

Backdoor Attack Detection in Deep Neural Networks: A Coherence Optimization based Approach

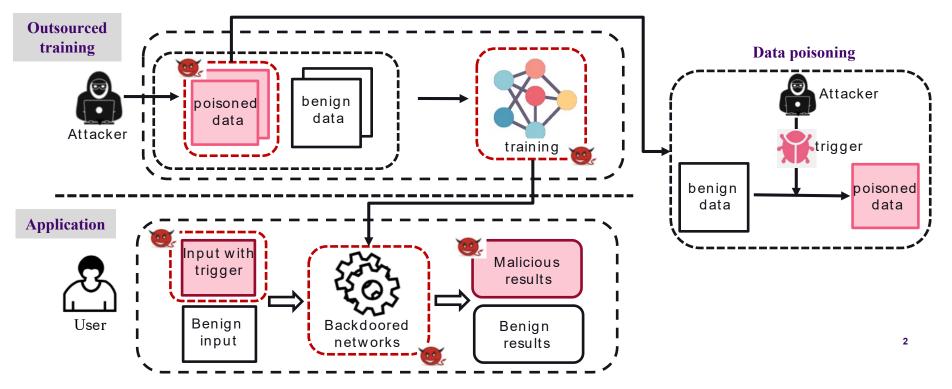
Reporter: Wenqing Li

Postdoctoral Associate

PART 01

Introduction

Illustration of neural backdoor attacks

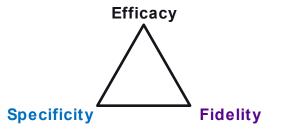


PART 01

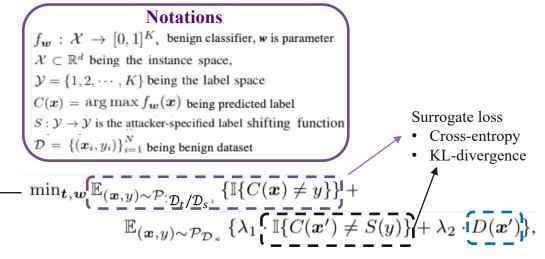
Introduction

Attack goals^[1]

- Efficacy: each poisoned data is misclassified;
- Fidelity: each benign data is correctly classified;
- **Specificity**: poisoned data and benign data is perceptual similar;



Mathematical framework of backdoor attack

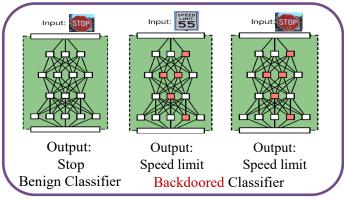


where *t* is trigger pattern and *x*' is poisoned sample, \mathcal{D}_t is training dataset and \mathcal{D}_s (poisoning dataset) is the subset of \mathcal{D}_t . D() is an indicator function that D(x')=1 if and only if x' can be detected.

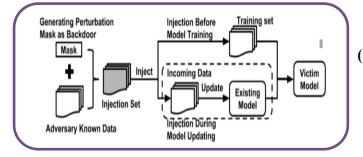
3

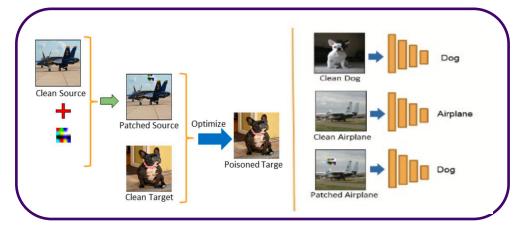
Trigger pattern t and parameter w

PART 01



Visible trigger^[1]: trigger is a stamp on the image

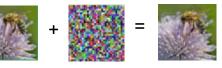




Hidden trigger^[3]

(Poisoned image looks like natural target image with similar features with patched source)

Invisible trigger^[2] (trigger is noise with small magnitude)



