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Derivation of MFG models - deterministic problems

Optimal control and Hamilton-Jacobi equations

I We fix T > 0 and consider an agent with state x(t) ∈ Rd for
0 ≤ t ≤ T .

I Agents change their state by choosing a control in
v ∈ W = L∞([t,T ],Rd).

I The state of an agent evolves according to

ẋ(t) = v(t).
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I We fix a Lagrangian L̃ : Rd × Rd × [0,T ]→ R, with
v 7→ L(x , v , t) uniformly convex.

I Agents preferences are encoded by the functional,

J(v; x , t) =

∫ T

t
L̃(x(s), v(s), s)ds + uT (x(T )),

where ẋ = v with x(t) = x .

I Each agent seeks to minimize J in W. The value function is

u(x , t) = inf
v∈W

J(v; x , t).
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The Hamiltonian, H̃, is Legendre transform of L̃

H̃(x , p, t) = sup
v∈Rd

[
−p · v − L̃(x , v , t)

]
.

By uniform convexity, the maximum is achieved at a unique point

v∗ = −DpH̃(x , p, t).
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Theorem (Verification Theorem)

I Let ũ ∈ C 1(Rd × [t0,T ]) solve the Hamilton–Jacobi equation
with the terminal condition uT (x).

I Let
v∗(t) = −DpH̃(x∗(t),Dx ũ(x∗(t), t), t)

and x∗(t) be the corresponding trajectory.

Then,

I v∗(t) is an optimal control

I ũ(x , t) is the value function, u.
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Transport equation

Let b : Rd × [0,T ]→ Rd be a Lipschitz vector field. The ODE{
ẋ(t) = b(x(t), t) t > 0,

x(0) = x

induces a flow, Φt , in Rd that maps the initial condition, x ∈ Rd ,
at t = 0 to the solution at time t > 0.
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Fix m0 ∈ P(Rd). For 0 ≤ t ≤ T , let m(·, t) = Φt]m0 be the
probability defined by∫

Rd

φ(x)m(x , t)dx =

∫
Rd

φ
(
Φt(x)

)
m0dx .

Then{
mt(x , t) + div(b(x , t)m(x , t)) = 0, (x , t) ∈ Rd × [0,T ],

m(x , 0) = m0(x), x ∈ Rd ,
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Mean-field models I

I The mean-field game framework studies systems with an
infinite number of competing rational agents.

I Each agent seeks to optimize an individual control problem
that depends on statistical information about the whole
population.

I The only information available to the agents is the probability
distribution of the agents’ states.
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I For each time t, m(x , t) is a probability density in Rd that
gives the distribution of the agents

I We set

L̃(x , v , t) = L(x , v ,m(·, t)).

and denote the Legendre transform of L by H.

I Each agent seeks to minimize a control problem whose value
function solves

−ut + H(x ,Dxu,m) = 0.

According to the Verification Theorem, if u is a solution,
b = −DpH(x ,Dxu(x , t),m), determines the optimal strategy.
Because all agents are rational, they use this strategy.
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Hence, u and m are determined by{
−ut + H(x ,Dxu,m) = 0

mt − div(DpHm) = 0.

We supplement this system with terminal value function
u(x ,T ) = uT and the initial distribution m(x , 0) = m0.
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Variations

I Second-order (noise)

I Stationary (with or without discount)

I Boundary conditions....
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Monotone operators

Let W be a Hilbert space. A map F : D(F ) ⊂W →W is
monotone if

(F (x)− F (y), x − y)W ≥ 0

for all x , y ∈ D(F ).
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Stationary MFGs

If H(x , p) is convex in p and g is increasing, the operator

F

[
m
u

]
=

[
−u − H(x ,Du) + g(m)
m − div(DpHm)− 1

]
monotone in its domain D ⊂ L2 × L2 (here, we take periodic
boundary conditions in space, for example).
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Time-dependent MFGs

