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Derivation of MFG models - deterministic problems

Optimal control and Hamilton-Jacobi equations

» We fix T > 0 and consider an agent with state x(t) € R for
0<t<T.

P> Agents change their state by choosing a control in
veW = L>([t, T],R9).
P> The state of an agent evolves according to
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Derivation of MFG models - deterministic problems

> We fix a Lagrangian [ : RY x R? x [0, T] — R, with
v — L(x, v, t) uniformly convex.

P> Agents preferences are encoded by the functional,

T ~
J(vix, £) = /t [(x(s),v(s), s)ds + ur(x(T)),

where x = v with x(t) = x.

» Each agent seeks to minimize J in WW. The value function is

u(x, t) = vien)fv J(v; x, t).



Derivation of MFG models - deterministic problems

The Hamiltonian, A, is Legendre transform of L

I:I(x,p, t) = sup [—p- v — Z(x, v, t)] .
veRd

By uniform convexity, the maximum is achieved at a unique point

v = —DyH(x, p, t).
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Derivation of MFG models - deterministic problems

Theorem (Verification Theorem)
> Let ii € CY(R? x [to, T]) solve the Hamilton—Jacobi equation
with the terminal condition ut(x).
> Let B
v (t) = —DpH(x*(t), Dyii(x*(t), t), t)
and x*(t) be the corresponding trajectory.
Then,
» v*(t) is an optimal control

» i(x,t) is the value function, u.
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Transport equation

Let b: R x [0, T] — R? be a Lipschitz vector field. The ODE

{(r>—b< x(t),t) t>0,

induces a flow, ®f, in R? that maps the initial condition, x € RY,
at t = 0 to the solution at time t > 0.
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Derivation of MFG models - deterministic problems

Fix mg € P(RY). For 0 <t < T, let m(-, t) = d*fmg be the
probability defined by

y d(x)m(x, t)dx = /R K (®*(x)) modx.
Then

{mt(x, t) + div(b(x, t)m(x,t)) = 0,  (x,t) e RY x [0, T],
m(x,0) = mp(x), x € RY,
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Mean-field models |

» The mean-field game framework studies systems with an
infinite number of competing rational agents.

» Each agent seeks to optimize an individual control problem
that depends on statistical information about the whole
population.

» The only information available to the agents is the probability
distribution of the agents’ states.

X



Derivation of MFG models - deterministic problems

» For each time t, m(x, t) is a probability density in R? that
gives the distribution of the agents

> We set
L(x,v,t) = L(x,v,m(-,t)).
and denote the Legendre transform of L by H.

» Each agent seeks to minimize a control problem whose value
function solves

—u + H(x, Dxu, m) = 0.

According to the Verification Theorem, if u is a solution,
b = —DpH(x, Diu(x,t), m), determines the optimal strategy.
Because all agents are rational, they use this strategy.

(((«11_—_
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Derivation of MFG models - deterministic problems

Hence, u and m are determined by

—ur + H(x, Dyu,m) =0
m; — div(Dp,Hm) = 0.

We supplement this system with terminal value function
u(x, T) = ut and the initial distribution m(x,0) = mo.
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Variations

» Second-order (noise)
» Stationary (with or without discount)
» Boundary conditions....

U J
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Monotone operators

Let W be a Hilbert space. Amap F:D(F)Cc W — W'is
monotone if

(F(x) = F(y):x =y)w =20
for all x,y € D(F).

U J
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Stationary MFGs

If H(x, p) is convex in p and g is increasing, the operator

Flo) = o =

monotone in its domain D C L2 x L2 (here, we take periodic
boundary conditions in space, for example).
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Time-dependent MFGs

If H(x, p) is convex in p and g is increasing, the operator

FLl = Lo oty

monotone in its domain D C L2 x 2.

%')))},
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Applications

This point of view has yieded several results
» Uniqueness (Lasry and Lions)
» Numerical methods (AlMulla, Ferreira, and G. )
» Weak Solutions (Ferreira, G., and Tada)

» Uniqueness of weak solutions (Ferreira, G., and Voskanyan)
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Derivation of MFG models - deterministic problems

Uniqueness

Given two distinct solutions F(m, u) = 0 and F(m, i) = 0, we have

(Pl o[ (8o

With strong monotonicity (> 0), we would get uniqueness. Often,
it is possible to work around this difficulty.
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Variational inequalities

Let F: D(F) € W — W is monotone. Then, for w € W,
1 = 2 = 3, where

1) F(w)=0
2) w solves the variational inequality

(F(w),z—w) >0, Vze W.
3) w is a weak solution of the variational inequality; that is
(F(2),z=w) =0

for all z € D(F).

