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Kinetic equations

▶ Basic concept: statistical (distribution function) description of a large particle
system

▶ f = f (x , v , t): particle densities with velocity v ∈ R3 (in velocity space)
at position x ∈ R3 (in physical space) at time t

▶ Applications: rarefied gas dynamics, plasma physics, nuclear engineering,
astrophysics...

▶ Numerical difficulty: multiscale, high dimension (x , v , t) ∈ R7 for d = 3

Figure: role of kinetic theory in multiscale modeling
Figure: illustration of two neutron stars merging,
along with the resulting gravitational waves, from
[NASA/Goddard Space Flight Center]
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Radiative transfer equation

▶ The radiative transfer equation (RTE) describe the propagation of radiation and
interaction with a background medium:

∂t f +Ω · ∇f = σs⟨f ⟩ − σt f (1)

▶ f = f (x ,Ω, t): specific intensity of radiation
▶ x ∈ Rd : location in physical space
▶ Ω ∈ Sd−1: traveling direction in angular space
▶ ⟨·⟩ normalized integration in angular space: ⟨f ⟩ := 1

|Sd−1|
∫
Sd−1 fdΩ

▶ σs(x), σa(x) ≥ 0: scattering and absorption cross section
▶ σt(x) = σs(x) + σa(x): total cross section

▶ Moment closure:
▶ introduced by Grad (1949) for Boltzmann equation
▶ model/dimension reduction in angular space (3D + 2V → 3D if d = 3)
▶ focus on evolution of moments of specific intensity, quantities of interest

in physics
▶ energy density:

∫
f (x ,Ω, t)dΩ

▶ radiation flux:
∫
f (x ,Ω, t)ΩdΩ

▶ radiation pressure:
∫
f (x ,Ω, t)Ω⊗ ΩdΩ

5 / 26



▶ The simplified RTE (1D and 1V): f = f (x , v , t), x ∈ R and v ∈ [−1, 1]

∂t f + v∂x f = σs

(
1
2

∫ 1

−1
fdv − f

)
− σaf . (2)

▶ Define the k-th order moment by

mk (x , t) =
1
2

∫ 1

−1
f (x , v , t)Pk (v)dv , k ≥ 0.

with Pk (v) the k-th Legendre polynomial. We derive the unclosed moment
equations

∂tm0 + ∂xm1 = −σam0,

∂tm1 +
1
3
∂xm0 +

2
3
∂xm2 = −(σs + σa)m1,

· · ·

∂tmN +
N

2N + 1
∂xmN−1 +

N + 1
2N + 1

∂xmN+1 = −(σs + σa)mN .

(3)

▶ Traditional closures1: PN closure, MN closure, empirical assumptions

1Chandrasekhar (1944), Levermore (1996), Hauck and McClarren (2010), McClarren and Hauck
(2010), Hauck (2011), Alldredge, Hauck and Tits (2012), Alldredge, Hauck, OLeary and Tits (2014),
Laboure, McClarren and Hauck (2016)
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Machine learning moment closure

▶ Scientific machine learning (ML): multiscale modeling (molecular dynamics,
turbulence, kinetic equations), solving PDEs in high dimensions

▶ ML closure:
▶ Boltzmann BGK model: Han, Ma, Ma and E (2019), learn closure

mN+1 = N (m0,m1, · · · ,mN)

with N a neural network (trained with data generated by kinetic model).
Use auto-encoder to learn generalized moments

▶ Williams-Boltzmann equation: Scoggins, Han and Massot (2021)
▶ plasma physics:

▶ Euler-Poisson system: nonlocal closure for heat flux, Bois, Franck,
Navoret and Vigon (2020)

▶ Hammett–Perkins Landau fluid closure: Ma, Zhu, Xu and Wang
(2020), Wang, Xu, Zhu, Ma and Lei (2020), Maulik, Garland,
Burby, Tang and Balaprakas (2020)

▶ surrogate maximum entropy closure: convex splines and convex neural
networks, Porteous, Laiu and Hauck (2021), Schotthöfer, Xiao, Frank and
Hauck (2021)

▶ preserve Galilean/reflecting/scaling invariance: Li, Dong and Wang (2021)
▶ Stability? only work for short time, blow up for long time
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Hyperbolicity

▶ ML moment closure model:

∂tm0 + ∂xm1 = −σam0,

∂tm1 +
1
3
∂xm0 +

2
3
∂xm2 = −(σs + σa)m1,

· · ·

∂tmN +
N

2N + 1
∂xmN−1 +

N + 1
2N + 1

∂xN (m0,m1, · · · ,mN) = −(σs + σa)mN .

