunert-Holden (CPDE 2019; Lipschitz stability)
Grunert-Holden (Res. Math. Sci. 2022; uniqueness)

λ-dissipative (λ ∈ [0, 1]):
Grunert-Tandy (ArXiv 2021; Lipschitz stability)
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Outline

1 The Hunter-Saxton equation

2 Generalized framework
Flow map
Generalized framework

3 Lagrangian coordinates for general initial data

4 Structure of conservative solutions

5 Existence and uniqueness
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Energy measure and generalized framework

Space for (energy) conservative solutions:

Definition

Let D be the set of pairs (u, µ) satisfying

(i) u ∈ Cb(R), ux ∈ L2(R);
(ii) µ ∈M+(R);
(iii) dµac = u2x dx , where µac is the absolutely continuous part of measure µ with

respect to the Lebesgue measure L.

Generalized Framework: 
ut + uux =

1

2

∫ x

−∞
dµ(t),

µt + (uµ)x = 0,

dµac(t) = u2x (·, t)dx .
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Outline

1 The Hunter-Saxton equation

2 Generalized framework

3 Lagrangian coordinates for general initial data
Different characteristics

4 Structure of conservative solutions

5 Existence and uniqueness
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Technical problem for flow map X (ξ, t)

Let (ū, µ̄) ∈ D be an initial datum. When ū2x dx = dµ̄, the flow map is

X (ξ, t) = ξ + ū(ξ)t +
t2

4

∫ ξ

∞
ū2x (y)dy .

For a generic initial datum (ū, µ̄) ∈ D, the flow map X (ξ, t) is no longer suitable
when dµ̄ ̸= dµ̄ac .

Technical Problem: how to define the cumulative energy distribution:∫ x

−∞
dµ̄?
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α-variable system

Let (ū, µ̄) ∈ D. Assume µ̄ = µ̄ac + µ̄pp + µ̄sc . Here, µ̄ac : absolutely continuous
part, µ̄pp : pure point part, µ̄sc : singular continuous part.

“Flatten” the singular part of µ̄ by defining x̄ := x̄(α) as follows:

x̄(α) + µ̄((−∞, x̄(α))) ≤ α ≤ x̄(α) + µ̄((−∞, x̄(α)]).

Remark: See (Bressan-Zhang-Zhang DCDS 2014; for uniqueness of conservative
solutions to Camassa-Holm equaiton).
In addition, we define two pseudo-inverses:

z1(x) := inf{α : x̄(α) = x}, z2(x) := sup{α : x̄(α) = x},

and the following three sets:

BL
0 := {α : x̄ ′(α) > 0},

AL,pp
0 := {α : x̄ ′(α) = 0, z1(x̄(α)) < z2(x̄(α))},

AL,sc
0 := {α : x̄ ′(α) = 0, z1(x̄(α)) = z2(x̄(α))}.
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Definitions of x̄ and related concepts
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Proposition

Let (ū, µ̄) ∈ D. Then
(i) Lipschitz continuity: |x̄(α)− x̄(β)| ≤ |α− β|, for any α, β ∈ R.
(ii) Define f (α) := 1− x̄ ′(α). Then x̄#(f dα) = µ̄, and ∥f ∥L1 = µ̄(R).
(iii) Decomposition of µ̄:

µ̄pp = x̄#(f |AL,pp
0

dα), µ̄sc = x̄#(f |AL,sc
0

dα), µ̄ac = x̄#(f |BL
0
dα).

ū2x (x̄(α))x̄
′(α) = f (α), α ∈ BL

0 := {α : x̄ ′(α) > 0}.

Proof of (i).

According to x̄(α) + µ̄((−∞, x̄(α))) ≤ α ≤ x̄(α) + µ̄((−∞, x̄(α)]), for any
α1 < α2,

0 ≤ x̄(α2)− x̄(α1) ≤ α2 − µ̄((−∞, x̄(α2)))− α1 + µ̄((−∞, x̄(α1)])

≤ α2 − α1 − µ̄((x̄(α1), x̄(α2))) ≤ α2 − α1.

