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Introduction

Illustration of neural backdoor attacks
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Introduction

Attack goalsl]

- Efficacy: each poisoned data is
m isclassified;
- Fidelity: each benign data is
correctly classified;
- Specificity: poisoned data and
benign dataisperceptual similar;
Efficacy

Specificity Fidelity

[11Pang R, Zhang Z, Gao X, et al. TROJANZOO: Everything you ever wanted to know about neural backdoors (but were afraid to ask), arXiv:2012.09302, 2020.

Mathematical framework of backdoor attack

4 Notations N\

fuw @ X — [0, 1]%, benign classifier, w is parameter

X < R? being the instance space,

Y =1{1,2 .-, K} being the label space
Clx) = arg max f,,(x
§: Y — )V is the attacker-specified label shifting function

IR N * Cross-entro
Q = {(=:. ,rfr'J}.x=1 being benign dataset )/ ) KL-divergeﬁz’e

) being predicted label
Surrogate loss

IIllIlt’.w‘ (a, y)N'PD /D

# S+ A2 1D (),

= - -

that D(x’)=1 if and only if x’ can be detected.

» Trigger pattern t and parameter w

where t is trigger pattern and X’ is poisoned sample, D¢ is training dataset
and Ds (poisoning dataset) is the subset of D;. D() is an indicator function
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Visible trigger!'l: trigger is a stamp on the image

Patched Airplane /

Hidden triggerl’!
(Poisoned image looks like natural target image with similar features
with patched source)
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[1] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnerabilities in the machine learning model supply chain,” arXiv preprint arXiv:1708.06733, 2017
[2] Liao, Cong, et al. "Backdoor embedding in convolutional neural network models via invisible perturbation." arXiv preprint arXiv:1808.10307 (2018).
[3] Saha, Aniruddha, Akshayvarun Subramanya, and Hamed Pirsiavash. "Hidden trigger backdoor attacks." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. No. 07. 2020.

Invisible trigger!?!
(trigger is noise with small magnitude)
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Backdoor Detection-preliminaries

Properties of benign neural networks  iusirown extancresent seasuremenT BAsED o8 FLATTENING
METRIC AND CLASSIFICATION ACCURACY (BY LDA) FOR DIFFERENT
LAYERS OF BENIGN NEURAL NETWORK

Intermediate

Final hidden layer/ - P
Pixels/retina layer IT cortex Layers < Ln]!r:l_fgnmngsg}xtjnhmll LDA
Input layer 0.2219 0.327T8 T0.57
Intermediate layer | 0.1331 0.2499 o
Last layer 00411 IXIEEN Yu.a3
Fig.1!!l Changes in geometry of representations Fig.2 21 Solid line: Intrinsic Geodesic distance. Dash line: Euclidean distance

Representations of higher/deeper layers for each object approximately lie in a linear subspace, and
representations for different objects approximately lie in different subspaces. 5

[1] Cohen, U., Chung, S., Lee, D.D. and Sompolinsky, H,. Separability and geometry of object manifolds in deep neural networks. Nature communications, 2020, 11(1), pp.1-13.
[2] Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. science, 290(5500), 2323-2326.
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Backdoor Detection-preliminaries

Properties of backdoored neural networks

MANIFOLD ENTANGLEMENT MEASUREMENT BASED ON FLATTENING

METRIC FOR THE LAST LAYER OF BACKDOORED NEURAL NETWORK

(Target & poisoned)

Flatteming metric

Target | Poisoned

0.0831 0.0844

0.0978 0.1102

0.0775 | 0.0838 Fig.3[ genuine and trigger representations

lie in two different subspaces

Genuine and poisoned representations approximately lie in two different linear subspaces

[1] Chen, Bryant, et al. "Detecting backdoor attacks on deep neural networks by activation clustering." arXiv preprint arXiv:1811.03728 (2018).
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Backdoor Detection-PiIDAnN algorithm

