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Framework
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Manymodels in sciences and engineering aim at describing the dynamics
of multiple agents subject to internal and external forces.
The manipulation of these forces allows to control the systems’ dynamics
in order to perform desired tasks.

A convenient description of the configuration of multi-agent
(multi-particle) systems is achieved by means of probabilistic
or material densities.
The time evolution of these densities is governed by kinetic
models.
Optimal control theory provides the mathematical tools to
formulate and solve control problems.
Ensemble optimal control problems represent the natural
framework for designing control mechanisms and objectives
for systems governed by kinetic models.



Applications
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Optimal control of stochastic andmulti-particle systems
to perform given tasks

collective motion, ©STIR

S & P stock price index

coating andmixing of powder, ©RCPE

space propulsion, ©SPARC

fusion reactor, ©ITER



Dynamicalmodels
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1. Deterministic models:

Ẋ(t) = a(X(t), t)

2. Stochastic drift-diffusion-jumpmodels:

dX(t) = a(X(t), t) dt + σ(X(t), t) dW(t) + dP(t)

3. Piecewise-deterministic processes:

Ẋ(t) = aS(t)(X(t), t), t ∈ [0,∞)

Most macroscopic evolution systems in, e.g., biology, climate, CFD,
economics, ecology, finance, physics, etc., represent the emergent
equations from themicroscopic underpinnings of the models above
(J. Hopfield).



Ensemble of trajectories
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Left: Trajectories of a drift-diffusion-jumpmodel: a(x, t) = −4 x, σ = 2,
and initial condition X(0) = 0.
Right: Trajectories of a PDP process: a1(x, t) = −4 x + 2,
a2(x, t) = −4 x − 2, and initial condition for both states X(0) = 0.

In general, the initial condition X(0) = X0 is given by means of a
distribution function f0(x). In this case, also with deterministic models we
obtain an ensemble of trajectories.



Density functions
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Consideration of all possible trajectories of a multi-particle system is an
overwhelming task. For this reason, L. E. Boltzmann introduced the
concept of material density f (x, t).

In the non-interacting case, if f0(x) represents the initial density
(configuration) at time t = 0, then the evolution of this density is
modelled by

the Liouville equation

∂tf (x, t)+div (a(x, t) f (x, t)) = 0,

with drift a and initial
condition f (x, 0) = f0(x).

t

x

x0

ẋ(t) = a(x, t)

f0

f (x, T )

This fundamental result of statistical mechanics leads to the kinetic
equations with applications in, e.g., space propulsion, electronic devices
andmaterials, high-temperature plasma, etc..



Role of the drift
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The Liouville equation ∂tf + div (a(x, t) f ) = 0 is the fundamental
continuity equation; the first in the hierarchy of kinetic models.

Take the dynamics
Ẋ(t) = sin(X(t))
X(0) = X0 ∼ N (µ, σ̄2),
µ = 0 and σ̄ = 0.5.
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Notice that a(x, t) = sin(x) = − d
dx cos(x) = −∇U(x)where

U(x) = cos(x). The function U can be interpreted as a potential.
Compare with moments’ equations in the case Ẋ(t) = [A(t) X(t) + b(t)]:

µ̇(t) = A(t)µ(t) + b(t), Σ̇(t) = Σ(t) A(t)> + A(t) Σ(t).



A controlmechanism
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Optimal control applications require to identify a control mechanism in
the model. We focus on time-dependent controls:

a(x, t; u1, u2) = a0(x, t) + a1 u1(t) + a2 u2(t) x.

a0(x, t) ∈ Rd smooth vector field, a1, a2 ∈ R, u1(t), u2(t) ∈ Rd

Moment equations: Definem(t) as the mean, v(t) as the variance.
Choose a(x, t; u1, u2) = u1(t) + u2(t) x, and f0 as normal Gaussian
distribution.
From the Liouville equation, we obtain

ṁ(t) = u1(t) + m(t) u2(t), m(0) = m0

v̇(t) = 2 v(t) u2(t) v(0) = v0.

where
m(t) =

∫
x f (x, t) dx and v(t) =

∫
(x −m(t))2 f (x, t) dx



Ensemble cost functional
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The particles should follow a
desired trajectory xD(t), t ∈
[0, T], reach a target position
xT at t = T .

Ensemble control approach:
define “attracting” potentials
θ(x, t) = Θ(|x − xD(t)|)
ϕ(x) = Φ(|x − xT |)

u(t)

f0

f(x, T )

ϕ(x)

x

Ensemble cost functional:

J(f , u) =
∫ T

0

∫
Rd
θ(x, t) f (x, t) dx dt +

∫
Rd
ϕ(x) f (x, T) dx + κ(u).



Cost of control
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For time-dependent controls:

L2: standard control cost.

H1: includes time-derivative of the control
(minimum attention control); turning control on
at initial time and off at terminal time.

