Stochastic zero order methods for unconstrained minimization

El Houcine Bergou (elhoucine.bergou@um6p.ma)

November 2, 2022

1 The Problem

- 2 Stochastic Three Points Method (STP)
- 3 Minibatch Stochastic Three Points Method (MiSTP)
- 4 Worst-case complexity bounds
- 5 Numerical Results
- 6 Conclusions & Perspectives

Consider the optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x) \tag{1}$$

d: the number of parameters

 $n{:}\ {\rm the\ number\ of\ samples\ or\ the\ number\ of\ clients\ participating\ in\ the\ learning\ task}$

 $f_i: \mathbb{R}^d \rightarrow \mathbb{R}$ a smooth objective function related to sample i or client i.

Consider the optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x) \tag{1}$$

d: the number of parameters

 $n{:}\ {\rm the\ number\ of\ samples\ or\ the\ number\ of\ clients\ participating\ in\ the\ learning\ task}$

 $f_i: \mathbb{R}^d \rightarrow \mathbb{R}$ a smooth objective function related to sample i or client i.

Consider the optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x) \tag{1}$$

d: the number of parameters

 $n{:}\ {\rm the\ number\ of\ samples\ or\ the\ number\ of\ clients\ participating\ in\ the\ learning\ task}$

 $f_i: \mathbb{R}^d \to \mathbb{R}$ a smooth objective function related to sample i or client i.

Assumptions

- f is bounded from below by f^*
- f is L-smooth

DFO setting

- Gradient out of the reach.
- Computing derivatives is too costly or impossible.

DFO setting

- Gradient out of the reach.
- Computing derivatives is too costly or impossible.
- Black-box objective function f: no derivative code available.

DFO setting

- Gradient out of the reach.
- Computing derivatives is too costly or impossible.
- Black-box objective function *f*: no derivative code available.
- Automatic differentiation: inapplicable.
 ⇒ The gradient exists but cannot be used for algorithmic purposes.

[Bergou et al. 2020]¹

STP method

Choose starting iterate $x_0 \in \mathbb{R}^d$, positive stepsizes $\{\alpha_k\}_{k\geq 0}$, probability distribution \mathcal{D} on \mathbb{R}^d .

2 For
$$k = 0, 1, 2, ...$$

- **1** Generate a random vector $s_k \sim \mathcal{D}$
- 2 Let $x_+ = x_k + \alpha_k s_k$ and $x_- = x_k \alpha_k s_k$
- 3 $x_{k+1} = \arg\min\{f(x_-), f(x_+), f(x_k)\}$

¹E. Bergou, E. Gorbunov, and P. Richtárik. "Stochastic Three Points Method for Unconstrained Smooth Minimization". In: *SIAM Journal on Optimization* 30(4), 2726–2749 (2020).

[Bergou et al. 2020]¹

STP method

Choose starting iterate $x_0 \in \mathbb{R}^d$, positive stepsizes $\{\alpha_k\}_{k\geq 0}$, probability distribution \mathcal{D} on \mathbb{R}^d .

2 For
$$k = 0, 1, 2, ...$$

- **1** Generate a random vector $s_k \sim \mathcal{D}$
- 2 Let $x_+ = x_k + \alpha_k s_k$ and $x_- = x_k \alpha_k s_k$
- 3 $x_{k+1} = \arg\min\{f(x_-), f(x_+), f(x_k)\}$
- not having exact function evaluations? (f noisy)
- evaluating f is costly? (n is too large)

¹E. Bergou, E. Gorbunov, and P. Richtárik. "Stochastic Three Points Method for Unconstrained Smooth Minimization". In: *SIAM Journal on Optimization* 30(4), 2726–2749 (2020).

Minibatch Stochastic Three Points Method (MiSTP)

The approximation is defined as follow:

$$f_{\mathcal{B}}(x) = \frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} f_i(x)$$
(2)

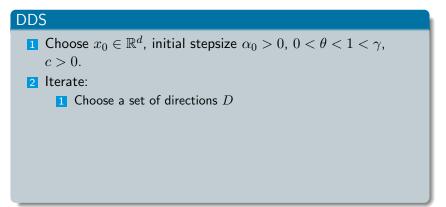
 ${\cal B}$ is a randomly chosen subset of the data (or clients) and $|{\cal B}|$ is its cardinal.