Insight of the proposed algorithm
Notations \

X,: benign representations, scaled to unit length;
S,: benign subspace; P,: orthonormal basis matrix spanning S,

X,: poisoned representations, scaled to unit length;
S,: trigger subspace; P,: orthonormal basis matrix spanning S,

S,L: orthonormal subspace of S;; P,1: orthonormal basis matrix spanning S,

||, P,L||: coherence of x, and S,1, which is small
sz P, L ||: coherence of x, and S|+, which is large j

4 Insight )
Maximizing the coherence of S;1 and the weighted samples, e.g.
T~xT T 1 » ©-5
max a X' (I-P,P;)Xa, Xa, would lead to :

* small weights upon representations in X, (since X; makes no
contribution to increase the objective value)
& large weights upon representations in X,. J
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Backdoor Detection-PiIDAnN algorithm

Problem formulation and optimization
To generalize (we only have the mixture data and no information about the labels), replacing P, with P
(P satisfies staying closer to P, than P,)

max a' X' (I-PPT)Xa —)>  Generalized eigenvalue decomposition

ala=1
02 re o2 The intuition behind detection is that a would be
= . . . .
2018 =015 bi-modal if the representations are contaminated,
[ (O . . .
g g and unimodal if the representations are not
& 005 ™ gos .
contaminated.
%.1 -0, \ - %.2 -0.1 ] 01 0.2 \
rIUpPcCILy 4 . .
( perty Highly correlated representations

— Ore precisely, can be grouped into the same
cluster by analyzing the weight
vector , thus enables backdoor

[ = PPT)X and identification.

) ' 200 400 600 BOO
Sample index Sample ndex j

Coefficient
Coefficient
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Backdoor Detection-Experimental results

Traffic sign rec()gniti()n system SELECTED SOURCE-TARGET PAIRS FOR GTSRB
source target
GTSRB dataset with 43 classes of traffic signs @
stop sign speed limit of 60
Attack schemes:
(1) Hidden triggerl!l, which has little defense against; ~— ~
(2) TaCT!?l, which is an emerging attack scheme FDeee tRIO0 peer SCer £0
(3) BadNetsl*], which is a conventional attack c v
no entry yield

Infected model:

accuracy: larger than 96.0%; ; ﬂ ‘ l‘ .J' ’ -l' ‘ ; u

attack success rate: 84.1% for hidden trigger; 96.4% for  Fig 5 square triggers with trigger size as 8 x 8 and
TaCT; 96.5% for BadNets. fix it at the bottom right corner of the images

9
[1] Saha, Aniruddha, Akshayvarun Subramanya, and Hamed Pirsiavash. "Hidden trigger backdoor attacks." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. No. 07. 2020.
[2] Tang, Di, et al. "Demon in the variant: Statistical analysis of dnns for robust backdoor contamination detection." 30th {USENIX} Security Symposium ({USENIX} Security 21). 2021.
[3] Gu, Tianyu, et al. "Badnets: Evaluating backdooring attacks on deep neural networks." IEEE Access 7 (2019): 47230-47244.
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Backdoor Detection-Experimental results

Traffic sign recognition system

(1) Infected class detection via optimized sample weights (backdoor detection rate and false positive rate)

; Hidden trigger TaCT Badnets
Detection Method =r5=—FpRr—TPR | FPR | TPR | FPR
Ours-2 96.7%| 10.7% |100.0% |11.0% 100.0% | 9.8%
OUIS-Z.S 96.70/0 7.90/0 96.70/0 7.40/0 100.00/0 7.40/0
Ours-3 96.70/0 5.20/0 96.70/0 5.50/0 100.00/0 4.00/0

(2) Trigger sample identification via K-means (trigger sample and genuine sample identification rate)

Hidden trigger TaCT Badnets
Defense Method| TPR | FPR | TPR | FPR | TPR | FPR
Ours 97.7% | 12.0% |97.5% (13.4% |98.5% |11.9%
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