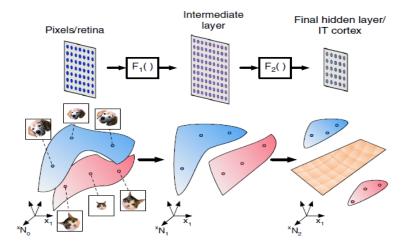
[1] T. Gu, B. Dolan-Gavitt, and S. Garg, "Badnets: Identifying vulnerabilities in the machine learning model supply chain," arXiv preprint arXiv:1708.06733, 2017

[2] Liao, Cong, et al. "Backdoor embedding in convolutional neural network models via invisible perturbation." arXiv preprint arXiv:1808.10307 (2018).

[3] Saha, Aniruddha, Akshayvarun Subramanya, and Hamed Pirsiavash. "Hidden trigger backdoor attacks." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. No. 07. 2020.

Backdoor Detection-preliminaries

Properties of benign neural networks



MANIFOLD ENTANGLEMENT MEASUREMENT BASED ON FLATTENING METRIC AND CLASSIFICATION ACCURACY (BY LDA) FOR DIFFERENT LAYERS OF BENIGN NEURAL NETWORK

Layers	Flatteni	LDA	
	Stop sign	speed limit	LDA
Input layer	0.2219	0.3278	70.57
Intermediate layer	0.1551	0.2499	97.71
Last layer	0.0411	0.0831	99.83

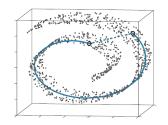


Fig.1^[1] Changes in geometry of representations

Fig.2^[2] Solid line: Intrinsic Geodesic distance. Dash line: Euclidean distance

Representations of higher/deeper layers for each object approximately lie in a linear subspace, and representations for different objects approximately lie in different subspaces. 5

[1] Cohen, U., Chung, S., Lee, D.D. and Sompolinsky, H. Separability and geometry of object manifolds in deep neural networks. *Nature communications*, 2020, 11(1), pp.1-13. [2] Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. science, 290(5500), 2323-2326.

Backdoor Detection-preliminaries

Properties of backdoored neural networks

MANIFOLD ENTANGLEMENT MEASUREMENT BASED ON FLATTENING METRIC FOR THE LAST LAYER OF BACKDOORED NEURAL NETWORK

(Target & poisoned)	Flattening metric		
(Target & poisoned)	Target	Poisoned	
	0.0831	0.0844	
0	0.0978	0.1102	
∇	0.0775	0.0838	

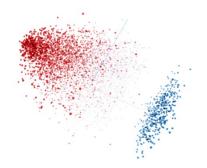
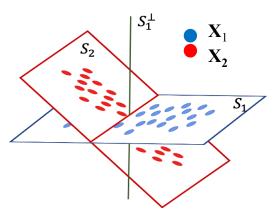


Fig.3^[1] genuine and trigger representations lie in two different subspaces

Genuine and poisoned representations approximately lie in two different linear subspaces

Backdoor Detection-PiDAn algorithm

Insight of the proposed algorithm



$$\max_{\mathbf{a}^{\top}\mathbf{a}=1} \mathbf{a}^{\top} \mathbf{X}^{\top} (\mathbf{I} - \mathbf{P}_1 \mathbf{P}_1^{\top}) \mathbf{X} \mathbf{a}_{.}$$

 $X = [X_1; X_2]$

Notations

- \mathbf{X}_1 : benign representations, scaled to unit length;
- S_1 : benign subspace; \mathbf{P}_1 : orthonormal basis matrix spanning S_1
- X_2 : poisoned representations, scaled to unit length;
- S_2 : trigger subspace; \mathbf{P}_2 : orthonormal basis matrix spanning S_2
- S_1^{\perp} : orthonormal subspace of S_1 ; \mathbf{P}_1^{\perp} : orthonormal basis matrix spanning S_1^{\perp}
- $||\mathbf{x}_1 \mathbf{P}_1^{\perp}||$: coherence of \mathbf{x}_1 and S_1^{\perp} , which is small
- $||\mathbf{x}_2 \mathbf{P}_1^{\perp}||$: coherence of \mathbf{x}_2 and S_1^{\perp} , which is large

