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❖ High-order numerical methods – discontinuous Galerkin 

❖ Kinetic theory for continuum-rarefied gas flows

❖ Physics of multi-components gas flows

❖ Shock-induced hydrodynamic instability 

❖ Patter formations in biological process

❖ Heat and mass transfer

❖ Turbulent flows

❖ Maximum-Entropy moment methods for Vlasov system
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❖ Hydrodynamic instability research determines whether a flow is stable or unstable, and if so, how these 

instabilities develop the turbulent mixing.

❖ There are three primary hydrodynamic instabilities in fluid dynamics.

Introduction

Richtmyer-Meshkov instability (RMI) Kelvin-Helmholtz instability (KHI) Rayleigh-Taylor instability (RTI)

❖ RMI is a shock-induced hydrodynamic instability that occurs in combination with the KHI when an initially 

perturbed interface separating by distinct fluid properties is accelerated by an incident shock wave.

❖ RMI can be considered as the impulsive limit of RTI, where primary perturbations expand across the interface 

and ultimately emerge into a turbulent fluid mixing as the uniform gravitational acceleration increases.
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❖ In RMI, when an incident shock wave strikes on a bubble interface of density inhomogeneity, various

complex wave patterns occur, and subsequent turbulent mixing generates along the gas interface due to the

baroclinic mechanism i.e. misalignment between the density and pressure gradients.

∇𝜌 × ∇𝑝

❖ Supersonic combustion in scramjet engines

❖ Explosive detonation

❖ Supernova explosions 

❖ Inertial confinement fusion

❖ Medical shock wave Lithotripsy, and many more…….

Applications

Introduction
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❖ Shock-bubble interaction is a basic and fundamental configuration in the studies of shock-induced

hydrodynamic instability.

❖ For the development of shock-induced hydrodynamic instability on gas bubbles:

Motivation

✓ Mathematical Modeling for multi-component gas flows

✓ Numerical method for simulations of multi-component gas flows

✓ Validation of numerical solver

✓ Physics of flow field etc. 

❖ Few studies are available on the shock-induced gas bubbles having polygonal interfaces that provide

good conditions for shock refraction physical phenomena.

❖ The thermal non-equilibrium effects, including bulk viscosity of diatomic and polyatomic gases on the flow

morphology of shock-induced polygonal bubbles will be investigated.

❖ The effects of shock Mach number and aspect ratio on the shock-accelerated polygonal bubbles will be

investigated.



Mathematical formulation for shock-
induced hydrodynamics instability
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Model 1: 2D compressible Euler equations for two-component gas flows
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Shankar et al., Physics of Fluids, 23, 024102 (2011)

The shock-induced hydrodynamic instability are basically simulated by solving the compressible

multi-species flow model with a gas mixture.
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Model 2: 2D compressible Navier-Fourier equation for single gas flows

▪ Interestingly, it has been found in the previous research works of Picone and Boris (JFM,1988)

Samtaney and Zabusky (JFM, 1994), Quirk and Karni (JFM, 1996) that the different values of

specific heat capacities values for each gas do not affect the details of the vorticity generation

qualitatively, particularly the creation of large-scale structures.

▪ This model can be configured as an unsteady compressible laminar flow that assumes a single-

component perfect gas with a specific heat ratio.
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Model 2: 2D compressible Navier-Fourier equation for single gas flows

NSF equation is considered as de facto mathematical equation for all possible flow 

Compressible Navier-Stokes-Fourier (NSF) equations
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In non-monatomic gases, 

❖ Rotational and vibrational modes are closely related to thermal non-equilibrium.

❖ Rotational nonequilibrium effects are easily excited  at room temperature. 

❖ Vibrational non-equilibrium effects become relevant when the temperature is greater than 1000 K

In this study, 

❖ Considered room temperature (~ 300 K)

❖ Neglecting Vibrational non-equilibrium effects

❖ Rotational thermal non-equilibrium effects are accounted by introducing with excess normal stress

b = −  u

where      bulk visocsity

first coefficient of visocsity (shear viscosity)

dilatational term

b bf 



= = 

=

  =u

Model 2: 2D compressible Navier-Fourier equation for single gas flows
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In monatomic gases, 

0 equivalently, 0 =   =u

dilatational term, plays a significant role in compressible f . low u  
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Methane gas:

Carbon 
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1.33 ,
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b
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b
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Hypersonic entry into Mars and Venus atmosphere

