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Passive scalars



The passive scalar problem

We aim to study of the long-time dynamics of the transport equation

Op+u-Vp=0,

e d-dimensional periodic domain T¢ = [0, 27)?;
o u=u(t,x):[0,00) x T? — R is a given divergence-free velocity
field;

e consider only mean-free solutions de p(t,x)dx =0, Vt > 0.



Take u = (u(y),0) in T

dep+u(y)dp =0,  p(0) =p".

The x-average (p)y is conserved

9 (p(t))x = 0.

However,

|
=

p(t) — (p(t))x — 0 as t — oo weakly.

N



Chaotic flows

The high and low concentrations of a scalar
in a disc when stirred by a random flow.

e If u is chaotic, then all mean-zero
solutions can be mixed

e How mixed is p at a given time?

e How fast is p mixed?

Figure 1: From J. Vanneste



Mixing measures

Mixing can be thought of as a cascading process in which information
travels to smaller and smaller spatial scales. This can be quantified by
negative Sobolev norms (see Lin, Thiffeault, Doering '11)

oI = > Ik =l(t)2 =0, ast—oo. (1)
kezd\{0}

This is related to the following: consider X(t, x) the solution to the ODE
0 X(t,x) = u(t, X(t,x)), X(0,x)=x.

Then (1) is related to the decay of correlations

/Td f(x)g(X(t,x) H)dx = / f(X(t,x))g(x)dx — 0, ast—oco. (2)
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Consider |p(t)|| -1

e smooth shear flows (Bedrossian, Coti Zelati '15): t=1/n where n is
the order of critical points (n = 2 for u(y) = siny).

e Circular flows: similar rates as shear flows (Crippa, Luca, Schulze
'17, Coti Zelati, Delgadino, Elgindi '18).

e C“ shear flows: generically t=1/@ (Galeati, Gubinelli '21), but the
only example known has rate t=* (Colombo, Coti Zelati, Widmayer
'20).

e Regular autonomous velocities in 2D cannot mix faster than t~!
(Bonicatto, Marconi '19).

e More complicated flows can be exponential mixers: (Alberti, Crippa,
Mazzucato '14, Yao, Zlatos '14), also universal (Elgindi, Zlatos '18),
but for u € LEPWSP,s < Y5 p e 1, ﬁzﬂg)

e Exponential is the best possible rate: (Crippa, De Lellis. '08, Seis
'13, lyer, Kiselev, Xu '14).
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Some probabilistic results

Consider ||p(t)|| 4-1

e if u is the solution of the stochastic NSE: e~ almost surely
(Bedrossian, Blumenthal, Punshon-Smith '19)
e if uis Gaussian, decorrelated in time and specific scaling properties

in space built in (Kraichnan model): e~ almost surely (Flandoli,
Galeati, Luo '21, Gess, Yaroslavtsev '21).

Open question: does there exists a smooth universal exponential mixers
on T9? (L N C)Cee
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e \ertical shearing:
0
t7 ) - .
u(t, x1,x2) (sm(xlw,%))

for t € [(2n — 1)1, 2nT).






The Pierrehumbert model as an RDS

Define

fBH(X) _ (Xl + Tsi)l(xz - 5)) ’ fﬁV(X) _ <X2 . TS::(Xl B B)) .

Then, the position X (27, x) € T? of the particle at time t = 27 is given
by X(27, x) = f,,,(x), where

e any sequence of possible random phase shifts is written as
w=(w1,w,...) €Q:= ([O,27r)2)N.
e X(27n,x) = fJ(x)

€3

(x):=1f,, 0 of,(x).
e By Yao, Zlatos '14, enough to look at the discrete dynamics.
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Random dynamical systems




Random dynamical systems

Let (Qo, Fo,Po) be a fixed probability space, X a complete metric space.

L4 (Q>fa IP)) = (QOa]:(hPO)Nv and

e The transition kernels are
POA) =Po(L0) €A, P A) = [ Py A)P(x.dy)

Here:

e X is a finite-dimensional compact manifold (X = T?).
e Py < Leb.

e f, is measure-preserving.

11



Some key properties

The RDS should satisfy certain non-degeneracy conditions

e [rreducibility: For every x € X and open set U C X, there exists
N = N(x, U) > 0 such that PN(x, U) > 0;
e Aperiodicity: no cyclic behavior allowed;

e Minorization property: there exist a set A and a positive measure v,
on X such that, for all x € A, we have that

P"(x,B) > v,(B) for all Borel B C X.

e Drift condition: There exists V : X — [1,00), a € (0,1),b > 0 and
a compact set C C X such that

PV S aV+ bXC-

12



Geometric ergodicity

Theorem (Abstract Harris Theorem)

Let P be a Feller transition kernel and assume the following:

1. Minorization property

2. Topological irreducibility

3. Strong aperiodicity

4. Drift condition

Then, P is , I.e., P admits a unique

stationary measure 7, and has the property that there exists D > 0 and
v € (0,1) such that for all x € X and ¢ € Ly (X), we have

P(x) - / pdm| < DV(x)llellvy"-

True for the one point process with V' = 1.

