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Research Interests

High-order numerical methods — discontinuous Galerkin
Kinetic theory for continuum-rarefied gas flows

Physics of multi-components gas flows

Shock-induced hydrodynamic instability

Patter formations in biological process

Heat and mass transfer

Turbulent flows

Maximum-Entropy moment methods for Vlasov system



Introduction

*» Hydrodynamic instability research determines whether a flow is stable or unstable, and if so, how these
instabilities develop the turbulent mixing.

s There are three primary hydrodynamic instabilities in fluid dynamics.

Richtmyer-Meshkov instability (RMI) Kelvin-Helmholtz instability (KHI) Rayleigh-Taylor instability (RTI)

** RMl is a shock-induced hydrodynamic instability that occurs in combination with the KHI when an initially
perturbed interface separating by distinct fluid properties is accelerated by an incident shock wave.
* RMI can be considered as the impulsive limit of RTI, where primary perturbations expand across the interface

and ultimately emerge into a turbulent fluid mixing as the uniform gravitational acceleration increases. i



Introduction

* In RMI, when an incident shock wave strikes on a bubble interface of density inhomogeneity, various
complex wave patterns occur, and subsequent turbulent mixing generates along the gas interface due to the

baroclinic mechanism i.e. misalignment between the density and pressure gradients.
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Motivation

* Shock-bubble interaction is a basic and fundamental configuration in the studies of shock-induced
hydrodynamic instability.
¢ For the development of shock-induced hydrodynamic instability on gas bubbles:
v' Mathematical Modeling for multi-component gas flows

v" Numerical method for simulations of multi-component gas flows
v’ Validation of numerical solver

v Physics of flow field etc.

* Few studies are available on the shock-induced gas bubbles having polygonal interfaces that provide
good conditions for shock refraction physical phenomena.

¢ The thermal non-equilibrium effects, including bulk viscosity of diatomic and polyatomic gases on the flow
morphology of shock-induced polygonal bubbles will be investigated.

s The effects of shock Mach number and aspect ratio on the shock-accelerated polygonal bubbles will be

investigated. /



Mathematical formulation for shock-
induced hydrodynamics instability



Model 1: 2D compressible Euler equations for two-component gas flows

The shock-induced hydrodynamic instability are basically simulated by solving the compressible

multi-species flow model with a gas mixture.

A pu pV 0] o 1 mass density
S1PY 5 pu’ +p 3 puv 0 u,v: components of velocity vector
~| PV T | pW +—| pvi+p 0 p . pressure
ot OX oy
pE (pE + p)u (PE+p)v| |0 E : total energy
| P9 | . pgu | - pev | |0 ¢ : mass fraction
Total energy is calculated as
P 1 2 .2
pE = +—plU” +vV
Y mix -1 2 ( )
where y = Co +Cp 0 ) : mass fraction for first component
C, 4 +C, 0 ¢, =1— ¢, : mass fraction for second component

Shankar et al., Physics of Fluids, 23, 024102 (2011) ?



Model 2: 2D compressible Navier-Fourier equation for single gas flows

» Interestingly, it has been found in the previous research works of Picone and Boris (JFM,1988)
Samtaney and Zabusky (JFM, 1994), Quirk and Karni (JFM, 1996) that the different values of
specific heat capacities values for each gas do not affect the details of the vorticity generation

qualitatively, particularly the creation of large-scale structures.

= This model can be configured as an unsteady compressible laminar flow that assumes a single-

component perfect gas with a specific heat ratio.

10



Model 2: 2D compressible Navier-Fourier equation for single gas flows

Compressible Navier-Stokes-Fourier (NSF) equations

Yo,
ou

 pE

pu 0 0 u : velocity vector
+V- puu+pl [+V.| II 0 IT : viscous stress
(pE+p)u]  |[IT-u+QJ |0 Q :heat flux
é2—?+v.FmV(U)+v-FviS(u,VU)=o

NSF equation is considered as de facto mathematical equation for all possible flow

Stokes’ hypothesis (1845):

U, = A+ %,u =0, equivalently, 4= —%,u,

4, - bulk visocsity
u - first coefficient of visocsity (shear viscosity)
A . second coefficient of visocsity

This assumption is valid only for monatomic gas and at thermal equilibrium condition.