(4)
write into a system of first-order PDEs:

∂tm + A(m)∂xm = S(m) (5)

with m = (m0,m1, · · · ,mN)
T .

▶ Hyperbolicity

▶ definition: The system (5) is hyperbolic if A(m) is real diagonalizable
▶ Hyperbolicity is crucial for long-time stability of the model!
▶ difficulty: A(m) depend on neural network, generally NOT real

diagonalizable
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Gradient-based closure

▶ Motivation: derive exact closure in free streaming limit with isotropic initial
conditions

∂t f + v∂x f = 0,

f (t = 0) = f0(x).
(6)

▶ Key idea: instead of learning a relation

mN+1 = N (m0,m1, · · · ,mN), (7)

we propose to directly learn the gradient of the unclosed moment:

∂xmN+1 =
N∑

k=0

Nk (m0,m1, . . . ,mN)∂xmk . (8)

▶ Advantages:
▶ accuracy: more accurate in optically thin regime (far away from

equilibrium)
▶ mathematical structure: more degrees of freedom to play with, enforce

hyperbolicity and other properties
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Approach 1: symmetrizer-based hyperbolic closure

▶ Gradient-based ML moment closure model:

∂tm + A(m)∂xm = S(m) (9)

with m = (m0,m1, · · · ,mN) and

A =



0 1 0 0 . . . 0
1
3 0 2

3 0 . . . 0
0 2

5 0 3
5 . . . 0

...
...

...
. . .

...
...

0 0 . . . N−1
2N−1 0 N

2N−1
a0 a1 . . . aN−2 aN−1 aN


with aj related to neural networks:

aj =


N + 1
2N + 1

Nj , j ̸= N − 1

N

2N + 1
+

N + 1
2N + 1

Nj , j = N − 1
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▶ Key idea: seek a symmetric positive definite matrix A0 (also called a
symmetrizer) such that A0A is symmetric ⇒ symmetrizable hyperbolic

▶ Diffusion limit: ML closure model → diffusion limit of RTE (as Kn → 0)

Theorem (symmetrizable hyperbolic)
Consider matrix A ∈ R(N+1)×(N+1) with N ≥ 3 and ai = 0 for i = 0, 1, · · · ,N − 4. If
the coefficients ai for i = N − 3,N − 2,N − 1,N satisfy the following constraints:

aN−3 > −
(N − 1)(N − 2)

N(2N − 3)
, aN−1 >

g(aN−3, aN−2, aN ;N)

(N − 2)(aN−3(2N − 3)N + (N − 1)(N − 2))2
(10)

where g = g(aN−3, aN−2, aN ;N) is a function given by

g = a3N−3(N − 1)N2(3 − 2N)2 + aN−2(2N − 1)(N − 2)3(aN−2N − aN (N − 1))

+ aN−3(N − 2)2(aN (4N2 − 8N + 3)(aN−2N − aN (N − 1)) + (N − 1)3) + 2a2N−3(N − 1)2N(2N − 3)(N − 2),

then there exist a SPD matrix A0 = diag(D,B) ∈ R(N+1)×(N+1) such that A0A is
symmetric. Here, D = diag(1, 3, 5, · · · , 2N − 5) ∈ R(N−2)×(N−2) and B ∈ R3×3 is a
SPD matrix.
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Approach 2: eigenvalue-based hyperbolic closure

Key idea: using the algebraic structure of A (lower Hessenberg matrix), we relate the
real diagonalizablity to the roots of its associated polynomial.