 $[Boucherouite et al. 2022]^2$

MiSTP method **1** For k = 0, 1, 2, ... **1** Generate a random vector $s_k \sim D$ **2** Choose elements of the subset \mathcal{B}_k **3** Let $x_+ = x_k + \alpha_k s_k$ and $x_- = x_k - \alpha_k s_k$ **4** $x_{k+1} = \arg \min\{f_{\mathcal{B}_k}(x_-), f_{\mathcal{B}_k}(x_+), f_{\mathcal{B}_k}(x_k)\}$

²S. Boucherouite et al. "Minibatch Stochastic Three Points Method for Unconstrained Smooth Minimization". In: Submitted Sci 101.7 (2002).

[Kolda et al. 2003]



[Kolda et al. 2003]

DDS **1** Choose $x_0 \in \mathbb{R}^d$, initial stepsize $\alpha_0 > 0, 0 < \theta < 1 < \gamma$. c > 0.2 Iterate: 1 Choose a set of directions D **2** If it exists $s \in D$ s.t. $f(x_k + \alpha_k s) < f(x_k) - c\alpha_k^2,$ then $x_{k+1} = x_k + \alpha_k s$ and $\alpha_{k+1} = \gamma \alpha_k$.

[Kolda et al. 2003]

DDS
1 Choose $x_0 \in \mathbb{R}^d$, initial stepsize $\alpha_0 > 0$, $0 < \theta < 1 < \gamma$,
c > 0.
2 Iterate:
1 Choose a set of directions D
2 If it exists $s \in D$ s.t.
$f(x_k + \alpha_k s) < f(x_k) - c\alpha_k^2,$
then $x_{k+1} = x_k + \alpha_k s$ and $\alpha_{k+1} = \gamma \alpha_k$.
3 Otherwise $x_{k+1} = x_k$ and $\alpha_{k+1} = \theta \alpha_k$.

Assumptions on D and P

The set D has the following properties

- **1** For $s \in D$, ||s|| is positive and finite.
- 2 There is a constant $\mu > 0$ and norm $\|\cdot\|_P$ on \mathbb{R}^d such for all $g \in \mathbb{R}^d$

$$cm(D,g) = \max_{s \in D} s^T g \ge \mu \|g\|_P$$

Assumptions on D and P

The set D has the following properties

- **1** For $s \in D$, ||s|| is positive and finite.
- 2 There is a constant $\mu > 0$ and norm $\|\cdot\|_P$ on \mathbb{R}^d such for all $g \in \mathbb{R}^d$ $cm(D,g) = \max_{s \in D} s^T g \ge \mu \|g\|_P$

he probability distribution
$$P$$
 on \mathbb{R}^d has the following roperties

- **1** The quantity $\gamma_P \stackrel{\text{def}}{=} \mathbf{E}_{s \sim P} \|s\|_2^2$ is positive and finite.
- 2 There is a constant $\mu_P > 0$ and norm $\|\cdot\|_P$ on \mathbb{R}^d such for all $g \in \mathbb{R}^n$,

$$\mathbf{E}_{s\sim P} |\langle g, s \rangle| \ge \mu_P ||g||_P.$$

With $g = -\nabla f(x)$, $cm(D,g) \ge \mu \|g\|_P$ means that D contains a descent direction for f at x.

Example of D

$$D = \{e_1, \dots, e_d, -e_1, \dots, -e_d\}$$

$$2 \ cm(D,g) \ge \frac{1}{\sqrt{d}} \|g\|_2$$

$$cm(D,g) = \max_{d \in D} d^T g \ge \mu \|g\|_P$$

With $g = -\nabla f(x)$, $cm(D,g) \ge \mu \|g\|_P$ means that D contains a descent direction for f at x.

Example of D

$$D = \{e_1, \dots, e_d, -e_1, \dots, -e_d\}$$

2
$$cm(D,g) \ge \frac{1}{\sqrt{d}} \|g\|_2$$

$$cm(D,g) = \max_{d \in D} d^T g \ge \mu \|g\|_P$$

3 In general D must contains at least d+1 vectors.

1 If P is the uniform distribution on the unit sphere in \mathbb{R}^d , then

$$\gamma_P = \mathbf{E}_{s \sim P} \|s\|_2^2 = 1 ext{ and } \mathbf{E}_{s \sim P} |\langle g, s
angle | \sim rac{1}{\sqrt{2\pi d}} \|g\|_2.$$

1 If P is the uniform distribution on the unit sphere in \mathbb{R}^d , then

$$\gamma_P = \mathbf{E}_{s \sim P} \|s\|_2^2 = 1 ext{ and } \mathbf{E}_{s \sim P} |\langle g, s \rangle| \sim rac{1}{\sqrt{2\pi d}} \|g\|_2.$$