13



Lyapunov exponents

e By ergodic theory: the asymptotic exponential growth rate
.1 n
A1 = lim = log|Df)|
n—oo N -

exists and is constant over P x Leb-a.e. (w, x).

e (A version of) Furstenberg criterion: Denote ®, : Qf — X defined
for w" = (w1, -+ ,wp) by

o, (w") =1, 00 fy,(x).

n

If there exist n > 1 and (w7, x,) s.t.
1. Dyn @y, is surjective.
2. The restriction of Dyn Dy, 1], to ker Dyn @y, is surjective as a linear

operator onto Tg (,,n)SLa(R).
Then \; > 0.

14



Checking Furstenberg for Pierrehumbert

In the case of Pierrehumbert: w" € (T?)" (resp. w" € (T*)").

® Dn®,, isa2x2n matrix (resp. d x £n).
e ker Dn®,, is 2n — 2 dimensional by condition 1 (resp. ¢n — d).
° T, (g;)SL2(R) is 3 dimensional (resp. d? —1).
Necessary condition: 2n— 2 > 3 hence n > 5/2
(resp. £n—d > d? — 1 hence n > (d? +d — 1)/4).
e Condition 2 can be checked by a computer (but also by hand!).

e Problem becomes costly with dimension and with less noise.

15



Chaos for Pierrehumbert

Theorem (Blumenthal, CZ, Gvalani '22)

The Pierrehumbert model f,,,(x) = % o £"(x) has a positive Lyapunov
1 1
exponent.

e True also without changing phases every “half” time:
fwl (X) = fw\f © fw"_ll(x)

e True also with fixed phases and random switching times:
fr(x) = fT‘f/ o fT?(X) or f,(x) = fT\l/ o fT"l"(x)

e no need of sin

e Completely open: true also without any randomness?

16



Exponential mixing




Decay of correlations

I

The Pierrehumbert model f,,,(x) = £% o f!{(x) is mixing.

=i

w

Theorem (Blumenthal, CZ, Gvalani '22)

Let g,s > 0. There exists a function D : Q — [1,00) and a constant
a > 0 such that for all mean-free functions p,v) € H(T?), we have the
almost sure estimate

| om0 20ax| < D)l

while the function D satisfies the moment bound E|D|9 < oc.

17



More Markov chains

Setting

)

G ) = ] [ ot o 2e)ant)

we know that
2

P {Cor,(p,1) > e} < e 2Ep /901/1 o fjdm

Since
2

Ep / oo fldn| =Ep / D)y ) o £ o £1(y)dn(x)dn(y)

we can re-write this expression using the two-point process
(Xn, ¥n) = (£ (x0), £ (¥0)) on X x X. Hence

2
/ oo fldn| = / @ PR D@

Here 0@ (x,y) := o(x)o(y), dr®)(x,y) = dn(x)dn(y) and P is the
Markov semigroup for (x,, y)-

Ep

18



The two-point process

The two-point process
PR ((x,y), K) =Po ((£u(x), £u(y)) € K),
is defined on X x X\ A, with A = {(x, x), x € X}.

e The kernel P is V-uniformly geometrically ergodic, where
VX x X\ A — Ris of the form

V(x,y) =d(x,y) Py(x,y).

e if d(x,y) < 1, V depends most on its values near the diagonal A.
We can approximate two point motion by its linearization:

Ep,o(fu(x), Difov),  x€X, |v|=1

e this motivates the study of the projective dynamics

~ D, f v
fo(x,v) = (7’w(x)7 D.f v|> .

19



A checklist

Mixing for this kind of RDS can be proven if (besides continuity and
regularity conditions):

The one-point motion is uniformly geometrically ergodic with a
unique invariant measure.

The top Lyapunov exponent is strictly positive.

The projective motion is uniformly geometrically ergodic with a
unique invariant measure.

The two-point motion is V-uniformly geometrically ergodic with a
unique invariant measure.

20



Topological irreducibility

Irreducibility can be obtained by combining regularity of the chain and a
form of approximate controllability:

YNy XNy

61
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Topological irreducibility

01
¢—9
— 9
YN, XNy
61
9 _
X
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Topological irreducibility
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Some further directions

e Construct smooth mixers in any dimension.

e Reduce to the minimum the degrees of freedom (less
randomness. . . ).

e Enhanced dissipation, Batchelor spectrum, intermittency . ..
e Construct time-periodic mixers in any dimension.

e Quantify the mixing rate and the Lyapunov exponent (in terms of
switching time?).
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THANK YOU
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