Theorem (hyperbolicity and physical characteristic speeds)
For the coefficient matrix A, the associated polynomial sequence defined in Elouafi
and Hadj (2009) satisfies:

qN+1(x) =
N + 1
2N + 1

PN+1(x) +
N

2N + 1
PN−1(x)−

N∑
k=0

akPk (x), (11)

where Pn(x) denotes the Legendre polynomial of degree n.

1. If all the roots of qN+1(x) are simple, then the characteristic polynomial of A is:

det(xIN+1−A) =
N!

(2N − 1)!!

(
N + 1
2N + 1

PN+1(x) +
N

2N + 1
PN−1(x)−

N∑
k=0

akPk (x)

)

2. If further assuming all the roots of qN+1(x) are simple, real and lie in the
interval [−1, 1], then the moment closure system is strictly hyperbolic with
physical characteristic speeds.
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▶ Two new neural network architectures:
▶ Step 1: represent eigenvalues with fully connected neural networks
▶ Step 2: mapping from eigenvalues to coefficient matrix
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Figure: weakly hyperbolic with physical characteristic speeds
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Training data

We numerically solve the RTE to generate training data:
▶ unit interval [0, 1] in the physical domain with periodic boundary conditions
▶ initial conditions, truncated Fourier series2:

f0(x , v) = a0 +

kmax∑
k=1

ak sin(2kπx + ϕk ), (12)

kmax = 10, ak ∼ U(− 1
k
, 1
k
) for k ≥ 1, ϕk ∼ U[0, 2π], a0 = c +

∑kmax
k=1

1
k

with
c ∼ U[0, 1]

▶ σs ∼ U[0.1, 100] and σa ∼ U[0, 10], constants over the domain
▶ take 100 different initial data
▶ space time DG method3: Nx = 512, ∆t = 8∆x , T = 1

2Ma, Zhu, Xu and Wang (2020), Bois, Franck, Navoret and Vigon (2020)
3Crockatt, Christlieb, Garrett and Hauck (2017)
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Comparison with non-hyperbolic ML closure and PN closure

▶ Two-material problem: N = 6 at t = 0.5 and t = 1. Gray part: optically thin
regime; other part: intermediate regime.
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Figure: m0 at t = 0.5
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Figure: m0 at t = 1

Comparison:
▶ PN closure: stable, but not accurate in optically thin regime
▶ Non-hyperbolic ML closure: accurate for short time, but blow up for long time
▶ Hyperbolic ML closure: stable and accurate for long time
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Higher order moments (ML, PN and filtered PN closure)

▶ Two-material problem: N = 9 at t = 0.5.

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.02

−0.01

0.00

0.01

0.02

m
7

exact
hyperbolic closure
FPN
PN

Figure: m7 at t = 0.5
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Figure: m9 at t = 0.5
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Hyperbolic ML closure in different regimes

▶ Relative L2 error vs. scattering coefficient σs

▶ hyperbolic ML closure is stable and more accurate than PN closure
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Figure: error of m0 at t = 0.5
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Figure: error of m0 at t = 1
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Computational cost with traditional closure

ML (N = 6) P6 P9 P15 P18
relative L2 error 4.69e-4 9.66e-3 3.78e-3 6.87e-4 4.54e-4

computational time (sec) 1.94e-2 1.61e-2 2.13e-2 3.43e-2 6.40e-2

Table: two-material problem. Comparison between the computational time per time step and the
relative L2 error of m0 for the hyperbolic ML closure with N = 6 and the PN closure with
N = 6, 9, 12, 15, 18 at t = 0.5.
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▶ Our contributions
▶ learning gradient moment closure
▶ approach 1: symmetrizer-based hyperbolic closure, diffusion limit
▶ approach 2: eigenvalue-based hyperbolic closure, physical characteristic

speeds

▶ Future work
▶ Generalization to multi-dimension
▶ Generalization to other models: Boltzmann equations, Vlasov

Maxwell/Poisson equations
▶ Preserve other properties (realizability, rotational symmetry)
▶ Boundary conditions
▶ Applications in astrophysics and plasma simulations...
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The END!
Thank You!
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