Hence, x̄ is Lipschitz continuous with Lipschitz constant bounded by 1.
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dα), µ̄sc = x̄#(f |AL,sc
0

dα), µ̄ac = x̄#(f |BL
0
dα).

ū2x (x̄(α))x̄
′(α) = f (α), α ∈ BL

0 := {α : x̄ ′(α) > 0}.

Proof of ū2
x(x̄(α))x̄

′(α) = f (α), for all α ∈ BL
0 .

Let φ be a test function. Then the identify follows immediately by comparing∫
R
φ(x)dµ̄ac =

∫
R
φ(x̄(α))f |BL

0
(α)dα, and∫

R
φ(x)dµ̄ac =

∫
R
φ(x)ū2x (x)dx =

∫
R
φ(x̄(α))ū2x (x̄(α))x̄

′(α)dα.
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A useful lemma for push forward measures

Lemma (Structure for push forward measures)

Let X : R→ R be continuous, increasing, and surjective, and 0 ≤ g ∈ L1(R).
Define the measure

µ := X#(g dξ),

two pseudo-inverses:

Z1(x) := inf{ξ : X (ξ) = x}, Z2(x) := sup{ξ : X (ξ) = x},

the following three sets:

App := {ξ : Xξ(ξ) = 0, Z1(X (ξ)) < Z2(X (ξ))},
Asc := {ξ : Xξ(ξ) = 0, Z1(X (ξ)) = Z2(X (ξ))},
B := {ξ : Xξ(ξ) > 0},

and g1 := g · 1B , g2 := g · 1App , g3 := g · 1Asc . Then

(i) L(X (App ∪ Asc)) = 0, X (App) is a countable set;

(ii) dµac = X#(g1 dξ), dµpp = X#(g2 dξ), dµsc = X#(g3 dξ).
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An example

If µ̄ = δ0, then

x̄(α) =


α, α < 0,

0, 0 ≤ α ≤ 1,

α− 1, α > 1,

f (α) = 1− x̄ ′(α) =


0, α < 0,

1, 0 ≤ α ≤ 1,

0, α > 1.
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Energy density
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Recall Technical Problem: how to define the cumulative energy distribution:∫ x

−∞ dµ̄?

Function f : the energy density in the α-variable, and the cumulative energy
distribution is given by

∫
(−∞,α)

f (α)dα = α− x̄(α).

In this example, for α ∈ [0, 1], we have
∫
(−∞,α)

f (α)dα = α.
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Ideas for global characteristics in α-variable

Formal calculations for a smooth solution u:

For any β ∈ R, we define x(β, t) by

x(β, t) +

∫
(−∞,x(β,t))

u2x (y , t)dy = β, t ∈ R.

Then a direct computation yields

∂tx(β, t) =
(uu2x )(x(β, t), t)

1 + u2x (x(β, t), t)
, ∂βx(β, t) =

1

1 + u2x (x(β, t), t)
,

Define functions: {
U(β, t) = u(x(β, t), t)

H(β, t) = β − x(β, t).
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Ideas for global characteristics in α-variable

Define {
U(β, t) = u(x(β, t), t)

H(β, t) = β − x(β, t).

Formally, this provides the following system (Grunert-Holden, 2022):
xt(β, t) + Uxβ(β, t) = U(β, t),

Ht(β, t) + UHβ(β, t) = 0,

Ut(β, t) + UUβ(β, t) =
1

2
H(β, t).

Drawbacks:

No explicit formula,

non-uniqueness,

xt(β, t) ̸= u(x(β, t), t)⇒
∫
(−∞,x(β,t))

u2x (y , t)dy is not conserved.
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Global characteristics in α-variable

Crucial Idea: Allow β to also move with respect to the time t!!

Introduce a reformulation function β(t) with β(0) = α such that

x(β(t), t) +

∫ x(β(t),t)

−∞
u2x (y , t)dy = β(t), t ∈ R,

and
d

dt
x(β(t), t) = u(x(β(t), t), t).