2000
bulk

 
Inner structure of strong shock waves 

Model 2: 2D compressible Navier-Fourier equation for single gas flows
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For non-monatomic gases, compressible Navier-Fourier (NF) equations

: viscous stress,

: excess normal stress,

: heat flux.
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Model 2: 2D compressible Navier-Fourier equation for single gas flows



High-order numerical method
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Numerical Methods for Modern CFD

Finite Difference Method

Finite Volume Method

Finite Element Method

High-order Spectral methods Spectral Difference (SD)

Spectral Volume (SV)

Discontinuous Galerkin (DG)

Modal DG

Nodal DG

High order methods are needed for solving challenging problems,
(such as aeroacoustics, turbulent flow)
• Steady and unsteady
• Complex geometries
• Multi-physics phenomena
• Multi-scales problem in space and time

Which kind of numerical approach can be suitable for solving highly non-linear system ?

High-order Numerical Method for Modern CFD



Finite Difference Methods Finite Volume Methods

Advantages

➢ Easy to implement

➢ Easy to make high-order

Disadvantages

➢ Applicable only for structured 

meshes

Advantages

➢ Naturally conservative

(captures discontinuity in the

flow field)

➢ Applicable on any type of

meshes – structured,

unstructured

Disadvantages

➢ Difficult to devise stable

higher order scheme (need

ENO-WENO schemes etc.)

Finite Element Methods

Advantages

➢ Can be any order of accuracy

➢ Applicable on any type of

meshes – structured,

unstructured

Disadvantages

➢ Not naturally conservative

17

High-order Numerical Method for Modern CFD
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High-order Discontinuous Galerkin Method

Drawbacks
• High order methods are not necessary, for most of the engineering applications.

• Extra efforts are needed for solving viscous dominant flows and elliptic PDEs

• Extra efforts are needed for simulation of the complex geometries with curve boundaries

• Extra efforts for limiters in case of discontinuous problems 

• Too expensive

Advantages
• Strong mathematical supports

• hp–adaptivity (geometric and order-accuracy flexibility)

• Provide high-order accurate solution

• Easy to handle arbitrary grid (structured and unstructured)

• Highly parallel efficiency due to local nature

• Possible to solve any PDE system (Hyperbolics, Parabolic, Elliptic)

DG method = FV method  + FE method



Mixed DG Method

1D Viscous Burger’s equation  : 21
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Source : J.N. Reddy, An Introduction of the Finite Element Method, Tata McGraw-Hill, 2012

auxiliary variable

Mixed-type discontinuous Galerkin formulation
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Computational domain: decomposition and transformation

Computational domain is tessellated into a collection of non-overlapping elements 

Elemental transformation according to numerical integration rule



Mixed form of conservation laws :
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inv vis , 0
t


+ +  =



U
F (U) F (U U)Conservation laws with source term:

Mixed-type discontinuous Galerkin formulation
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FEM approach : Galerkin formulation

(high-order flexibility)

(Numerical fluxes)
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Mixed-type discontinuous Galerkin formulation
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Semi-discrete form of ordinary differential equation
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Explicit third-order TVD Runge-Kutta scheme
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Choosing an appropriate basis and test functions

Galerkin method: Test function = basis function

0

ˆˆ( , ) ( ) ( )
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u x t u t x
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( , ) (x, ) ( )
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k k
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Nodal Basis functions 

Basis functions 

Non-orthogonal Basis functions Orthogonal Basis functions 

Modal Basis functions 

Based on Legendre polynomial Based on Lagrangian  polynomial 

Basis (polynomial) functions
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❖ Computational domain decomposition with uniform rectangular meshes

❖ Hierarchical basis function based on Legendre polynomials

❖ Lax-Friedriches, Roe and HLLC schemes for inviscid flux term

❖ Alternating (Local DG) scheme for viscous and auxiliary flux terms

❖ Gauss-Legendre quadrature rule for surface and volume numerical integrations 

❖ 3rd-order TVD Runge-Kutta scheme for temporal integration

❖ A high-order moment limiter proposed by Krivodonova is used for controlling artificial oscillations

Summary of present numerical scheme



Numerical Results
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Order accuracy test of present DG scheme
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1D Discontinuous Galerkin Method: Riemann Problem

Singh and Torrilhon, Physics of Fluids, 35, 012117 (2023) 29

Initial condition
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▪ Final time = 0.25 sec.