If H(x , p) is convex in p and g is increasing, the operator

F

[
m
u

]
=

[
ut − H(x ,Du) + g(m)
mt − div(DpHm)− 1

]
monotone in its domain D ⊂ L2 × L2.
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Applications

This point of view has yieded several results

I Uniqueness (Lasry and Lions)

I Numerical methods (AlMulla, Ferreira, and G. )

I Weak Solutions (Ferreira, G., and Tada)

I Uniqueness of weak solutions (Ferreira, G., and Voskanyan)
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Uniqueness

Given two distinct solutions F (m, u) = 0 and F (m̃, ũ) = 0, we have

0 =

(
F

[
m
u

]
− F

[
m̃
ũ

]
,

[
m
u

]
−
[
m̃
ũ

])
≥ 0.

With strong monotonicity (> 0), we would get uniqueness. Often,
it is possible to work around this difficulty.
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Variational inequalities

Let F : D(F ) ⊂W →W is monotone. Then, for w ∈W ,
1 =⇒ 2 =⇒ 3, where

1) F (w) = 0

2) w solves the variational inequality

(F (w), z − w) ≥ 0, ∀z ∈W .

3) w is a weak solution of the variational inequality; that is

(F (z), z − w) ≥ 0

for all z ∈ D(F ).

Moreover, 3 =⇒ 2 =⇒ 1 under continuity assumptions and
D(F ) large enough.



Derivation of MFG models - deterministic problems

Weak solutions

A weak solution of the MFG is a pair (m, u), m ≥ 0, such that〈[
η
v

]
−
[
m
u

]
,F

[
η
v

]〉
D′(Td )×D′(Td ),C∞(Td )×C∞(Td )

≥ 0

for all (η, v) ∈ C∞(Td ;R+)× C∞(Td).
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MFGs and variational inequalities

Consider the MFG corresponding to

F

[
m
u

]
=

[
−u − H(x ,Du) + g(m)
m − div(DpHm)− 1

]
.

where H is periodic in x and convex in the second variable, and g
is increasing.
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Existence of weak solutions

Main Theorem (Ferreira, G.)

Under suitable but general Assumptions, there exists a weak
solution, (m, u) ∈ D′(Td)×D′(Td), m ≥ 0, to the MFG

F

[
m
u

]
=

[
0
0

]
.

Moreover, (m, u) ∈Mac×W 1,γ for some γ > 1 and
∫
Td mdx =

1.

Scope

First-order, second-order, degenerate elliptic, and congestion
problems satisfying monotonicity conditions.
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Example

Theorem (Ferreira, G.)

Let κ be a standard mollifier, α > 0. Then, there exists a weak
solution u ∈ H1, m ∈ Lα+1, m ≥ 0 to{

u + |Du|2
2 + V (x) = mα + κ ∗m

m − div(mDu) = 1.

That is, for all (η, v) ∈ C∞, η > 0, we have∫
(v +

|Dv |2

2
+ V (x)− ηα − κ ∗m)(η −m)

+

∫
(η − div(ηDv)− 1)(v − u) ≥ 0.
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Example - further properties

Theorem (Ferreira, G.)

There exists a weak solution (u,m) such that−u −
|Du|2

2
+ V (x) + mα + κ ∗m ≥ 0, in D′

m − div(mDu)− 1 = 0, a.e..

Moreover, if α > max
(
d−4

2 , 0
)

(
− u − |Du|

2

2
+ V (x) + mα + κ ∗m

)
m = 0

almost everywhere.
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Weak-strong uniqueness

Weak-strong uniqueness

Let (u,m) and (ũ, m̃) be, resp. a strong (smooth) and a weak
solution (u ∈ H1 and m ∈ L2) of{

u + |Du|2
2 + V (x) = g(m)

m − div(mDu) = 1,

with periodic boundary conditions. Suppose m > 0. Then
(u,m) = (ũ, m̃).
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Difficulties

But in some aspects this approach is not totally satisfactory.

I For the existence of weak solutions, we had prove the
existence of weak solutions with more regularity so that traces
can be defined.