11



Model 2: 2D compressible Navier-Fourier equation for single gas flows

In non-monatomic gases,
* Rotational and vibrational modes are closely related to thermal non-equilibrium.
+ Rotational nonequilibrium effects are easily excited at room temperature.

+ Vibrational non-equilibrium effects become relevant when the temperature is greater than 1000 K

In this study,
s Considered room temperature (~ 300 K)
* Neglecting Vibrational non-equilibrium effects

+ Rotational thermal non-equilibrium effects are accounted by introducing with excess normal stress

A=—-uV-u

where g =Dbulk visocsity = f, -
u = first coefficient of visocsity (shear viscosity)
V -u =dilatational term

12



Model 2: 2D compressible Navier-Fourier equation for single gas flows

|
In monatomic gases,

A =0 equivalently, V-u=0

For non-monatomic gases -- nitrogen (air), methane and CO.,,

dilatational term, V -u plays a significant role in compressible flow.

Argon gas: u, =0,

Nitrogen gas: x, = 0.8y,
Methane gas: z, =~1.33 4,
Carbon dioxide gas: z, ~2000.

Inner structure of strong shock waves  Hypersonic entry into Mars and Venus atmosphere

13




Model 2: 2D compressible Navier-Fourier equation for single gas flows

For non-monatomic gases, compressible Navier-Fourier (NF) equations

5 | [ pu i 0 1 To] IT: viscous stress,
P pu |+V-| puu+pl [+V- IT+ Al =0 A 1 excess normal stress,
| pE | (PE+p)u. (IT+Al)u+Q| |0 Q : heat flux.

where

m=2u[Vu]”, A=-pV-u, Q=KkVT

Chapman-Enskog linear transport coefficients

S+1 S
T T
=| — , = f , k = ——
: (Tref J ﬂb b/u (Tref ]

s — the index of the inverse power laws of gas molecules

1 1 v . exponent of the inverse power laws

S==+——
2 v-1 for the gas-particle interaction potentials




High-order numerical method
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High-order Numerical Method for Modern CFD

Which kind of numerical approach can be suitable for solving highly non-linear system ?

Numerical Methods for Modern CFD

Finite Difference Method High order methods are needed for solving challenging problems,

I (such as aeroacoustics, turbulent flow)
*  Steady and unsteady

Finite Volume Method «  Complex geometries
I *  Multi-physics phenomena
Finite Element Method *  Multi-scales problem in space and time

High-order Spectral methods |—-| Spectral Difference (SD)

Spectral Volume (SV)
I Modal DG

16



High-order Numerical Method for Modern CFD

Finite Difference Methods

Advantages
» Easy to implement
» Easy to make high-order

Disadvantages
» Applicable only for structured
meshes

Finite Volume Methods

domain

jk+1 |

Lk ik ik

ow )
J!k'1 4

os

boundary

Advantages
» Naturally conservative
(captures discontinuity in the
flow field)
» Applicable on any type of
meshes — structured,
unstructured

Disadvantages
» Difficult to devise stable
higher order scheme (need
ENO-WENO schemes etc.)

Finite Element Methods

Advantages
» Can be any order of accuracy
» Applicable on any type of
meshes — structured,
unstructured

Disadvantages
» Not naturally conservative

17




High-order Discontinuous Galerkin Method

FVM FDM FEM DG

DG method = FV method + FE method

High-order/Low dispersion x / J \/

Advantages Unstructured meshes / x /
« Strong mathematical supports Stability for convervation laws | « o X e

N

« hp-adaptivity (geometric and order-accuracy flexibility)

* Provide high-order accurate solution

« Easy to handle arbitrary grid (structured and unstructured)
« Highly parallel efficiency due to local nature

» Possible to solve any PDE system (Hyperbolics, Parabolic, Elliptic)

Drawbacks

» High order methods are not necessary, for most of the engineering applications.

