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Passive scalars



The passive scalar problem

We aim to study of the long-time dynamics of the transport equation

∂tρ+ u · ∇ρ = 0,

• d-dimensional periodic domain Td = [0, 2π)d ;

• u = u(t, x) : [0,∞)× Td → Rd is a given divergence-free velocity

field;

• consider only mean-free solutions
∫
Td ρ(t, x)dx = 0, ∀t ≥ 0.
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Shear flows

Take u = (u(y), 0) in T2:

∂tρ+ u(y)∂xρ = 0, ρ(0) = ρin.

The x-average 〈ρ〉x is conserved

∂t〈ρ(t)〉x = 0.

However,

ρ(t)− 〈ρ(t)〉x → 0 as t →∞ weakly.
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Chaotic flows

Figure 1: From J. Vanneste

The high and low concentrations of a scalar

in a disc when stirred by a random flow.

• If u is chaotic, then all mean-zero

solutions can be mixed

• How mixed is ρ at a given time?

• How fast is ρ mixed?
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Mixing measures

Mixing can be thought of as a cascading process in which information

travels to smaller and smaller spatial scales. This can be quantified by

negative Sobolev norms (see Lin, Thiffeault, Doering ’11)

‖ρ(t)‖2
Ḣ−s =

∑
k∈Zd\{0}

|k |−2s |ρk(t)|2 → 0, as t →∞. (1)

This is related to the following: consider X (t, x) the solution to the ODE

∂tX (t, x) = u(t,X (t, x)) , X (0, x) = x .

Then (1) is related to the decay of correlations∫
Td

f (x)g(X (t, x)−1)dx =

∫
Td

f (X (t, x))g(x)dx → 0, as t →∞. (2)
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Some deterministic results

Consider ‖ρ(t)‖Ḣ−1

• smooth shear flows (Bedrossian, Coti Zelati ’15): t−1/n, where n is

the order of critical points (n = 2 for u(y) = sin y).

• Circular flows: similar rates as shear flows (Crippa, Lucà, Schulze

’17, Coti Zelati, Delgadino, Elgindi ’18).

• Cα shear flows: generically t−1/α (Galeati, Gubinelli ’21), but the

only example known has rate t−1 (Colombo, Coti Zelati, Widmayer

’20).

• Regular autonomous velocities in 2D cannot mix faster than t−1

(Bonicatto, Marconi ’19).

• More complicated flows can be exponential mixers: (Alberti, Crippa,

Mazzucato ’14, Yao, Zlatos ’14), also universal (Elgindi, Zlatos ’18),

but for u ∈ L∞t W s,p
x , s < 1+

√
5

2 , p ∈ [1, 2
2s+1−

√
5

).

• Exponential is the best possible rate: (Crippa, De Lellis. ’08, Seis

’13, Iyer, Kiselev, Xu ’14).
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• smooth shear flows (Bedrossian, Coti Zelati ’15): t−1/n, where n is

the order of critical points (n = 2 for u(y) = sin y).

• Circular flows: similar rates as shear flows (Crippa, Lucà, Schulze

’17, Coti Zelati, Delgadino, Elgindi ’18).

• Cα shear flows: generically t−1/α (Galeati, Gubinelli ’21), but the

only example known has rate t−1 (Colombo, Coti Zelati, Widmayer

’20).

• Regular autonomous velocities in 2D cannot mix faster than t−1

(Bonicatto, Marconi ’19).

• More complicated flows can be exponential mixers: (Alberti, Crippa,

Mazzucato ’14, Yao, Zlatos ’14), also universal (Elgindi, Zlatos ’18),

but for u ∈ L∞t W s,p
x , s < 1+

√
5

2 , p ∈ [1, 2
2s+1−

√
5

).

• Exponential is the best possible rate: (Crippa, De Lellis. ’08, Seis

’13, Iyer, Kiselev, Xu ’14).

6



Some deterministic results

Consider ‖ρ(t)‖Ḣ−1
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• smooth shear flows (Bedrossian, Coti Zelati ’15): t−1/n, where n is

the order of critical points (n = 2 for u(y) = sin y).

• Circular flows: similar rates as shear flows (Crippa, Lucà, Schulze
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Some probabilistic results

Consider ‖ρ(t)‖Ḣ−1

• if u is the solution of the stochastic NSE: e−λt almost surely

(Bedrossian, Blumenthal, Punshon-Smith ’19)

• if u is Gaussian, decorrelated in time and specific scaling properties

in space built in (Kraichnan model): e−λt almost surely (Flandoli,

Galeati, Luo ’21, Gess, Yaroslavtsev ’21).