Then
d

dt
[β(t)− x(β(t), t)] =

d

dt

∫ x(β(t),t)

−∞
u2x (y , t)dy = 0,

and

d2

dt2
β(t) =

d

dt
u(x(β(t), t), t) =

1

2

∫ x(β(t),t)

−∞
u2x (y , t)dy =

1

2
[β(t)− x(β(t), t)] .
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Global characteristics in α-variable

Hence,
d3

dt3
x(β(t), t) =

d3

dt3
β(t) = 0.

Furthermore, we also have the following initial data:

x(β(0), 0) = x̄(α),
d

dt
x(β(t), t)

∣∣∣
t=0

= ū(x̄(α)),

and
d2

dt2
x(β(t), t)

∣∣∣
t=0

=
1

2

∫ x̄(α)

−∞
ū2x (y)dy =

1

2
[α− x̄(α)] .

Global characteristics:

y(α, t) := x(β(t), t) = x̄(α) + ū(x̄(α))t +
t2

4
(α− x̄(α)).

Advantages:
1. We only need information of initial datum;
2. The formula (for y) can be generalized to any (ū, µ̄) ∈ D.
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From global y(α, t) to global (u(t), µ(t)) :u(x , t) =
∂

∂t
y(α, t) = ū(x̄(α)) +

t

2
(α− x̄(α)) for x = y(α, t),

µ(t) = y(·, t)#(f dα), f (α) = 1− x̄ ′(α).

Moral

For a generic initial data (ū, µ̄) ∈ D, we “define” the conservative solution as
follows:

1. We can still define x̄ via

x̄(α) + µ̄((−∞, x̄(α))) ≤ α ≤ x̄(α) + µ̄((−∞, x̄(α)]).

2. Using this x̄ , we can define β(t) and y by

β(t):= α+ ū(x̄(α))t +
t2

4
(α− x̄(α)),

y(α, t) := x̄(α) + ū(x̄(α))t +
t2

4
(α− x̄(α)).

3. Finally, we can obtain u and µ by the above formulae.
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Recovery of solution (u(t), µ(t))

From global y(α, t) to global (u(t), µ(t)) :u(x , t) =
∂

∂t
y(α, t) = ū(x̄(α)) +

t

2
(α− x̄(α)) for x = y(α, t),

µ(t) = y(·, t)#(f dα), f (α) = 1− x̄ ′(α).

Two pseudo-inverses:

z1(x , t) = inf{α : y(α, t) = x}, z2(x , t) = sup{α : y(α, t) = x}.

Three sets:

AL,pp
t = {α : yα(α, t) = 0, z1(y(α, t), t) < z2(y(α, t), t)},

AL,sc
t = {α : yα(α, t) = 0, z1(y(α, t), t) = z2(y(α, t), t)},

BL
t = {α : yα(α, t) > 0}.
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Outline

1 The Hunter-Saxton equation

2 Generalized framework

3 Lagrangian coordinates for general initial data

4 Structure of conservative solutions
Properties of solutions

5 Existence and uniqueness
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Properties of µ(t)

Theorem (Gao-Liu-W. 2022, SIAM J. Math. Anal.)

(i) Energy conservation: µ ∈ C (R;M+(R)) and µ(t)(R) = µ̄(R), t ∈ R.
(ii) Decomposition: µpp(t) = y(·, t)#(f |AL,pp

t
dα), µsc(t) = y(·, t)#(f |AL,sc

t
dα),

µac(t) = y(·, t)#(f |BL
t
dα).

Coordinates cause singular sets:

AL
t := AL,pp

t ∪ AL,sc
t =

{
α ∈ BL

0 : ūx(x̄(α)) = −
2

t

}
, t ∈ R.

Support of singular parts:

supp
(
µpp(t) + µsc(t)

)
⊂

{
x + ū(x)t +

t2

4
µ̄((−∞, x)) : x ∈ AE

t = x̄(AL
t )
}
.

(iii) Countably many time t ∈ R for singular measures: Tp := {t : µpp(t) ̸= 0}
and Ts := {t : µsc(t) ̸= 0} are countable.
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Key ingredients for proof

1 Energy density in the α-variable:

f (α) = 1− x̄ ′(α) =

{
ū2x (x̄(α))x̄

′(α), α ∈ BL
0 ,

1, α ∈ AL
0 = AL,pp

0 ∪ AL,sc
0 ,

2 Derivative of y(α, t):

yα(α, t) =


x̄ ′(α)

[
1 +

t

2
ūx(x̄(α))

]2
, α ∈ BL

0 ,

t2

4
, α ∈ AL

0.