» Extra efforts are needed for solving viscous dominant flows and elliptic PDES

« Extra efforts are needed for simulation of the complex geometries with curve boundaries
» Extra efforts for limiters in case of discontinuous problems

 Too expensive s



Mixed-type discontinuous Galerkin formulation

1D Viscous Burger’s equation :5_U+i(1 uzj 0 ( 5Uj20

ot ox\2 ox ' OX
auxiliary variable @:Ma_u, _
OX Coupled first —order system
8_u+i £u2—® —0. foruand ®
ot ox\2

U — conservative variables

Conservation laws with source term: %—Ltj +V-F,.,(U)+V-F,(U,VU)=0 Fin (U) — Inviscid flux function

F.i. (U,VU)— viscous flux function

ﬁ S(U)— source term

©=VU, Coupled first —order system
o;U+VHE,, (U)+VF,(U,0)=5(U) for U and ©

Mixed form of Conservation laws:

Source : J.N. Reddy, An Introduction of the Finite Element Method, Tata McGraw-Hill, 2012



Computational domain: decomposition and transformation

Computational domain is tessellated into a collection of non-overlapping elements
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Mixed-type discontinuous Galerkin formulation

Conservation laws with source term: %—Lt} +V-F,,(U)+V-F,;(U,VU)=0

!

Mixed form of conservation laws :

®-vVU=0

{atuwp (U)+ VF,; (U,0) =0

nv

Multiplying by a test function gq(x) and integrate over element

j@q(x)dg_jvu.q(x)dgz:o,

J‘ﬁ_uq(X)dQJrj( VF,, (U) + VF,(U,0)) -q(x)dQ =0

E

Using integration by parts and Green-Gauss divergence theorem:

J‘a—uqu+
E

"

j@qu+IVquQ—[ﬂU-ﬁ-qda=0,
E

I( Fin (U) + Fyis (U,S)) Vad Q - [_ﬂ Fiv (U) +Fi(U,9))--qd o =0.

E

21



Mixed-type discontinuous Galerkin formulation

FEM approach : Galerkin formulation
(high-order flexibility)

FVM approach: flux reconstruction
(Numerical fluxes)

testfunction: q(x) =¢, (§(X))

1 Nk
 conservativevariables: U~U, => 0, (t) ¢ (§(x))

=1

1 Nk
auxiliary variable: ©~©, =" § (1) ¢, (£(x))

=1

where N, = number of basisfunction for the polynomial function Pk,

¢, (€(x)) =basisfunction

____________________________________________________________________________________________________________________________________________________

Consistency condition:H(u,u) = f (u)

Continuity condition : H(u,,ug) is Lipschitz continous for u, and u,

Monotonicity condition:H(u,,ug) is H(T,4)non-dereasing function of u,, and non-increasing

function of u,. 22



Weak formulation of mixed-type DG spatial discretization

j[ZS«(t)¢.(§(X)))¢m(§(X))dQ+ cho.(é(x))udQ [_ﬂH @ (£(x))do =0,

Ny

3 J‘;(Z U, (t) o (§(X)))¢m (£(X)dQ+ j F. Vo (£(X)dQ - [_ﬂﬁinv o (£(X)do
= = E OE

j 45 VO (E00)dQ = [[JfLy -1 (£00)d o =0

!