Insight

7

Maximizing the coherence of S_1^{\perp} and the weighted samples, e.g., **Xa**, would lead to :

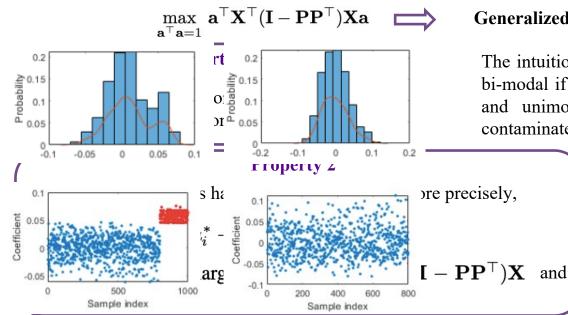
- small weights upon representations in X_1 (since X_1 makes no contribution to increase the objective value)
- large weights upon representations in **X**₂.

Backdoor Detection-PiDAn algorithm

Problem formulation and optimization

To generalize (we only have the mixture data and no information about the labels), replacing P_1 with P

(**P** satisfies staying closer to \mathbf{P}_1 than \mathbf{P}_2)



Generalized eigenvalue decomposition

The intuition behind detection is that a would be bi-modal if the representations are contaminated, and unimodal if the representations are not contaminated.

> Highly correlated representations can be grouped into the same cluster by analyzing the weight vector , thus enables backdoor identification.

8

Backdoor Detection-Experimental results

Traffic sign recognition system

GTSRB dataset with 43 classes of traffic signs

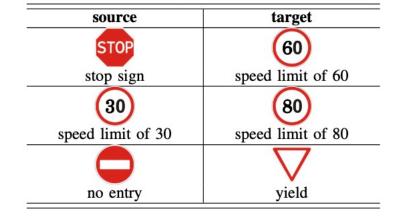
Attack schemes:

PART 04

- (1) Hidden trigger^[1], which has little defense against;
- (2) TaCT^[2], which is an emerging attack scheme
- (3) BadNets^[3], which is a conventional attack

Infected model:

accuracy: larger than 96.0%; attack success rate: 84.1% for hidden trigger; 96.4% for TaCT; 96.5% for BadNets.



김 아직은 것을 가장 옷 것을 것

Fig.5 square triggers with trigger size as 8 × 8 and fix it at the bottom right corner of the images

Saha, Aniruddha, Akshayvarun Subramanya, and Hamed Pirsiavash. "Hidden trigger backdoor attacks." *Proceedings of the AAAI Conference on Artificial Intelligence*. Vol. 34. No. 07. 2020.
Tang, Di, et al. "Demon in the variant: Statistical analysis of dnns for robust backdoor contamination detection." *30th {USENIX} Security Symposium ({USENIX} Security 21)*. 2021.
Gu, Tianyu, et al. "Badnets: Evaluating backdooring attacks on deep neural networks." *IEEE Access* 7 (2019): 47230-47244.

Backdoor Detection-Experimental results Traffic sign recognition system

(1) Infected class detection via optimized sample weights (backdoor detection rate and false positive rate)

Detection Method	Hidden trigger		TaCT		Badnets	
	TPR	FPR	TPR	FPR	TPR	FPR
Ours-2	96.7%	10.7%	100.0%	11.0%	100.0%	9.8%
Ours-2.5	96.7%	7.9%	96.7%	7.4%	100.0%	7.4%
Ours-3	96.7%	5.2%	96.7%	5.5%	100.0%	4.0%

(2) Trigger sample identification via K-means (trigger sample and genuine sample identification rate)

	Hidden trigger		TaCT		Badnets	
Defense Method	TPR	FPR	TPR	FPR	TPR	FPR
Ours	97.7%	12.0%	97.5%	13.4%	98.5%	11.9%

Thanks!

