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Introduction:
Vlasov-Poisson




The Vlasov-Poisson equations

Continuum description of classical N-body problem as N — oco:

particle distribution f(z,v,t) > 0, as a function of time ¢ € R,
position z € R? and velocity v € R3

Of+v-Vof —AVe0-V,f =0, Awqb(x,t):/f(ac,v,t)dv,

® )\ > (0: attractive interactions / gravitational case,
» stationary states: many,

® )\ < 0: repulsive interactions / plasma case,

» stationary states: no smooth, localized.

» Global solutions? Yes.

[Batt, Horst, Bardos-Degond, Pfaffelmoser, Schaeffer, Lions-Perthame,. . .|

» Asymptotic behavior? Largely open.



Asymptotic dynamics on R?

e linear / orbital stability of stationary solutions,
[Jeans, Bernstein-Greene-Kruskal, Guo, Lin, Rein, Lemou-Méhats-Raphaél,
Hadzié¢-Rein-Straub, Bedrossian-Masmoudi-Mouhot,

Han-Kwan-Nguyen-Rousset. . . ]
Asymptotic behavior / stability only known near:

® vacuum for small, dilute gases — modified scattering
[Choi-Kwon, Hwang-Rendall-Velazquez, Smulevici,. . .,
Tonescu-Pausader-Wang-W., Pankavich, Flynn-Ouyang-Pausader-W.]
® homogeneous “Poisson” equilibrium — linear scattering
( “Landau damping” ) [Tonescu-Pausader-Wang-W.]
[Td: Mouhot-Villani, Bedrossian-Masmoudi-Mouhot, Grenier-Nguyen-Rodnianski]

® repulsive point charge — modified scattering
[Pausader-W., Pausader-W.-Yang]



Mechanism of stability on R?: dispersion

In linear approximation, a small distribution streams freely

(Or+v-Vg)f=0 =  f(z,v,t) = fo(z —tv,v).
A smooth distribution of particles gets increasingly diluted:
r—a

pla,t) ::/f(m,v,t)dv:t_s/fo(a, ; )da

:t“”’/fo(a,%)da—&—O(t_“).

Expect: F = £VA~!p — 0. (False for a point particle f = Sx ), v)-)

However: Nonlinear effects remain relevant throughout evolution



Point Charge in

Vlasov-Poisson




A point charge in Vlasov-Poisson

» Question: Stability of a point charge feq = q.0(0,0)(,v)?
Track solution as

f(@,v,t) = gedx ) vy + qgu2(x, v, t)dzdv.

— yields:
T — X(t
atJrv.varQ“Li().vv A AVt Vo =0,
2|z —X()P VP
o D _@a(®), A i
= Y, = T ) z ¥ = U,
a0 a1 o

with A, q,q > 0 — repulsive.
® [Marchioro-Miot-Pulvirenti "11]: global strong solutions under support

restriction
® [Desvillettes-Miot-Saffirio "15]: global weak solutions under less support

restriction
® [Crippa-Ligabue-Saffirio "18]: global “Lagrangian” solutions under less support

restriction



Main Result

Theorem [Pausader-W.-Yang ’22, in progress]

Given (X, Vo) € R3 x R3 and g € CH(R3 \ {Xp} x R3), there exists

e* > 0 such that for any 0 < € < &*, there exists a unique global

strong solution of (VP) with repulsive interactions and initial data
(X(t=0),V(t=0)) = (X, o), ul(t=0)=cpo.

Moreover, we have precise asymptotics as t — oo:

1
V() ~ t—2500, (Y, Wit) ~ poo(z,v), X(t) ~ Xoo + Voo + In(t)Coo.

@ More precise and less restrictive in “action-angle” variables.
E.g.:
> can allow for g supported near (Xp, Vo),
» can allow for unbounded support supp(uo) = R? x R3.

® If ;1o € CY, then get a global solution with almost sharp decay.



Main Result (cont’d)

® Radial case [Pausader-W. ’20]:
If Xy = Vo = 0 and pg radial, then X () = V(t) = 0.

> Radial phase space (r,v) € R} x R: For p(r,v,t) := rop(r,v,t)
get
(at 00, + iav) p = \Ed,p,
2r2

B(r0)i=-000.8) = | alsit)ds
o(s,t) :z/;ﬁ(s,v,t) dv.



Main Result (cont’d)

® Radial case [Pausader-W. ’20]:
If Xy = Vo = 0 and pg radial, then X () = V(t) = 0.