(1) j AEN P (E(X)dQ+ j v (é(x»um—[ﬂﬁaux TIGOLES

A o (£ EONI [y (U, Vi (COONAR i, (V) -2 £V

)____________________.' '_E ___________________ e i

'+f Fus (U, )V (6(X>>dﬂ+[ﬂHv.s(u S)- 1 (£(x))do =0

L / | OE N
/7 ! S
l‘ v “

Mass matrix Volume integration Surface integration

N




Temporal discretization

Semi-discrete form of ordinary differential equation

oU
M—=L(U
ot ( h)

M = orthogonal mass matrix
L (U, )= residual function

Explicit third-order TVD Runge-Kutta scheme

UY =U; +AtM™L(U; )

3 1 1

U® =Zu"+=uW 4= mmﬂ4Wﬂ
4 4 4
1 2 2

Ul ==U] + =0 + ZAtML(U?),
3 3 3

.(Di CDjdk:Cij’
M=<"

if =]

@, p;dk=0, if 1= ]

Orthogonal Mass matrix .,



Basis (polynomial) functions

Basis Family

W

Choosing an appropriate basis and test functions

Galerkin method: Test function = basis function

Lagrange Legendre Chebychev Fourier
BaS|S funCtlonS Dubiner Proriol Koornwinder

Orthogonal Basis functions Non-orthogonal Basis functions

| !

Modal Basis functions Nodal Basis functions

(0,0,1)

Based on Legendre polynomial Based on Lagrangian polynomial | ©500%

(0,0.5,0.5)

(0.5,0.5,0)

Np Np
un (6,1 = 3 6% (©6 (0 o)=Y u ool )
k=0 k=0

(0,1,0)
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Summary of present numerical scheme

s Computational domain decomposition with uniform rectangular meshes

¢ Hierarchical basis function based on Legendre polynomials

¢ Lax-Friedriches, Roe and HLLC schemes for inviscid flux term

¢ Alternating (Local DG) scheme for viscous and auxiliary flux terms

¢+ Gauss-Legendre quadrature rule for surface and volume numerical integrations
% 3rd-order TVD Runge-Kutta scheme for temporal integration

“* A high-order moment limiter proposed by Krivodonova is used for controlling artificial oscillations



Numerical Results
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Order accuracy test of present DG scheme

A smooth 1D density wave propagation problem with initial condition:

3\

+0.2sin(7x) ¢ Vxe[0,6],

J

—1+— Piecewise cubic (P=3)
——— Piecewise quadratic (P=2)

- ——&—— Piecewise linear  (P=1)
 ——&—— Piecewise constant (P=0)

'\'\'@1

S
D\

lll L l L LlIIILJI

u(x,0)=1.0
p(x,0)=1.0
p(x,0)=1.0
Piecewise cubic solution (DG - p=3) 10" =
16 — Piecewise quadratic solution (DG - p=2) =
; Piecewise linear solution (DG - p=1)
- Piecewise constant solution (DG - p=0) 100 N
1.5 = Exact solution E
14 — 10 3
F freneees 107
F . § 10°F
_-c E
TF
Q -
_ 10—5 E—
10° |
107
10°
E\\\Illllll\rl\I\III'II\\II\\\' -9:
0'40 1 2 3 4 5 6 10100

10
Number of elements

10° 10°

Achieved the
desired order of
accuracy (p+1)
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1D—-Riemann problem: Sod shock tube

0.2

pou
u>+p
(0 + p)u (P p.7)
pou |
Numerical

0.8 1

|

Initial condition
(1.0,0.0,1.0,1.4), i
(0.125,0,0.1,1.6)

f x<0.5,
if x>05

= Final time = 0.25 sec.
= Discontinuity position, x=0.5

= 3rdorder DG scheme

Pressure
o o
(@] co

o
~
1 1} 1

02F

Exact
Numerical

Singh and Torrilhon, Physics of Fluids, 35, 012117 (2023)
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1D stiff shock structure problem

o o
o o

o
D
T U

Normalized density

0.2

o

Mach =2.0

-.—.—’r;..’;f ....... : °

- = Oth-order model

i == =1= 1st-order model

2nd-order model

Experiment (Alsmeyer)

pu’ +p
pE (PE+p)u

-4 0
XIh

4

8

pou

= Argon gas
lLlu XX rd
» 3-order DG scheme
| puu, + kT,
0.4r
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- > Experiment (Robben)
o Experiment (Russel)
N Experiment (Schultz-Grunow-Frohn)
——————— 1*-order model
| | 2"-order model | |
0.1 L L L L L L
2 4 6 8 10