2 If P is the normal distribution with zero mean and identity over d as covariance matrix i.e. $s \sim N(0, \frac{I}{d})$, then

$$\gamma_P = \mathbf{E}_{s \sim P} \|s\|_2^2 = 1$$
 and $\mathbf{E}_{s \sim P} |\langle g, s \rangle| = \frac{\sqrt{2}}{\sqrt{d\pi}} \|g\|_2.$

Examples of P, discrete distributions

1 If P is the uniform distribution on $\{e_1,\ldots,e_d\}$, then

$$\gamma_P = \mathbf{E}_{s \sim P} \|s\|_2^2 = 1 \text{ and } \mathbf{E}_{s \sim P} \mid \langle g, s \rangle \mid = \frac{1}{d} \|g\|_1.$$

Examples of P, discrete distributions

I If P is the uniform distribution on $\{e_1, \ldots, e_d\}$, then $\gamma_P = \mathbf{E}_{s \sim P} \|s\|_2^2 = 1 \text{ and } \mathbf{E}_{s \sim P} |\langle g, s \rangle| = \frac{1}{d} \|g\|_1.$

2 If P is an arbitrary distribution on $\{e_1, \ldots, e_d\}$ given by $P(s = e_i) = p_i > 0$, then

$$\gamma_P = \mathbf{E}_{s \sim P} \|s\|_2^2 = 1 \text{ and } \mathbf{E}_{s \sim P} |\langle g, s \rangle| = \|g\|_p \stackrel{\mathsf{def}}{=} \sum_{i=1}^d p_i |g_i|.$$

Examples of P, discrete distributions

I If P is the uniform distribution on $\{e_1, \ldots, e_d\}$, then $\gamma_P = \mathbf{E}_{s \sim P} \|s\|_2^2 = 1 \text{ and } \mathbf{E}_{s \sim P} |\langle g, s \rangle| = \frac{1}{d} \|g\|_1.$

2 If P is an arbitrary distribution on $\{e_1, \ldots, e_d\}$ given by $P(s = e_i) = p_i > 0$, then

$$\gamma_P = \mathbf{E}_{s \sim P} \|s\|_2^2 = 1 \text{ and } \mathbf{E}_{s \sim P} |\langle g, s \rangle| = \|g\|_p \stackrel{\text{def}}{=} \sum_{i=1}^d p_i |g_i|.$$

3 If P is a distribution on $D = \{s_1, \ldots, s_d\}$ where s_1, \ldots, s_d form an orthonormal basis of \mathbb{R}^n and $P(s = s_i) = p_i$, then

$$\gamma_P = \mathbf{E}_{s \sim P} \|s\|_2^2 = 1 \text{ and } \mathbf{E}_{s \sim P} |\langle g, s \rangle| = \|g\|_p \stackrel{\mathsf{def}}{=} \sum_{i=1}^d p_i |g_i|.$$

[Vicente 2013]

Evaluation complexity

Let $\epsilon \in (0,1)$ and $K(\epsilon)$ be the number of function evaluations needed to reach a point such that

$$\min_{k=0,1,\dots,K} \left[\|\nabla f(x_k)\|_P \right] \le \epsilon.$$

Then

 $K(\epsilon) \le O(|D|(\mu\epsilon)^{-2}).$

[Vicente 2013]

Evaluation complexity

Let $\epsilon \in (0,1)$ and $K(\epsilon)$ be the number of function evaluations needed to reach a point such that

$$\min_{k=0,1,\dots,K} \left[\|\nabla f(x_k)\|_P \right] \le \epsilon.$$

Then

$$K(\epsilon) \le O(|D|(\mu\epsilon)^{-2}).$$

With
$$D = \{e_1, \ldots, e_d, -e_1, \ldots, -e_d\}$$
, we have $|D| = 2n$ and $\mu = \frac{1}{\sqrt{d}}$ thus $K(\epsilon) \leq O(d^2 \epsilon^{-2}).$

Evaluation complexity

Let $\epsilon \in (0,1)$ and $K(\epsilon)$ be the number of function evaluations needed to reach a point such that

$$\min_{k=0,1,\ldots,K} \mathbf{E}\left[\|\nabla f(x_k)\|_P\right] \le \epsilon.$$

Then

 $K(\epsilon) \le O((\mu\epsilon)^{-2}).$

Evaluation complexity

Let $\epsilon \in (0,1)$ and $K(\epsilon)$ be the number of function evaluations needed to reach a point such that

$$\min_{k=0,1,\ldots,K} \mathbf{E}\left[\|\nabla f(x_k)\|_P\right] \le \epsilon.$$