Moreover, 3 = 2 = 1 under continuity assumptions and
D(F) large enough.

X
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Weak solutions

A weak solution of the MFG is a pair (m, u), m > 0, such that

SR MEIH) >0
v u Y1/ pr(1dyx D! (T9),Co0 (Td) x Coo(Td)

for all (n,v) € C®°(T%; R*) x C>(T¢).

)
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MFGs and variational inequalities

Consider the MFG corresponding to

] [

where H is periodic in x and convex in the second variable, and g
is increasing.

%')))},
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Existence of weak solutions

Main Theorem (Ferreira, G.)

Under suitable but general Assumptions, there exists a weak
solution, (m, u) € D'(T?) x D'(T9), m > 0, to the MFG

m 0
(2] =Bl
Moreover, (m, u) € Mcx W7 for somey > Land [y mdx =
1.

Scope

First-order, second-order, degenerate elliptic, and congestion
problems satisfying monotonicity conditions.
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Example

Theorem (Ferreira, G.)

Let k be a standard mollifier, & > 0. Then, there exists a weak
solution u € HY, me L*T1, m >0 to

u-l—@—i—V(x):mo‘-i—m*m
m — div(mDu) = 1.

That is, for all (n,v) € C*°, n > 0, we have

V2
Jo+BE e ve - = nemn - m)

- /(n —div(nDv) = 1)(v — u) > 0.
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Example - further properties

Theorem (Ferreira, G.)

There exists a weak solution (u, m) such that

Dul?
—u—%+V(x)—|—ma+m*m20, in D

m — div(mDu) — 1 =0, a.e..

Moreover, if o > max (#,O)

D 2
(—u—l 2u| +V(x)—|—ma+/<a*m>m:O

almost everywhere. =
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Weak-strong uniqueness

Weak-strong uniqueness

Let (u, m) and (&, M) be, resp. a strong (smooth) and a weak
solution (u € H' and m € L?) of

u+ 155 4 V(x) = g(m)
m — div(mDu) =1,

with periodic boundary conditions. Suppose m > 0. Then
(u, m) = (a, m).

((((0\*‘_—_
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Difficulties

But in some aspects this approach is not totally satisfactory.
> For the existence of weak solutions, we had prove the
existence of weak solutions with more regularity so that traces
can be defined.

» For numerical methods, boundary conditions and positivity
constraints were handled in an ad hoc fashion.

X
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Boundary conditions

For example, for

e (Do) = 10

the standard initial-terminal conditions on u(x, T) and m(x,0) are
not well defined (in L?) since there is no trace.

((((0\*‘_—_
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Derivation of MFG models - deterministic problems

Goals

» Develop a functional framework for monotone operators in the
context of MFGs

» Construct "gradient-flow" like PDEs for the approximation of
solutions of MFGs

) J
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Derivatives and gradients

Given a Hilbert space W with inner product (-,-)w and a
differentiable function G : W — R, we have two objects of interest:

DG: W — W

and
VG : W — W.
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Riesz operator and gradient flows

The Riesz operator R : W/ — W is the map that transforms DG
into VG

VG = RDG.

Example: W = R the Riesz operator is the transposition
operator.

) J
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Thanks to this correspondence, we can define the gradient flow
x = —Vf£(x).

There is no such thing as a "derivative” flow!
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Example

Let f € L2(T9) and consider the functional in H}(T¢)
u— fu.
Td

Then, the Riesz operator is Rf = (—A)~'f because

(=2) M u)y = /Td Vu-V(-A)" f = /Td fu = (Rf, u)p.

)
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Consider the functional

1
u §/|Vu|2.

The corresponding L? gradient flow is
ur = Au,
whereas the H} gradient flow is
ur = —u.

While both equations are well posed, the existence of solutions for
the heat equation requires a substantially complex analysis that the
one for the last equation.