I For numerical methods, boundary conditions and positivity
constraints were handled in an ad hoc fashion.
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Boundary conditions

For example, for[
ut − H(Du, x) + g(m)
mt − div(DpH(Du, x)m)

]
=

[
0
0

]
the standard initial-terminal conditions on u(x ,T ) and m(x , 0) are
not well defined (in L2) since there is no trace.
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Goals

I Develop a functional framework for monotone operators in the
context of MFGs

I Construct ”gradient-flow” like PDEs for the approximation of
solutions of MFGs
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Derivatives and gradients

Given a Hilbert space W with inner product (·, ·)W and a
differentiable function G : W → R, we have two objects of interest:

DG : W →W ′

and
∇G : W →W .
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Riesz operator and gradient flows

The Riesz operator R : W ′ →W is the map that transforms DG
into ∇G

∇G = RDG .

Example: W = Rd , the Riesz operator is the transposition
operator.
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Thanks to this correspondence, we can define the gradient flow

ẋ = −∇f (x).

There is no such thing as a ”derivative” flow!
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Example

Let f ∈ L2(Td) and consider the functional in H1
0 (Td)

u 7→
∫
Td

fu.

Then, the Riesz operator is Rf = (−∆)−1f because

((−∆)−1f , u)H1
0

=

∫
Td

∇u · ∇(−∆)−1f =

∫
Td

fu = (Rf , u)H1
0
.
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Consider the functional

u 7→ 1

2

∫
|∇u|2.

The corresponding L2 gradient flow is

ut = ∆u,

whereas the H1
0 gradient flow is

ut = −u.

While both equations are well posed, the existence of solutions for
the heat equation requires a substantially complex analysis that the
one for the last equation.
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Let u∗ solve ∆u∗ = 0. Then, for the L2 gradient flow:

d

dt

1

2
‖u − u∗‖2

L2 =

∫
(u − u∗)∆u = −

∫
|∇u|2

and for the H1
0 :

d

dt

1

2
‖u − u∗‖2

H1
0

= −
∫
∇(u − u∗) · ∇u = −

∫
|∇u|2.
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Monotone operator and contracting flows

Given a monotone operator the monotone flow

ẋ = −F (x)

is contracting in W because for any two solutions x and y

d

dt

1

2
‖x− y‖2 = −(F (x)− F (y), x− y) ≤ 0.
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Monotone flows for MFGs

For stationary MFGs, this suggests using the flow[
ms

us

]
= −

[
−H(Du, x) + g(m)
− div(DpH(Du, x)m)

]
(with H convex and g monotone increasing)
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Monotone flows and positivity preservation

Mean-field games are only monotone operators if m > 0, so it is
natural to ask whether monotone flows preserve positivity. This is
unfortunately false...
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Lack of positivity preservation

Set H(x , p) = p2

2 + sin (2πx). Then, the monotone flow is[
ṁ
u̇

]
=

[
u2
x

2 + sin (2πx)
(mux)x

]
.

Let (m0, 0) to be the initial point and
∫ 1

0 m0dx = 1. It is easy to
check that (m,u) = (m0 + sin (2πx) t, 0). However, m(t)
becomes negative in some regions as t → +∞.
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Boundary conditions in numerical methods

For time-dependent problems the flow for u(x , t, s) and m(x , t, s)[
ms

us

]
= −

[
ut − H(Du, x) + g(m)
mt − div(DpH(Du, x)m)

]
does not preserve initial-terminal boundary conditions.
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MFGs with common noise

For price models with common noise, we have to study−du + H(x , $ + Du) = ZdWt

mt − div(mDpH(x , $ + Du))∫
mDpH(x , $ + Du)

 =

 0
0

−Q(t)


with initial-terminal conditions on u(x ,T ) and m(x , 0).
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Formal monotonicity

The map m(x , t)
u(x , t)
$(t)