Then

$$K(\epsilon) \le O((\mu\epsilon)^{-2}).$$

 $\mu \sim \frac{cst}{\sqrt{d}}$ thus

$$K(\epsilon) \le O(d\epsilon^{-2}).$$

[Vicente et al. 2016]

Evaluation complexity

Let $\epsilon \in (0,1)$ and $K(\epsilon)$ be the number of function evaluations needed to reach a point such that

$$f(x_k) - f(x^*) \le \epsilon.$$

Then $K(\epsilon) \leq O(|D|\mu^{-2}\epsilon^{-1}).$

[Vicente et al. 2016]

Evaluation complexity

Let $\epsilon \in (0,1)$ and $K(\epsilon)$ be the number of function evaluations needed to reach a point such that

$$f(x_k) - f(x^*) \le \epsilon.$$

Then $K(\epsilon) \leq O(|D|\mu^{-2}\epsilon^{-1}).$

$$|D| = 2d$$
 and $\mu = \frac{1}{\sqrt{d}}$ thus $K(\epsilon) \le O(d^2 \epsilon^{-1})$.

Evaluation complexity

Let $\epsilon \in (0,1)$ and $K(\epsilon)$ be the number of function evaluations needed to reach a point such that

$$\mathbf{E}\left[f(x_k) - f(x^*)\right] \le \epsilon.$$

Then $K(\epsilon) \leq O(\mu^{-2}\epsilon^{-1}).$

Evaluation complexity

Let $\epsilon \in (0,1)$ and $K(\epsilon)$ be the number of function evaluations needed to reach a point such that

$$\mathbf{E}\left[f(x_k) - f(x^*)\right] \le \epsilon.$$

Then $K(\epsilon) \leq O(\mu^{-2}\epsilon^{-1}).$

$$\mu \sim \frac{cst}{\sqrt{d}}$$
 thus $K(\epsilon) \leq O(d\epsilon^{-1})$.

 (Mi)STP uses one random direction at each iteration while DDS uses many deterministic directions (at least d + 1).

- (Mi)STP uses one random direction at each iteration while DDS uses many deterministic directions (at least d + 1).
- DDS imposes sufficient decrease condition to accept the iterates.

- (Mi)STP uses one random direction at each iteration while DDS uses many deterministic directions (at least d + 1).
- DDS imposes sufficient decrease condition to accept the iterates.
- DDS updates step size automatically while in (Mi)STP one needs to choose the step sizes at the beginning of the algorithm.

- (Mi)STP uses one random direction at each iteration while DDS uses many deterministic directions (at least d + 1).
- DDS imposes sufficient decrease condition to accept the iterates.
- DDS updates step size automatically while in (Mi)STP one needs to choose the step sizes at the beginning of the algorithm.
- In (Mi)STP many choices of the step sizes apply.

- (Mi)STP uses one random direction at each iteration while DDS uses many deterministic directions (at least d + 1).
- DDS imposes sufficient decrease condition to accept the iterates.
- DDS updates step size automatically while in (Mi)STP one needs to choose the step sizes at the beginning of the algorithm.
- In (Mi)STP many choices of the step sizes apply.
- The complexity of (Mi)STP depends linearly in *d* while its dependence is quadratic in DDS.

MiSTP on the ridge regression problem

Ridge regression:

$$f(x) = \frac{1}{2n} \sum_{i=1}^{n} (A[i,:]x - y_i)^2 + \frac{\lambda}{2} \|x\|_2^2$$

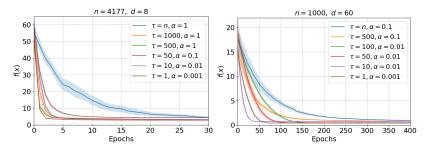


Figure 1: Performance of MiSTP with different minibatch sizes on ridge regression problem. On the left, the "abalone" dataset. On the right, the "splice" dataset from LIBSVM.

MiSTP on the logistic regression problem

Regularized logistic regression:

$$f(x) = \frac{1}{2n} \sum_{i=1}^{n} \ln(1 + \exp(-y_i A[i,:]x)) + \frac{\lambda}{2} \|x\|_2^2$$

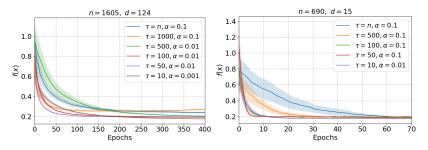


Figure 2: Performance of MiSTP with different minibatch sizes on regularized logistic regression problem. On the left, the "a1a" dataset. On the right, the "australian" dataset.