X
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Let u* solve Au* = 0. Then, for the L? gradient flow:

dl1 .
Sl ul= [w=u)au=— [ vaf

and for the HE:

%')))},
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Monotone operator and contracting flows

Given a monotone operator the monotone flow

x = —F(x)

is contracting in W because for any two solutions x and y
dl1

dgialx ylI> = —(F(x) = F(y),x—y) <0.

) J
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Monotone flows for MFGs

For stationary MFGs, this suggests using the flow

i B P

(with H convex and g monotone increasing)

%')))},
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Monotone flows and positivity preservation

Mean-field games are only monotone operators if m > 0, so it is
natural to ask whether monotone flows preserve positivity. This is
unfortunately false...

) J
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Lack of positivity preservation

Set H(x,p) = %2 + sin (2mx). Then, the monotone flow is

’h J—
0l =
Let (mg,0) to be the initial point and fol modx = 1. It is easy to

check that (m, u) = (mg + sin (27wx) t,0). However, m(t)
becomes negative in some regions as t — +00.

73 + sin (27rx)] .
(mu,)
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Boundary conditions in numerical methods

For time-dependent problems the flow for u(x, t,s) and m(x, t,s)

7] == [ i o)

does not preserve initial-terminal boundary conditions.
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MFGs with common noise

For price models with common noise, we have to study

—du+ H(x,w + Du) = ZdW,; 0
m; — div(mDpH(x,w + Du)) | = 0
J mDpH(x, @ + Du) —Q(t)

with initial-terminal conditions on u(x, T) and m(x,0).
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Formal monotonicity

The map
m(x, t) du — H(x,w + Du)dt — ZdW,
u(x,t) | = | my —div(mDyH(x,w + Du))
w(t) | mDpH(x,w + Du)

is formally monotone in
L2(R x [0, T] x Q) x L2(R x [0, T] x Q) x L3([0, T] x Q) but
really no obvious interpretation of its range...
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Monotone operators in dual spaces

A map F:D(F) c W — W' is monotone if

(F(x) = F(y),x =y)wxw >0

for all x,y € D(F).
By the Riesz representation theorem, RF : D(F) C W — W is a
monotone operator because

(RF(x) = RF(y),x — y)w = (F(x) = F(y),x = y)wixw > 0.

((((0\*‘_—_
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Monotone flows

Using the Riesz operator, we can define a monotone flow
x = —RF(x)

which is a contraction in W.

U J
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Example

If we regard the stationary MFG as an operator from
L2 x H} — (L2) x (HZ)', we obtain the flow

) o I v A

%')))},
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Examples

Consider the quartic mean-field game with congestion

2{:—%/2 + cos?(2mx)uy + sin(27x) —Inm = H
—(2uim'/?), — (cos?(2mx)m)x = 0.

and the associated monotone flow

Uy = —2,;'%/2 + cos?(2mx) uy + sin(27x) — Inm — H
me = (2uim'/?), — (cos?(2mx)m)x = 0.

) J
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Fig.: Quartic congestion model: u and m
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Hessian Riemannian flow

A modification that preserves positivity is

[m} _ [m (—H(x, P+ Dcu) + H(P) + g(m))
u —div(DpH(x, P+ Du)m) ’

where

_ Jyo (mH(x, P+ Deur) — mg(m)) dx

H(P) om
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Time dependent problems

Together with J. Saude, we developed a discretization for the
initial-terminal value problem solving a discrete version of

[ms] _ [ (I — 0¢) " (ur — H(Du, x) + g(m))
Us (I —0w)~ Y (my — div(DpH(Du, x)m)) |’

the inverse of | — Oy in the first component is taken with zero
initial conditions and in the second with zero terminal conditions.

%
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This approach for time dependent problems takes care of the
boundary conditions but not of the positivity of m, therefore we
introduced the ad hoc modifications such as

[ms] _ [m(/ — 0t) Y (ur — H(Du, x) + g(m))
Us (I = 0w)~t (my — div(DpH(Du, x)m)) |’

but then contraction becomes an issue....
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Goals

» Develop a systematic way to construct monotone flows
» Establish the wellposednes of these problems

» Discretizations and numerical methods
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Derivatives

Let h: W — R be convex. The directional derivative of h is

d
dh(x;y) = ah(x +ey)l ., x,yeW.
e=0

If his differentiable,
dh(x;y) = (dh(x),y), yeW,

where dh(x) denotes the derivative of h(x).