Open question: does there exists a smooth universal exponential mixers

on Td? (L∞t ∩ C∞t )C∞x
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The Pierrehumbert model

In ’94, R. Pierrehumbert looked at a velocity field u that alternates, after

every time interval of size τ > 0, between two transversal shears with a

randomly and independently chosen phase shift.

• Random phases: {ωj = (ω1
j , ω

2
j )}j∈N ⊂ [0, 2π)2 be a sequence of

i.i.d random variables uniformly distributed in [0, 2π)2.

• Horizontal shearing:

u(t, x1, x2) =

(
sin(x2 − ω1

n)

0

)
if t ∈ [(2n − 2)τ, (2n − 1)τ) for some n ∈ N, and

• Vertical shearing:

u(t, x1, x2) =

(
0

sin(x1 − ω2
n)

)
for t ∈ [(2n − 1)τ, 2nτ).
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The Pierrehumbert model as an RDS

Define

f Hβ (x) =

(
x1 + τ sin(x2 − β)

x2

)
, f Vβ (x) =

(
x1

x2 + τ sin(x1 − β)

)
.

Then, the position X (2τ, x) ∈ T2 of the particle at time t = 2τ is given

by X (2τ, x) = fω1 (x), where

fω1 (x) = f Vω2
1
◦ f Hω1

1
(x) .

• any sequence of possible random phase shifts is written as

ω = (ω1, ω2, . . .) ∈ Ω :=
(
[0, 2π)2

)N
.

• X (2τn, x) = f nω (x)

f nω (x) := fωn ◦ · · · ◦ fω1 (x).

• By Yao, Zlatos ’14, enough to look at the discrete dynamics.
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Random dynamical systems



Random dynamical systems

Let (Ω0,F0,P0) be a fixed probability space, X a complete metric space.

• (Ω,F ,P) = (Ω0,F0,P0)N, and

f nω = fωn ◦ · · · ◦ fω1 , n ∈ N,

• The transition kernels are

P(x ,A) = P0(fω(x) ∈ A), Pn+1(x ,A) =

∫
Pn(y ,A)P(x ,dy).

Here:

• X is a finite-dimensional compact manifold (X = T2).

• P0 � Leb.

• fω is measure-preserving.
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Some key properties

The RDS should satisfy certain non-degeneracy conditions

• Irreducibility: For every x ∈ X and open set U ⊂ X , there exists

N = N(x ,U) ≥ 0 such that PN(x ,U) > 0;

• Aperiodicity: no cyclic behavior allowed;

• Minorization property: there exist a set A and a positive measure νn
on X such that, for all x ∈ A, we have that

Pn(x ,B) ≥ νn(B) for all Borel B ⊂ X .

• Drift condition: There exists V : X → [1,∞), α ∈ (0, 1), b > 0 and

a compact set C ⊂ X such that

PV ≤ αV + bχC .
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Geometric ergodicity

Theorem (Abstract Harris Theorem)

Let P be a Feller transition kernel and assume the following:

1. Minorization property

2. Topological irreducibility

3. Strong aperiodicity

4. Drift condition

Then, P is V -uniformly geometrically ergodic, i.e., P admits a unique

stationary measure π, and has the property that there exists D > 0 and

γ ∈ (0, 1) such that for all x ∈ X and ϕ ∈ L∞V (X ), we have∣∣∣∣Pnϕ(x)−
∫
ϕdπ

∣∣∣∣ ≤ DV (x)‖ϕ‖V γn .

True for the one point process with V ≡ 1.
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Lyapunov exponents

• By ergodic theory: the asymptotic exponential growth rate

λ1 := lim
n→∞

1

n
log |Dx f

n
ω |

exists and is constant over P× Leb-a.e. (ω, x).

• (A version of) Furstenberg criterion: Denote Φx : Ωn
0 → X defined

for ωn = (ω1, · · · , ωn) by

Φx(ωn) = fωn ◦ · · · ◦ fω1 (x) .

If there exist n ≥ 1 and (ωn
?, x?) s.t.

1. Dωn
?

Φx? is surjective.

2. The restriction of Dωn
?
Dx? f

n
ω?

to kerDωn
?

Φx? is surjective as a linear

operator onto TΦ̂x? (ωn
?)SLd(R).

Then λ1 > 0.
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Checking Furstenberg for Pierrehumbert

In the case of Pierrehumbert: ωn ∈ (T2)n (resp. ωn ∈ (T`)n).

• Dωn
?
Φx? is a 2× 2n matrix (resp. d × `n).

• kerDωn
?
Φx? is 2n − 2 dimensional by condition 1 (resp. `n − d).