3 The real line R cannot be written as the union of uncountably many disjoint
subsets with positive measures.
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Mass for singular measures

Recall: ū2x (x̄(α))x̄
′(α) = f (α) for α ∈ BL

0 .

Remark

• Mass of pure point parts: x̄ ′(α) = t2

t2+4 and f (α) = 4
t2+4 on AL

t . We consider

a point x0 ∈ y(AL,pp
t , t) and α1 := z1(x0, t) < z2(x0, t) =: α2. Then,

ūx(x) = − 2
t for all x ∈ [x1, x2] := [x̄(α1), x̄(α2)]. The mass concentrated at

x is calculated by

µ(t)({x0}) =
∫
[α1,α2]

f (α)dα =
4

t2 + 4
(α2 − α1) =

4

t2
(x2 − x1).

• Mass of singular continuous part: define AE ,sc
t = x̄(AL,sc

t ) and then

ūx(x) = − 2
t for x ∈ AE ,sc

t . We have

µsc(t)(R) =
4

t2
L(AE ,sc

t ).
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Properties of u(t)

Theorem (Gao-Liu-W. 2022, SIAM J. Math. Anal.)

(iv) For all time t ∈ R, the function u(·, t) is globally absolutely continuous and

dµac(t) = u2x (x , t)dx .

Moreover,

u ∈ C (R;Cb(R)) ∩ C
1/2
loc (R× R), ux ∈ L∞(R; L2(R)), ut ∈ L2loc(R× R).

(v) If ū(−∞) := limx→−∞ ū(x) exists, then we have

lim
x→−∞

u(x , t) = ū(−∞).

On the other hand, if ū(+∞) := limx→+∞ ū(x) exists, then we also have

lim
x→+∞

u(x , t) = ū(+∞) +
1

2
µ̄(R)t.
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Key ingredients for proof

Using the formulae for u(y(α, t), t) and y(α, t), one can easily show that

u2x (y(α, t), t)yα(α, t) = f (α), α ∈ BL
t .

Remark

Usually ux /∈ C (R; L2(R)), since∫
R
u2x (x , t)dx = µac(t)(R) < µ(t)(R) = µ̄(R), for all t ∈ Ts ∪ Tp.
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Relation between y(α, t) and X (ξ, t)

Theorem (Gao-Liu-W. 2022, SIAM J. Math. Anal.)

(vi) Consider a time s ∈ R such that µ(s) is absolutely continuous with respect to
the Lebesgue measure. Let ũ(x) = u(x , s), and X (ξ, t) be defined by ũ via

X (ξ, t) = ξ + ũ(ξ)t +
t2

4

∫ ξ

−∞
ũ2x (y)dy .

Then we have
ũ ∈ Cb(R), ũx ∈ L2(R), ∥ũ2x∥L1 = µ̄(R).

For any t ∈ R, we also have

y(·, t) = X (·, t − s) ◦ y(·, s), µ(t) = X (·, t − s)#(ũ2x dx),

and (denoting F̃ (ξ) :=
∫ ξ

−∞ ũ2x (y)dy)

u(x , t) =
∂

∂t
X (ξ, t − s) = ũ(ξ) +

(t − s)

2
F̃ (ξ), for x = X (ξ, t − s).
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Outline

1 The Hunter-Saxton equation

2 Generalized framework

3 Lagrangian coordinates for general initial data

4 Structure of conservative solutions

5 Existence and uniqueness
Existence of conservative solutions
Uniqueness of conservative solutions
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Generalized Framework: 
ut + uux =

1

2

∫ x

−∞
dµ(t),

µt + (uµ)x = 0,

dµac(t) = u2x (·, t)dx .