→
du − H(x , $ + Du)dt − ZdWt

mt − div(mDpH(x , $ + Du))∫
mDpH(x , $ + Du)


is formally monotone in
L2(R× [0,T ]× Ω)× L2(R× [0,T ]× Ω)× L2([0,T ]× Ω) but
really no obvious interpretation of its range...
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Monotone operators in dual spaces

A map F : D(F ) ⊂W →W ′ is monotone if

〈F (x)− F (y), x − y〉W ′×W ≥ 0

for all x , y ∈ D(F ).
By the Riesz representation theorem, RF : D(F ) ⊂W →W is a
monotone operator because

(RF (x)− RF (y), x − y)W = 〈F (x)− F (y), x − y〉W ′×W ≥ 0.
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Monotone flows

Using the Riesz operator, we can define a monotone flow

ẋ = −RF (x)

which is a contraction in W .
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Example

If we regard the stationary MFG as an operator from
L2 × H1

0 → (L2)′ × (H1
0 )′, we obtain the flow[

mt

ut

]
= −

[
−H(Du, x) + g(m)

−(−∆)−1 div(DpH(Du, x)m)

]
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Examples

Consider the quartic mean-field game with congestion{
u4
x

2m1/2 + cos2(2πx)ux + sin(2πx)− lnm = H

−(2u3
xm

1/2)x − (cos2(2πx)m)x = 0.

and the associated monotone flow{
ut = u4

x

2m1/2 + cos2(2πx)ux + sin(2πx)− lnm − H

mt = (2u3
xm

1/2)x − (cos2(2πx)m)x = 0.



Derivation of MFG models - deterministic problems

Fig.: Quartic congestion model: u and m
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Hessian Riemannian flow

A modification that preserves positivity is[
ṁ
u̇

]
= −

[
m
(
−H(x ,P + Dxu) + H(P) + g(m)

)
− div(DpH(x ,P + Dxu)m)

]
,

where

H(P) =

∫
Td (mH(x ,P + Dxu)−mg(m)) dx∫

Td m
.
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Time dependent problems

Together with J. Saude, we developed a discretization for the
initial-terminal value problem solving a discrete version of[

ms

us

]
= −

[
(I − ∂tt)−1 (ut − H(Du, x) + g(m))

(I − ∂tt)−1 (mt − div(DpH(Du, x)m))

]
,

the inverse of I − ∂tt in the first component is taken with zero
initial conditions and in the second with zero terminal conditions.
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This approach for time dependent problems takes care of the
boundary conditions but not of the positivity of m, therefore we
introduced the ad hoc modifications such as[

ms

us

]
= −

[
m(I − ∂tt)−1 (ut − H(Du, x) + g(m))
(I − ∂tt)−1 (mt − div(DpH(Du, x)m))

]
,

but then contraction becomes an issue....
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Goals

I Develop a systematic way to construct monotone flows

I Establish the wellposednes of these problems

I Discretizations and numerical methods
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Derivatives

Let h : W → R be convex. The directional derivative of h is

dh(x ; y) =
d

dε
h (x + εy)

∣∣∣∣
ε=0

, x , y ∈W .

If h is differentiable,

dh(x ; y) = 〈dh(x), y〉 , y ∈W ,

where dh(x) denotes the derivative of h(x).
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Hessians

The second variation is defined by

d2h(x ; y , z) =
d

dε
〈dh(x + εy), z〉

∣∣∣∣
ε=0

, x , y , z ∈W .

If dh is differentiable, we set

d2h(x ; y , z) = 〈H(x)y , z〉 , y , z ∈W ,

where H(x) : W →W ′ is linear and positive definite in the sense
that

〈H(x)y , y〉W ′×W > 0, y ∈W , y 6= 0.
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Hessian-induced Riesz operator

I If H : W →W ′ is invertible, the map H−1 : W ′ →W is a
generalization of the Riesz operator.

I In fact, if

h(x) =
1

2
‖x‖2,

H−1 = R.
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Alvarez method for constrained optimization

I Consider
min{G (x) | x ∈ E , Ax = b},

where E is the closure of an open, nonempty, convex set
E ⊂ Rn.