Then the electric field decays pointwise and there exists an
asymptotic profile o, € L*(R% x R) and a Lagrangian map
(Y, W) such that

(Y, W, t) = poo(r,v),  t— oo

Here, in terms of asymptotic “electric field profile” E:

q rq q
Y t) ~ty 2+ = — —————1n(t) + M 2+ 3 In(t
(r,v,t) ~ty /v +r g+ o) n(t) + Ao (4 /v +r) n(t),
oSz @ e 1
W(r,v,t) ~ 4 [0? + = R



Proof strategy: method of asymptotic actions

Based on Hamiltonian structure:
(VP) <~ at/J + {HO + Hpert; ,LL} = 0,
with Hg linearized Hamiltonian, H,.,+ from electrostatic potential.

® Lagrangian analysis of linearized equation: can integrate flow of
Ho exactly via “action-angle” variables,
® Eulerian analysis of nonlinear equation:
bootstrap in PDE framework (L? based, dispersive)
» global solutions with almost sharp decay via energy
estimates / propagation of moments,
» sharp decay via propagation of derivative control,
» asymptotic behavior via “mixing” mechanism.



Some guiding principles

to abide by:

® Use symplectic structure (Poisson brackets...) as much as
possible. In particular, only use canonical transformations.

® Only integrate over all phase space [[ dzdv.
(No role for density p(t,x) or scattering mass m(t,v)...)

® Rely on conversation laws of the linearized ODE as much as
possible.



Linearized Equation
& Action-Angle
Coordinates



Linearized Equation

Linearization of (VP):

(at+v-vw+q%~vv)u:o & O+ {Hop} =0, (VPun)

with Hg = ‘v + |m‘ linear Hamiltonian.

» transport by flow of repulsive two-body problem [Newton 1687]

. . T
T =, @ = qW, (ODE)

» super-integrable (!): 5 scalar conserved quantities

+ —, L=xxw, R:vxLJrqi
| |z|

> trajectories easy to parameterize in the plane; more difficult in
general.

I
Ho = 5 |
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Asymptotic action-angle

We are looking for a set of asymptotic action-angle coordinates
T : (x,v) — (9,a) such that

® 7 is canonical dx A dv = d9 A da,
® 7T integrates linearized equation: for ODE trajectory (¥(t),a(t))

d=a, a=0 <& (x,0)t)=(X0+ta,a),V(0+ta,a))
or
O(z(t),v(t)) = O(x0, v0) +tA(%0,v0), A(z(t),v(t)) = A(x0,v0),
® 7 satisfies the asymptotic action property as t — 4oc:

| X (9 + ta,a) — ta] = o(t), [V (9 +ta,a) —al =o(1).

11



Linearized Equation: radial case (1 + 1 dim)

» Trajectories

q q
rEg, 0SS = Ho = v 42
K R K
2r T
phase portrait:
3 a
2
1
= O ................................ 1., ..................................
=il
—4 -2 0 2 4
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Linearized Equation: radial case (1 + 1 dim) (2)

Lemma [Canonical Transformation]
Let
A(r,v) =/ Ho, O(r,v) = clock along trajectory.

The map (r,v) — (O(r,v), A(r,v)) is a canonical diffeomorphism
which linearizes the flow ®!(r,v) of the Kepler ODE, i.e.

O(®'(r,v)) — O(r,v) = tA(r,v), A(®(r,v)) = A(r,v).

Proof: We have

— integrate; with ryi, = zr = J5, define

v r
O(r,v) = mrmmG(%),
where G : (1,00) — R satisfies G(1) =0, G'(s) = [1 — %}7%. O
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Linearized equation: solved

With (X (¥, a), V(9,a)) inverse of (O(x,v), A(x,v)), define

v(¥,a,t) = (X (9,a), V(9,a),t),
v, a,t) =v(d+ta,a,t) = n( X +ta,a), V(I +ta,a),t)

» integrates the linearized equation:

xr
(&5+’U-qu|w|3 V>M atﬂ+{||+|xﬂ}

:atu+{|“7,u}=(at+a-w)y

= Oy
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Nonlinear Dynamics
& Asymptotics via
“Mixing”




Nonlinear equation

Then' since coordinate change is symplectic
atljf + {HO + Hperta /~L} =0 <~ at7 = )‘{\Ij ’7}7 (VP,)

with
U (v, a,t) X (¥ +ta,a),t)

t)dvd
//Xﬁﬂaa e 12 (y, v, t)dvdy

// o V2(0, o, t)dOdor

and X (9,a) = X (9 + ta, a).