Definition (Conservative solutions)

For initial datum (ū, µ̄) ∈ D, (u(t), µ(t)) is said to be a conservative solution if

(i) u ∈ C (R;Cb(R)) ∩ C
1/2
loc (R× R), ut ∈ L2loc(R× R), ux(·, t) ∈ L2(R) for all

t ∈ R, and µ ∈ C (R;M+(R));
(ii) (u(·, 0), µ(0)) = (ū, µ̄), and dµ(t) = u2x (x , t)dx for a.e. t ∈ R;
(iii) the equations∫

R

∫
R
uϕt − ϕ

(
uux −

1

2
F

)
dx dt = 0,

∫
R

∫
R
(ϕt + uϕx)dµ(t)dt = 0

hold for all ϕ ∈ C∞
c (R× R) and F (x , t) :=

∫ x

−∞ dµ(t);

(iv) dµac(t) = u2x (·, t)dx for all t ∈ R.
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Existence

Let (ū, µ̄) ∈ D. Define x̄ via

x̄(α) + µ̄((−∞, x̄(α))) ≤ α ≤ x̄(α) + µ̄((−∞, x̄(α)]).

Then define

y(α, t) := x̄(α) + ū(x̄(α))t +
t2

4
(α− x̄(α)),

and u(x , t) :=
∂

∂t
y(α, t) = ū(x̄(α)) +

t

2
(α− x̄(α)) for x = y(α, t),

µ(t) := y(·, t)#(f dα), f (α) := 1− x̄ ′(α).

Theorem (Existence; Gao-Liu-W. 2022, SIAM J. Math. Anal.)

Let (ū, µ̄) ∈ D be an initial datum. Let (u, µ) be defined as above. Then,
(u(t), µ(t)) is a global-in-time conservative solution to the generalized framework
of Hunter-Saxton equation subject to the initial datum (ū, µ̄).
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1 The Hunter-Saxton equation

2 Generalized framework

3 Lagrangian coordinates for general initial data

4 Structure of conservative solutions

5 Existence and uniqueness
Existence of conservative solutions
Uniqueness of conservative solutions
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Uniqueness via characteristics

Theorem (Uniqueness of characteristics and conservative solutions;
Gao-Liu-W. 2022, SIAM J. Math. Anal.)

Let (v , ν) be a conservative solution to the generalized framework of
Hunter-Saxton equation subject to an initial datum (ū, µ̄) ∈ D. Then there exists
a unique characteristic y1(α, t) satisfying

∂

∂t
y1(α, t) = v(y1(α, t), t), y1(α, 0) = x̄(α),

and
ν(t)((−∞, y1(α, t))) ≤ α− x̄(α) ≤ ν(t)((−∞, y1(α, t)]),

for any α ∈ R and a.e. t ∈ R. The uniqueness of characteristics and conservative
solutions follows, i.e., (v , ν) = (u, µ), where (u, µ) is constructed in the existence
theorem.

Difficulty: v ∈ Cb(R), vx ∈ L2(R), function v is not Lipschitz.

Tak Kwong Wong (HKU) Regularity Structure HS June 2nd, 2022 49



Key lemma

Lemma

Let (v , ν) be a conservative solution to the HS equation. Consider the time t and
τ such that ν is absolutely continuous. Then for any fixed y ∈ R and ε0 > 0,∫

(−∞,y+a−(t−τ))

v2
x (x , t)dx ≤

∫
(−∞,y)

v2
x (x , τ)dx ≤

∫
(−∞,y+a+(t−τ))

v2
x (x , t)dx ,

provided that t − τ > 0 is small enough (depending on v , y and ε0), where
a± := v(y , τ)± ε0. Moreover, for any T > 0 and any −T ≤ τ < t ≤ T ,∫

(−∞,y−CT (t−τ))

v2
x (x , t)dx ≤

∫
(−∞,y)

v2
x (x , τ)dx ≤

∫
(−∞,y+CT (t−τ))

v2
x (x , t)dx ,

for all CT satisfying ∥v∥Cb(R×[−T ,T ]) ≤ CT .
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Ideas for the proof of the lemma:

^

Yet)

Yta- It -e)

I :|.:÷¥a+H -u

-*"
✗

a± = V19 , e) I E.
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Thank you!
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