I Alvarez et al introduced a Riemannian metric derived from the
Hessian matrix, ∇2h, of a convex function h, on E .

I Then, they used the steepest descent flow to generate
trajectories in the relative interior of the feasible set,
F := E ∩ {x | Ax = b}.

I By choosing h conveniently, the steepest descent flow is well
posed, never leaves the admissible set, and leads to a local
minimum.
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The authors sought a trajectory x(t) solving{
ẋ +∇HG (x) = 0,

x(0) = x0 ∈ F ,

where ∇HG (x) is the projection w.r.t. of the gradient of G into
the admissible directions.
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HRF

More concretely, the HRF is

ẋ = −H−1(x)
(
I − A×

(
AH−1(x)A×

)−1
AH−1(x)

)
DG (x).
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Bregman divergence

In particular,
d

dt
Aẋ = 0

and the Bregman divergence of h

d(x , x∗) = h(x∗)− h(x)− 〈dh(x), x∗ − x〉

is a Liapunov function for any minimizer x∗; that is,

d

dt
(h(x∗)− h(x)− (∇h(x), x∗ − x)) ≤ 0.
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Monotone HRF

Let F be a monotone operator. We define

FH(x) =

(
I −H(x)−1A×

(
AH(x)−1A×

)−1
A

)
H(x)−1F (x),
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Bregman dissipation

If x∗ solve F (x∗) = 0 then

d

dt
(h(x∗)− h(x)− (∇h(x), x∗ − x)) ≤ 0,

and
d

dt
Ax = 0.
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Example - the convex function

Let θ : dom(θ) ⊂ [0,+∞)→ R and set

h(m, u) =

∫
Td

θ(m(x))dx + 1
2‖m‖

2
W k,2(Td ) + 1

2‖u‖
2
W k,2

0 (Td )
.
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Example - Hessian

Then〈
H
[
η
v

]
,

[
η
v

]〉
=

∫
Td

θ′′(m(x))η2dx + 1
2‖η‖

2
Hk (Td ) + 1

2‖v‖
2
H j

0(Td )
.
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Example - stationary MFG

{
H(Du(x)) + V (x) = g(m) + H,

− div (m(x)DH(Du(x))) = 0.
x ∈ Td

with m ≥ 0 and ∫
Td

m = 1
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Example - the regularized stationary MFG

For example θ(m) = m lnm, (m, u) ∈ L2 × H1
0 , we have the

operator m
m+1

(
−H(x ,Du) + g(m)−

∫
Td

m
m+1 (−H(x ,Du)+g(m))dx∫

Td
m

m+1dx

)
∆−1 div(mDpH(x ,Du))

 .
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Bregman dissipation

For any stationary solution (m∗, u∗), we have

d

dt

∫
Td

(
m∗ log

(
m∗

m

)
−m∗ + m

)
dx+

1

2
‖m−m∗‖2

L2(Td )+
1

2
‖u−u∗‖2

H1
0 (Td ) ≤ 0.
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In general,

d

dt

∫
Td

θ(m∗)−θ(m)−θ′(m)(m∗−m)dx+‖m−m∗‖2
Hk (Td )+‖u−u

∗‖2
H j

0(Td )
≤ 0.

So, ∫
Td

θ(m∗)− θ(m)− θ′(m)(m∗ −m)

is bounded.
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Positivity preservation

If θ(m) = 1
mp we have∫

Td

1

(m∗)p
− 1

mp
+

p

mp+1
(m∗ −m) =

∫
Td

1

(m∗)p
+

1− p

mp
+

pm∗

mp+1

is bounded. For suitable p, if m∗ is strictly positive this gives
pointwise bounds on m (for k large enough).
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Summary

I We developed a general approach to construct regularized
monotone flows for MFGs

I With suitable choices of spaces, these flows are well posed and
preserve positivity of the density

I The effective numerical implementation of these methods is a
topic of ongoing research.


	Introduction
	Derivation of MFG models - deterministic problems