Mach number

Singh et al., Journal of Computational Physics, 457, 111052 (2022)
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Experiment (Hlass & Sturtevant, 1987)
)

2D shock-cylindrical bubble interaction

Shock Mach number =1.22

Numerical schlieren images

Outflow boundary
%
Pre-shock z Post-shock
Outflow region 2 region Inflow
boundary Bubble “ boundary
2
Outflow boundary
300 < = 7
- / 4 /
i b Jet
ul F !6 b
[~ H /7 .'I
250 o Jet ! 0 L
..F Y !
i s .
200 o A 16 DI
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i _I'D,.-O 5{
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— B 4 s
x ‘33' 14
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100 - 7 !
A i
4 L e Present Ul
B _I'U ? [m] Experiment Ul (Quirk)
S0F & I ———— Present Jet
B ," <i> (@) Experiment Jet (Quirk)
i i ——— Present DI
- B @ & Experiment DI (Quirk)
0 | I I | I | | l 1 Il
20 40 60 80 100
Time (ps)

Singh et al., Physics of Fluids, 33, 066103 (2021)

Characteristic interface points
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2D shock-cylindrical bubble interaction

Experimental results (Ding et al., 2015)

Shock Mach number =1.29
Bubble filled with helium gas

50

Present results

e _e 2
JUT SR o S ¢ &

N
a1
L

/”I«
e 2
w0 > Length - Present
¥ 0 Length - Experiment
ra ——— - Width - Present
/ L 4 Width - Experiment

Experimental results (Ding et al., 2015)

Characteristic scales (mm)
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N
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SN
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Singh, Physics of Fluids, 32, 126112 (2020) Ding et al., J. Fluid Mech. 828, 289 (2017).*



2D shock-square heavy bubble interaction

- 1D
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Singh, Physics of Fluids, 32, 126112 (2020)

Shock trajectories points
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Flow morphology of shock-induced light square bubble

Third-order DG method
Mesh of 1200x600 grid points

T A= T = T=
Pre-shock gas TNR o RFps\
Bubble |
gas a - «—Tst - Rng Ts2
MS— 4
s TP1 ss ~ 8
TP2 /F
L N =4 . t=7 =9 1|
RTS—> ¢
Shock Mach number =1.21 ‘
Bubble filled with helium gas TSI |
Rankine-Hugoniot condition for initialization = /
t=12 =19 t=20 T=25
CcB
@ " -
N

p: 02 04 06 09 11 13 15 18 20

Jet

;

&

Singh and Torrilhon, Physics of Fluids, 35, 012117 (2023) .
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Flow morphology of shock-induced heavy square bubble

Post-shock Pre-shock gas
gas

Bubble w
gas

REERRE N

Shock Mach number =1.21

Bubble filled with SF6 gas
Rankine-Hugoniot condition for initialization
Third-order DG method

Mesh of 1200x600 grid points

Singh and Battiato, Computer & Fluids, 242, 105502 (2022)



Flow parameters on shock-induced hydrodynamics instability

v’ Atwood number
v' Bubble (interface) shape

v" Incident shock Mach number

Atwood number is defined by

_ pb_pg
pb +10g

At

0, = bubble gas density
P, =ambient gas density

At > 0: convergent configuration
(light-heavy-configuration)

At<0: divergent configuration
(heavy-light-configuration)