▪ Discontinuity position, x=0.5

▪ 3rd-order DG scheme 

1D–Riemann problem: Sod shock tube 
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1D Discontinuous Galerkin Method: Riemann Problem
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▪ Argon gas

▪ 3rd-order DG scheme 
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2D shock-cylindrical bubble interaction  

Characteristic interface points

Singh et al., Physics of Fluids, 33, 066103 (2021)

Numerical schlieren images 

Shock Mach number =1.22
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2D shock-cylindrical bubble interaction  
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Singh, Physics of Fluids, 32, 126112 (2020)                                         Ding et al., J. Fluid Mech. 828, 289 (2017).

Shock Mach number =1.29

Bubble filled with helium gas
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Singh, Physics of Fluids, 32, 126112 (2020)                                   Luo et al., J. Fluid Mech. 773, 366–394 (2015)
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Flow morphology of shock-induced light square bubble
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Singh and Torrilhon, Physics of Fluids, 35, 012117 (2023)

✓ Shock Mach number =1.21

✓ Bubble filled with helium gas

✓ Rankine-Hugoniot condition for initialization

✓ Third-order DG method

✓ Mesh of 1200x600 grid points
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Flow morphology of shock-induced heavy square bubble
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Singh and Battiato, Computer & Fluids, 242, 105502 (2022)

✓ Shock Mach number =1.21

✓ Bubble filled with SF6 gas

✓ Rankine-Hugoniot condition for initialization

✓ Third-order DG method

✓ Mesh of 1200x600 grid points
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Flow parameters on shock-induced hydrodynamics instability
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✓ Atwood number 

✓ Bubble (interface) shape

✓ Incident shock Mach number

Atwood number is defined by

At 0 : convergent configuration

(light-heavy-configuration)

At < 0 : divergent configuration

(heavy-light-configuration)
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1D Discontinuous Galerkin Method: Riemann Problem
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Atwood number effects on shock-induced square bubble

Singh, Physics of Fluids, 32, 126112 (2020)



1D Discontinuous Galerkin Method: Riemann Problem
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Interface shape effects on shock-induced bubble

Singh, Physics of Fluids, 32, 126112 (2020)



1D Discontinuous Galerkin Method: Riemann Problem
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Shock Mach number effects on shock-induced heavy square bubble

Singh and Battiato, accepted in Physica D: Nonlinear Phenomena (2023)



1D Discontinuous Galerkin Method: Riemann Problem
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Thermal non-equilibrium effects of diatomic and polyatomic gases

Singh, International Journal of Heat and Mass Transfer 179 , 121708 (2021)

✓ Incident shock Mach number = 1.22

✓ Square helium gas bubble 

✓ Ambient gases – argon, nitrogen, methane
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Degree of thermal non-equilibrium 
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❑ In irreversible thermodynamics theory, the degree of thermal nonequilibrium based on Rayleigh–

Onsager theory is a vital component and is directly related to entropy production in nonequilibrium 

processes. 

❑ To demonstrate the degree of thermal nonequilibrium, the Rayleigh–Onsager dissipation function is 

defined as follows

❑ The degree of nonequilibrium is much higher for diatomic and polyatomic gases than for monatomic gases.



42

Effect of bulk viscosity ratio 

Spatially integrated values of degree of thermal non-equilibrium and dissipation rate
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Aspect ratio effects on shock-induced rectangular bubbles
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Aspect ratio effects on shock-induced rectangular bubbles

Singh and Torrilhon, Physics of Fluids, 35, 012117 (2023)

Horizontal-
aligned 

rectangular  
bubbles

Vertical-
aligned 

rectangular  
bubbles
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❖ The flow physics for shock-induced hydrodynamic instabilities on various gas bubbles with different 

shapes is investigated numerically.

❖ High fidelity simulations are performed with inhouse discontinuous Galerkin solver based on 

rectangular meshes

❖ Numerical results are validated with the existing experimental and computational results.

❖ Effects of various flow parameters – Shock Mach number, Atwood number, bubble shapes, thermal 

non-equilibrium – on the shock-induced bubbles are investigated.   

❖ This study will be extended for shock-gas-liquid interaction-based problems.

❖ Reactive shock-induced hydrodynamic instabilities will be investigated with the applications of 

combustion and flame.

Concluding remarks and future study
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