MiSTP vs. SGD

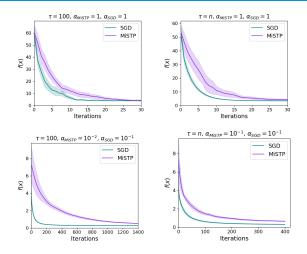


Figure 3: Performance of MiSTP and SGD on ridge regression problem using real data from LIBSVM. Above, abalone dataset: n = 4177 and d = 8. Below, a1a dataset :n = 1605 and d = 123.

MiSTP vs. SGD

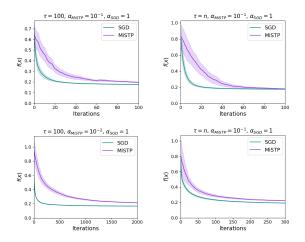


Figure 4: Performance of MiSTP and SGD on regularized logistic regression problem using real data from LIBSVM. Above, australian dataset : n = 690 and d = 15. Below, a1a dataset : n = 1605 and d = 124.

MiSTP vs. other zero order methods

RSGF (Random Stochastic Gradient Free)³ :

$$x_{k+1} = x_k - \alpha_k \frac{f_{\mathcal{B}_k}(x_k + \mu_k s_k) - f_{\mathcal{B}_k}(x_k)}{\mu_k} s_k$$

ZO-SVRG(Zero Order Stochastic variance reduced Gradient)⁴:

$$\hat{\nabla} f_{\mathcal{B}_k}(x_k) = \frac{d}{\mu} (f_{\mathcal{B}_k}(x_k + \mu s_k) - f_{\mathcal{B}_k}(x_k)) s_k$$

ZO-CD (Zero Order Coordinate descent):

$$x_{k+1} = x_k - \alpha_k g_{\mathcal{B}_k}, \quad g_{\mathcal{B}_k} = \sum_{i=1}^d \frac{f_{\mathcal{B}_k}(x_k + \mu e_i) - f_{\mathcal{B}_k}(x_k - \mu e_i)}{2\mu} e_i$$

³S. Ghadimi and G. Lan. "Stochastic First- and Zeroth-Order Methods for Nonconvex Stochastic Programming". In: *SIAM Journal on Optimization* 23.4 (2013), pp. 2341–2368.

⁴S. Liu et al. "Zeroth-order stochastic variance reduction for nonconvex optimization". In: *Advances in Neural Information Processing Systems (NeurIPS)* (2018), pp. 3731–3741.

MiSTP vs. other zero order methods

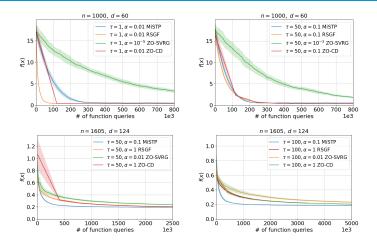


Figure 5: Comparison of MiSTP, RSGF, ZO-SVRG, and ZO-CD. Above: ridge regression problem using the "splice" dataset. Below: regularized logistic regression problem using the "a1a" dataset.

MiSTP in neural networks

- MNIST digit classification
- Three fully-connected layers of size 256, 128, 10, with ReLU activation after the first two layers and a Softmax activation function after the last layer.
- The loss function: the categorical cross entropy.

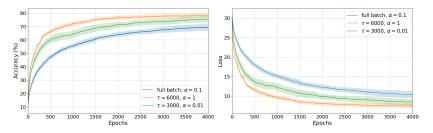


Figure 6: Comparison of different minibatch sizes for MiSTP in a multi-layer neural network.

Simple STP approach for DFO.

- Simple STP approach for DFO.
- The worst case complexity of (Mi)STP depends linearly on d, and the same way as the steepest descent on ε.

- Simple STP approach for DFO.
- The worst case complexity of (Mi)STP depends linearly on d, and the same way as the steepest descent on ε.

Some perspectives

Parallel version of STP.

- Simple STP approach for DFO.
- The worst case complexity of (Mi)STP depends linearly on d, and the same way as the steepest descent on ε.

Some perspectives

- Parallel version of STP.
- Extension to the constrained optimization.

- Simple STP approach for DFO.
- The worst case complexity of (Mi)STP depends linearly on d, and the same way as the steepest descent on ε.

Some perspectives

- Parallel version of STP.
- Extension to the constrained optimization.
- Deriving a rule to find the optimal minibatch size.

- Simple STP approach for DFO.
- The worst case complexity of (Mi)STP depends linearly on d, and the same way as the steepest descent on ε.

Some perspectives

- Parallel version of STP.
- Extension to the constrained optimization.
- Deriving a rule to find the optimal minibatch size.
- Investigating MiSTP in the non-smooth case.

Thank you for your attention!