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The Problem

Consider the optimization problem:

min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x) (1)

d: the number of parameters
n: the number of samples or the number of clients participating in
the learning task
fi : Rd → R a smooth objective function related to sample i or
client i.

Assumptions

f is bounded from below by f∗

f is L-smooth
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Zero order optimization

DFO setting

Gradient out of the reach.

Computing derivatives is too costly or impossible.

Black-box objective function f : no derivative code available.

Automatic differentiation: inapplicable.
⇒ The gradient exists but cannot be used for algorithmic
purposes.
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Stochastic Three Points Method (STP)

[Bergou et al. 2020]1

STP method

1 Choose starting iterate x0 ∈ Rd, positive stepsizes {αk}k≥0,
probability distribution D on Rd.

2 For k = 0, 1, 2, ...

1 Generate a random vector sk ∼ D
2 Let x+ = xk + αksk and x− = xk − αksk
3 xk+1 = argmin{f(x−), f(x+), f(xk)}

not having exact function evaluations? (f noisy)

evaluating f is costly? (n is too large)

1E. Bergou, E. Gorbunov, and P. Richtárik. “Stochastic Three Points
Method for Unconstrained Smooth Minimization”. In: SIAM Journal on
Optimization 30(4), 2726–2749 (2020). Stochastic zero order methods for unconstrained minimization
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Minibatch Stochastic Three Points Method (MiSTP)

The approximation is defined as follow:

fB(x) =
1

|B|
∑
i∈B

fi(x) (2)

B is a randomly chosen subset of the data (or clients) and |B| is its
cardinal.
[Boucherouite et al. 2022]2

MiSTP method

1 For k = 0, 1, 2, ...

1 Generate a random vector sk ∼ D
2 Choose elements of the subset Bk

3 Let x+ = xk + αksk and x− = xk − αksk
4 xk+1 = argmin{fBk(x−), fBk(x+), fBk(xk)}

2S. Boucherouite et al. “Minibatch Stochastic Three Points Method for
Unconstrained Smooth Minimization”. In: Submitted to ICLR (2022).Stochastic zero order methods for unconstrained minimization
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Deterministic Direct Search

[Kolda et al. 2003]

DDS

1 Choose x0 ∈ Rd, initial stepsize α0 > 0, 0 < θ < 1 < γ,
c > 0.

2 Iterate:

1 Choose a set of directions D

2 If it exists s ∈ D s.t.

f(xk + αks) < f(xk)− cα2
k,

then xk+1 = xk + αks and αk+1 = γαk.
3 Otherwise xk+1 = xk and αk+1 = θαk.
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Assumptions on D and P

The set D has the following properties

1 For s ∈ D, ∥s∥ is positive and finite.

2 There is a constant µ > 0 and norm ∥ · ∥P on Rd such for all
g ∈ Rd

cm(D, g) = max
s∈D

sT g ≥ µ∥g∥P

The probability distribution P on Rd has the following
properties

1 The quantity γP
def
= Es∼P ∥s∥22 is positive and finite.

2 There is a constant µP > 0 and norm ∥ · ∥P on Rd such for all
g ∈ Rn,

Es∼P | ⟨g, s⟩ | ≥ µP ∥g∥P .
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Example of D

With g = −∇f(x), cm(D, g) ≥ µ∥g∥P means that D contains a
descent direction for f at x.

Example of D

1 D = {e1, . . . , ed,−e1, . . . ,−ed}
2 cm(D, g) ≥ 1√

d
∥g∥2

cm(D, g) = max
d∈D

dT g ≥ µ∥g∥P

3 In general D must contains at least d+ 1 vectors.
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Examples of P , continuous distributions

1 If P is the uniform distribution on the unit sphere in Rd, then

γP = Es∼P ∥s∥22 = 1 and Es∼P | ⟨g, s⟩ | ∼ 1√
2πd

∥g∥2.

2 If P is the normal distribution with zero mean and identity
over d as covariance matrix i.e. s ∼ N(0, Id), then

γP = Es∼P ∥s∥22 = 1 and Es∼P | ⟨g, s⟩ | =
√
2√
dπ

∥g∥2.
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Examples of P , discrete distributions

1 If P is the uniform distribution on {e1, . . . , ed}, then

γP = Es∼P ∥s∥22 = 1 and Es∼P | ⟨g, s⟩ | = 1

d
∥g∥1.

2 If P is an arbitrary distribution on {e1, . . . , ed} given by
P (s = ei) = pi > 0, then

γP = Es∼P ∥s∥22 = 1 and Es∼P | ⟨g, s⟩ | = ∥g∥p
def
=

d∑
i=1

pi|gi|.

3 If P is a distribution on D = {s1, . . . , sd} where s1, . . . , sd
form an orthonormal basis of Rn and P (s = si) = pi, then

γP = Es∼P ∥s∥22 = 1 and Es∼P | ⟨g, s⟩ | = ∥g∥p
def
=

d∑
i=1

pi|gi|.
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Worst-case complexity of DDS

[Vicente 2013]

Evaluation complexity

Let ϵ ∈ (0, 1) and K(ϵ) be the number of function evaluations
needed to reach a point such that

min
k=0,1,...,K

[∥∇f(xk)∥P ] ≤ ϵ.