((((0\*‘_—_
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Hessians

The second variation is defined by

5 d

d°h(x;y,z) = e (dh(x + ey), z) , X, y,ze W.
€ e=0

If dh is differentiable, we set
d*h(x;y,z) = (H(x)y,z), y,z€W,

where H(x) : W — W' is linear and positive definite in the sense
that

HE)Y, Y)wrew >0, ye W, y#0.
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Hessian-induced Riesz operator

> If H: W — W' is invertible, the map L1 : W — Wis a

generalization of the Riesz operator.
» In fact, if
1

(x) = 5lxI?

H1=R.
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Alvarez method for constrained optimization

» Consider B
min{G(x) | x € E, Ax = b},

where E is the closure of an open, nonempty, convex set
E C R".

» Alvarez et al introduced a Riemannian metric derived from the
Hessian matrix, V2h, of a convex function h, on E.

» Then, they used the steepest descent flow to generate
trajectories in the relative interior of the feasible set,
F :=En{x| Ax = b}.

» By choosing h conveniently, the steepest descent flow is well

posed, never leaves the admissible set, and leads to a local
minimum.

(((«11_—_
e



Derivation of MFG models - deterministic problems

The authors sought a trajectory x(t) solving

x(0) = x% € F,

where V4 G(x) is the projection w.r.t. of the gradient of G into
the admissible directions.
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More concretely, the HRF is

x = —HY( )(/ e (AH—l(x)AX)*lAH—l(x)) DG(x).
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Bregman divergence

In particular,
d
2 Ax =
. x=0
and the Bregman divergence of h
d(x,x*) = h(x*) — h(x) — (dh(x), x* — x)

is a Liapunov function for any minimizer x*; that is,

% (h(x") = h(x) = (Vh(x),x" = x)) <0

)
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Monotone HRF

Let F be a monotone operator. We define

Fi(x) = (/ — H(x)tAX (AH(X)_IAX)_I A)H(x)_lF(x),

U J
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Bregman dissipation

If x* solve F(x*) =0 then
d

—(h
dt
and

(h(x*) = h(x) = (Vh(x),x" = x)) <0,

T Ax =0
ac’

<='/)
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Example - the convex function

Let 6 : dom(6) C [0, +00) — R and set

h(m, u) = / O(m(x))dx + %|lm||?/vk,2(']1‘d) + %HU”iVOM(Td)‘

~



Example - Hessian

?7 _ " 2 1 5 1 )
} ) H> = /Tde (m())n”dx + 3l eray + 211 po)-

: %”)))),




Example - stationary MFG

{H(Du(x)) +V(x) = g(m) + A,

—div (m(x)DH(Du(x)))
with m > 0 and

<='/)
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Example - the regularized stationary MFG

For example §(m) = mInm, (m,u) € L2 x H}, we have the
operator

Jrd 737 (—H(x,Du)+g(m))dx
_m_( _ — m
Ml ( H(X, DU) + g(m) de mLHdX

A~tdiv(mD,H(x, Du))

)
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Bregman dissipation

For any stationary solution (m*, u*), we have

d . m* . 1 . 1 .
dt ) (m log <7) -—m"+ m) dx+§||m—m ||%2(Td)+§||u—u ”ilé(?l‘d) <0.

U J
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In general,
d * * *
at Jo 0(m*)—0(m)—0"(m)(m" —m)dsx+ || m—m*|[ e o)+l u=0" [y sy < 0.
So,
[, om) = 6(m) ()~ m)
Td
is bounded.
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Positivity preservation

If 6(m) = -1 we have

1 1 p 1 1-p pm*

* —_
ra (m*)P C mp T mptl (m™ —m) = Ta (m*)P + mP + mp+1

is bounded. For suitable p, if m* is strictly positive this gives
pointwise bounds on m (for k large enough).
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Summary

> We developed a general approach to construct regularized
monotone flows for MFGs

» With suitable choices of spaces, these flows are well posed and
preserve positivity of the density

» The effective numerical implementation of these methods is a
topic of ongoing research.
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