• TΦ̂x? (ωn
?)SL2(R) is 3 dimensional (resp. d2 − 1).

Necessary condition: 2n − 2 ≥ 3 hence n ≥ 5/2

(resp. `n − d ≥ d2 − 1 hence n ≥ (d2 + d − 1)/`).

• Condition 2 can be checked by a computer (but also by hand!).

• Problem becomes costly with dimension and with less noise.

15



Chaos for Pierrehumbert

Theorem (Blumenthal, CZ, Gvalani ’22)

The Pierrehumbert model fω1 (x) = f V
ω2

1
◦ f H
ω1

1
(x) has a positive Lyapunov

exponent.

• True also without changing phases every “half” time:

fω1 (x) = f Vω1
◦ f Hω1

(x)

• True also with fixed phases and random switching times:

fτ1 (x) = f V
τ 2

1
◦ f H
τ 1

1
(x) or fτ1 (x) = f Vτ1

◦ f Hτ1
(x)

• no need of sin

• Completely open: true also without any randomness?
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Exponential mixing



Decay of correlations

The Pierrehumbert model fω1 (x) = f V
ω2

1
◦ f H
ω1

1
(x) is mixing.

Theorem (Blumenthal, CZ, Gvalani ’22)

Let q, s > 0. There exists a function D : Ω→ [1,∞) and a constant

α > 0 such that for all mean-free functions ϕ,ψ ∈ Hs(T2), we have the

almost sure estimate∣∣∣∣∫
T2

ϕ(x)ψ ◦ f nω (x)dx

∣∣∣∣ ≤ D(ω)e−αn‖ϕ‖Hs‖ψ‖Hs ,

while the function D satisfies the moment bound E|D|q <∞.
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More Markov chains

Setting

Corn(ϕ,ψ) =

∣∣∣∣∫ ϕ(x)ψ ◦ f nω (x)dπ(x)

∣∣∣∣ ,
we know that

P {Corn(ϕ,ψ) > ε} ≤ ε−2 EP

∣∣∣∣∫ ϕψ ◦ f nωdπ
∣∣∣∣2 .

Since

EP

∣∣∣∣∫ ϕψ ◦ f nωdπ
∣∣∣∣2 = EP

∫
ϕ(x)ϕ(y)ψ ◦ f nω (x)ψ ◦ f nω (y)dπ(x)dπ(y) ,

we can re-write this expression using the two-point process

(xn, yn) = (f nω (x0), f nω (y0)) on X × X . Hence

EP

∣∣∣∣∫ ϕψ ◦ f nωdπ
∣∣∣∣2 =

∫
ψ(2)P(2)ϕ(2)dπ(2) .

Here ϕ(2)(x , y) := ϕ(x)ϕ(y), dπ(2)(x , y) = dπ(x)dπ(y) and P(2) is the

Markov semigroup for (xn, yn).
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The two-point process

The two-point process

P(2) ((x , y),K ) = P0 ((fω(x), fω(y)) ∈ K ) ,

is defined on X × X \∆, with ∆ = {(x , x), x ∈ X}.

• The kernel P(2) is V -uniformly geometrically ergodic, where

V : X × X \∆→ R is of the form

V (x , y) = d(x , y)−pψ(x , y).

• if d(x , y)� 1, V depends most on its values near the diagonal ∆.

We can approximate two point motion by its linearization:

EP0ϕ(fω(x),Dx fωv), x ∈ X , |v | = 1.

• this motivates the study of the projective dynamics

f̂ω(x , v) :=

(
fω(x),

Dx fωv

|Dx fωv |

)
.
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A checklist

Mixing for this kind of RDS can be proven if (besides continuity and

regularity conditions):

• The one-point motion is uniformly geometrically ergodic with a

unique invariant measure.

• The top Lyapunov exponent is strictly positive.

• The projective motion is uniformly geometrically ergodic with a

unique invariant measure.

• The two-point motion is V -uniformly geometrically ergodic with a

unique invariant measure.

20



Topological irreducibility

Irreducibility can be obtained by combining regularity of the chain and a

form of approximate controllability:

x

y

yN1
xN1

x̄

δ1

δ1
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Topological irreducibility

yN1
xN1

x̄

δ1

δ1
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Topological irreducibility

x̄

yN xN

δ1

ε
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Some further directions

• Construct smooth mixers in any dimension.

• Reduce to the minimum the degrees of freedom (less

randomness. . . ).

• Enhanced dissipation, Batchelor spectrum, intermittency . . .

• Construct time-periodic mixers in any dimension.

• Quantify the mixing rate and the Lyapunov exponent (in terms of

switching time?).
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