Then
K(ϵ) ≤ O(|D|(µϵ)−2).

With D = {e1, . . . , ed,−e1, . . . ,−ed}, we have |D| = 2n and
µ = 1√

d
thus

K(ϵ) ≤ O(d2ϵ−2).
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Worst-case complexity of STP and MiSTP

Evaluation complexity

Let ϵ ∈ (0, 1) and K(ϵ) be the number of function evaluations
needed to reach a point such that

min
k=0,1,...,K

E [∥∇f(xk)∥P ] ≤ ϵ.

Then
K(ϵ) ≤ O((µϵ)−2).

µ ∼ cst√
d
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Worst-case complexity of DDS under convexity

[Vicente et al. 2016]

Evaluation complexity

Let ϵ ∈ (0, 1) and K(ϵ) be the number of function evaluations
needed to reach a point such that

f(xk)− f(x∗) ≤ ϵ.

Then K(ϵ) ≤ O(|D|µ−2ϵ−1).

|D| = 2d and µ = 1√
d
thus K(ϵ) ≤ O(d2ϵ−1).
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(Mi) STP vs DDS

The main differences between DDS and (Mi)STP are:

(Mi)STP uses one random direction at each iteration while
DDS uses many deterministic directions (at least d+ 1).

DDS imposes sufficient decrease condition to accept the
iterates.

DDS updates step size automatically while in (Mi)STP one
needs to choose the step sizes at the beginning of the
algorithm.

In (Mi)STP many choices of the step sizes apply.

The complexity of (Mi)STP depends linearly in d while its
dependence is quadratic in DDS.
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MiSTP on the ridge regression problem

Ridge regression:

f(x) =
1

2n

n∑
i=1

(A[i, :]x− yi)
2 +

λ

2
∥x∥22

Figure 1: Performance of MiSTP with different minibatch sizes on ridge
regression problem. On the left, the ”abalone” dataset. On the right, the
”splice” dataset from LIBSVM.
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MiSTP on the logistic regression problem

Regularized logistic regression:

f(x) =
1

2n

n∑
i=1

ln(1 + exp(−yiA[i, :]x)) +
λ

2
∥x∥22

Figure 2: Performance of MiSTP with different minibatch sizes on
regularized logistic regression problem. On the left, the ”a1a” dataset.
On the right, the ”australian” dataset.
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MiSTP vs. SGD

Figure 3: Performance of MiSTP and SGD on ridge regression problem
using real data from LIBSVM. Above, abalone dataset: n = 4177 and
d = 8. Below, a1a dataset :n = 1605 and d = 123.
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MiSTP vs. SGD

Figure 4: Performance of MiSTP and SGD on regularized logistic regression
problem using real data from LIBSVM. Above, australian dataset :
n = 690 and d = 15. Below, a1a dataset : n = 1605 and d = 124.
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MiSTP vs. other zero order methods

RSGF (Random Stochastic Gradient Free)3 :

xk+1 = xk − αk
fBk

(xk + µksk)− fBk
(xk)

µk
sk

ZO-SVRG(Zero Order Stochastic variance reduced Gradient)4:

∇̂fBk
(xk) =

d

µ
(fBk

(xk + µsk)− fBk
(xk))sk

ZO-CD (Zero Order Coordinate descent):

xk+1 = xk−αkgBk
, gBk

=

d∑
i=1

fBk
(xk + µei)− fBk

(xk − µei)

2µ
ei

3S. Ghadimi and G. Lan. “Stochastic First- and Zeroth-Order Methods for
Nonconvex Stochastic Programming”. In: SIAM Journal on Optimization 23.4
(2013), pp. 2341–2368.

4S. Liu et al. “Zeroth-order stochastic variance reduction for nonconvex
optimization”. In: Advances in Neural Information Processing Systems
(NeurIPS) (2018), pp. 3731–3741. Stochastic zero order methods for unconstrained minimization
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MiSTP vs. other zero order methods

Figure 5: Comparison of MiSTP, RSGF, ZO-SVRG, and ZO-CD. Above:
ridge regression problem using the ”splice” dataset. Below: regularized
logistic regression problem using the ”a1a” dataset.
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MiSTP in neural networks

MNIST digit classification

Three fully-connected layers of size 256, 128, 10, with ReLU
activation after the first two layers and a Softmax activation
function after the last layer.

The loss function: the categorical cross entropy.

Figure 6: Comparison of different minibatch sizes for MiSTP in a
multi-layer neural network.
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Conclusion & Perspectives

Conclusions

Simple STP approach for DFO.

The worst case complexity of (Mi)STP depends linearly on d,
and the same way as the steepest descent on ϵ.

Some perspectives

Parallel version of STP.

Extension to the constrained optimization.

Deriving a rule to find the optimal minibatch size.

Investigating MiSTP in the non-smooth case.

· · ·
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Thank you for your
attention!
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