(b) Heavy interface



Atwood number effects on shock-induced square bubble
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= 50 < .
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Singh, Physics of Fluids, 32, 126112 (2020)
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Interface shape effects on shock-induced bubble
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Singh, Physics of Fluids, 32, 126112 (2020)
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Shock Mach number effects on shock-induced heavy square bubble

45
(@) M, =1.12 (b) M, =1.22 (c) M, =1.40 (d) M, =1.70 (e) My =2.10 :(a) M.=112
=2 =2 T=2 t=2 T=2 | i Ms=1'22 o
‘ L mimte- M_=1.40 s
S - | 40 s ———= M_=1.70
I. ‘ 3 — _ i Ms=2-10 :
-
o —— ‘ ‘ §35 I A NS - ”"//
£ 1 - S _b,/-o’/i/
_k = [ R -}
< A EAVaay
=] N 4
o LRAY N Ay
§ 30t VN e ST
- (Y L 4
Loy Y |
I LN 7 .,/
25| N Ne—et
t=8 I A s
o V4
N ! |
L | . ' Length ;
L L L L L L L L L L L 1
205 3 6 9 12
T
=11 a0
- (b) M, =1.12
I M, =122 -
M, =1.40 Y
80 Ms=1.70 ﬁ{"
| M, =210 7 »
L ” /
=14 —_ 3 /
E70F d rd
E I ," /
~ /
k= Height
2
©
I
=17

Singh and Battiato, accepted in Physica D: Nonlinear Phenomena (2023) >



Thermal non-equilibrium effects of diatomic and polyatomic gases

¥ Incident shock Mach number = 1.22 Dissipation Rate (g) = - [(1‘[XX + f,A)S,, +201, S, +(IT,, + fbA)SW}
v' Square helium gas bubble
v' Ambient gases — argon, nitrogen, methane | | S :l %Jr%
- ] €. 0.0E+00 1.7E-04 3.3E-04 5.0E-04 6.7E-04 8.3E-04 1.0E-03 IJ 2 8uj aul
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Singh, International Journal of Heat and Mass Transfer 179, 121708 (2021) 0



Degree of thermal non-equilibrium

O Inirreversible thermodynamics theory, the degree of thermal nonequilibrium based on Rayleigh-
Onsager theory is a vital component and is directly related to entropy production in nonequilibrium
processes.

O To demonstrate the degree of thermal nonequilibrium, the Rayleigh—Onsager dissipation function is
defined as follows

* x /2
2 Q-Q

+ *
EcPr T

U The degree of nonequilibrium is much higher for diatomic and polyatomic gases than for monatomic gases.
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Degree of thermal nonequilbrium

10

Effect of bulk viscosity ratio
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Spatially integrated values of degree of thermal non-equilibrium and dissipation rate
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Aspect ratio effects on shock-induced rectangular bubbles

Shock wave
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Type of bubble Case L, L,  Aspect ratio
Square | a a AR, = 1.0
Horizontal-aligned rectangular I1 a 08a AR,=125
111 a 0.5a AR, = 2.0
IAY a 0.2a AR, =5.0
Vertical-aligned rectangular V. 08z a AR, =1.25
VI 0.5a a AR, =2.0
VII  0.2a a AR, =5.0
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Aspect ratio effects on shock-induced rectangular bubbles

Horizontal-
aligned
rectangular
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Concluding remarks and future study

The flow physics for shock-induced hydrodynamic instabilities on various gas bubbles with different
shapes is investigated numerically.

High fidelity simulations are performed with inhouse discontinuous Galerkin solver based on
rectangular meshes

Numerical results are validated with the existing experimental and computational results.

Effects of various flow parameters — Shock Mach number, Atwood number, bubble shapes, thermal
non-equilibrium — on the shock-induced bubbles are investigated.

This study will be extended for shock-gas-liquid interaction-based problems.

Reactive shock-induced hydrodynamic instabilities will be investigated with the applications of

combustion and flame.
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