» nonlinear analysis works with this purely nonlinear equation

lignoring point mass dynamics for now

15



Asymptotic dynamics (heuristics)

Oy + M¥,v} =0, // oa 72(8, a)dfdo

By asymptotic action property Xv(ﬂ, a) = ta + o(t), hence with

D(a,t) //| Y20, o, t)dfda

obtain asymptotic shear equation

0= 87+ 2{@,7) +0(7'7) = 07— 2V.2(a1) - Vo + 077
!
4 (YO + AIn(t)Ex(a),a,t)) = O(t™7), Exla) = lim V,®(a,t).

dt t—o00

16



Bootstrap analysis

Starting from the nonlinear equation

8t7+{\1177}:07 ‘I’:¢(X),

want to propagate bounds on moments and smoothness of ~.
Key property:

Vg / {0, g}d¥da =0

(e.g) = %//WQdﬁda = —/ {V,y*}ddda = 0.

17



Bootstrap Analysis (2)

® Moments: for scalar w
De(wy) + {T, w7} = 1{T,w} =7 EX) - {X,w},

X(0
E(y,t) = V(y,t —c// ‘yy . aat = +2(0, v, t)dOda

= global solutions with almost optimal decay || < (t)~2 In(t).

® Derivatives via symplectic gradients:

== ]'k{ijv’y}{f’ ik} - gj{{fv Xj}vfy}

with F(y,t) = V2¢(y,t).
= sharp decay |€] < (t)~2 and precise asymptotics.

18



Radial Bootstrap: Moments and Derivatives

Proposition

There exists ¢* such that for all 0 < eg < &1 < 6§ < ¥, the following
holds. Let 7 be a solution to (VP’) with initial data vo on 0 <t < T
and assume that for 0 <¢ < T,

(e + 6% +a®) v(t)ll 2, + II(a +a™ "))z,
+ [laday(®)llz , < ex(t)’,

then in fact

3
I (@™ +a®) yllzz + (e +a"")dellLz , < o +ef,

3
”9207”L§ﬁ + ”aaa’YHLg’a <eg+eit’

Note: Moments can be propagated by themselves
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Radial Bootstrap (2)

Proof sample: We have
Fe(aty) — A {‘T’ aqV} = —MT,a%}y = A0 ¥ - a? 1.

Recall that [[{¥, f}f =0, so

1d

s llemlly S la~ 0l latyll};

One can show that |ja~ 189\I/||Loo < f%H(f%’YH%g + lLo.t.

a

= a2 < a2, S b

~

For derivatives, need more: e.g. (%BEI for o, B € {6, a},
— set {R(0 + ta,a) =r} ... (see paper) O
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Remarks on the non-radial problem

® much more involved geometry:
» construction of asymptotic action-angle variables,
> super-integrability really useful,
> “bad derivatives” for kinematic quantities such as X ,
= need to adapt coordinates.

® motion of point charge:

» additional complication for nonlinear problem,

> various types of linearized trajectories (w.r.t. point charge)
= need formulations in adapted frames,

» simpler if supp(ug) CC R2 x R3.

21



Sample: Construction of Asymptotic Actions

Via generating function: to find T : (x,v) — (¢, a), fix a function
S(x,a) and define

v=V,S(z, a), ¥ =V,5(x, a).

If this (implicitly) defines a change of coordinates, then it is
guaranteed to be canonical.

How to choose a? Want (inter alia):
® a constant along trajectories of linearized problem,

® asymptotic action property.

We take a = v.

22



Sample: Scattering problem

Given xg € R? and a € R?, find trajectory through xq with
asymptotic velocity v, = a:

Figure 1: The scattering problem

23



Sample: Scattering problem

Given xg € R? and a € R?, find trajectory through xq with
asymptotic velocity v, = a:
® compute v = V,S(z, a),
@® integrate to recover S(x, a),
® let ¥ =V,S(x,a),
@ invert to get O(x,v).
(A(z,v) is recovered more easily from a direct study of the

trajectories via conservation laws.)

23



Sample: Scattering problem

The scattering problem can be solved elegantly using the “velocity
circle” method of Hamilton [Milnor *83].

The association (x,a) — (@, v) has a fold: to most choices (x,a),
there correspond 2 trajectories (one “incoming” and one “outgoing”),
but it is possible to find a smooth map (0, A) : (xz,v) — (9, a).
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