L1: sparse controls (minimum action control)

time
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Cost function:

κ(u) =
γ

2

∫ T

0

∣∣u(t)∣∣2 dt + δ

∫ T

0

∣∣u(t)∣∣ dt +
ν

2

∫ T

0

∣∣∣∣ ddt u(t)
∣∣∣∣2 dt



An ensemble control problem
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A Liouville ensemble optimal control problem:

min
u∈Uad

J(f , u) :=

∫ T

0

∫
Rd
θ(x, t) f (x, t) dx dt +

∫
Rd
ϕ(x) f (x, T) dx

+
γ

2

∫ T

0

∣∣u(t)∣∣2 dt + δ

∫ T

0

∣∣u(t)∣∣ dt +
ν

2

∫ T

0

∣∣∣∣ ddt u(t)
∣∣∣∣2 dt

subject to

{
∂tf (x, t) + div

(
a(x, t; u) f (x, t)

)
= 0 inRd × [0, T]

f (x, 0) = f0(x) inRd

with the set of admissible controls

Uad := {u = (u1, u2) ∈ U × U | ua ≤ u(t) ≤ ub, t ∈ [0, T]},

U = H1([0, T];Rd) or U = L2([0, T];Rd).
γ, δ, ν ≥ 0, γ + δ + ν > 0, ua < 0, ub > 0



Resultswith Liouvillemodel
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For u ∈ Uad there exists a unique solution
f ∈ C

(
[0, T];Hm

k (R
d)
)
of the Liouville initial-value problem.

The control-to-state map G, u 7→ f = G(u) is Fréchet
differentiable
The ensemble optimal control problem admits at least one
solution in Uad.
In the case ν = 0, with the Lagrange multiplier q, and
λ̂ ∈ ∂ (||u||L1), the optimality system is given by

∂tf + div
(
a(x, t; u) f

)
= 0, f|t=0 = f0

− ∂tq − a(x, t; u) · ∇q = − θ, q|t=T = −ϕ(
γ urj + λ̂rj +

∫
Rd

div

(
∂a
∂urj

f

)
q dx , vrj − urj

)
L2(0,T)

≥ 0 v ∈ Uad

See later sections.



Further results
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Strong stability conserving Runge-Kutta method of second
order in time and Kurganov-Tadmor scheme in space.
In addition for the adjoint equation: second-order Strang
splitting.
Proved L1 stability, second-order accuracy, positivity
preserving.
Projected semi-smooth Newtonmethod.

See later sections.

S. Roy and A. Borzì, Numerical investigation of a class of Liouville control problems, Journal of Scientific Computing, 73
(2017), 178-202.

J. Bartsch, A. Borzì, F. Fanelli, S, Roy, A theoretical investigation of Brockett’s ensemble optimal control problems Calculus of
Variations and Partial Differential Equations, 58 (2019), 162.

J. Bartsch, A. Borzì, F. Fanelli, S. Roy, A numerical investigation of Brockett’s ensemble optimal control problems,
Numerische Mathematik, 149 (2021), 1-42.



Another ensemble control problem
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In many physical systems, the density f is defined in the phase space
spanned by position x ∈ Ω ⊂ Rd and velocity v ∈ Rd , Q = Ω× Rd .

In this statistical framework, the time evolution of f can be governed by
the following kinetic model (Vlasov+collision)

∂tf (x, v, t) + v · ∇x f (x, v, t) + u(x) · ∇v f = C[f ](v, t)
f |t=0 = f0,

f (x, v, t)|∂Ω×Rd
<×(0,T] = f (x, v − 2n(n · v), t)

with specular reflection space boundaries;Rd
< := {v ∈ Rd | v · n(x) < 0},

and space-dependent control field u ∈ H1
0(Ω) is a force field (control), and

C[f ] is the collision term.

We can define an ensemble optimal control problemwith the functional:

J(f , u) :=

∫ T

0

∫
Q
θ(x, v, t) f (x, t) dx dt +

∫
Q
ϕ(x, v) f (x, v, T) dx +

γ

2
‖u‖2H1 .



The Keilson-Storermodel
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We consider the Keilson-Storer (KS) collision model:

C[f ](v, t) :=

∫
f (w, t) A(w, v) dw − f (v, t)

∫
A(v,w) dw,

It has a gain – loss structure. We have A(v,w) := A0e
(
−β|w−γ v|2

)
and

γ ∈ [−1, 1], A0, β > 0. For post-collision velocity holds
w ∼ N (γv, (2β)−1).

γ / 1: weak collisions, Brownian motion
γ ≈ 0 : strong collision, Bhatnagar-Gross-Krook (BGK) operator
collision frequency 1

τ = A0
√
π/β

detailed balance: A(w, v) f eq(w) = A(v,w) f eq(v)
equilibrium solution f eq(v) is the Maxwellian distribution
A0 and β related to the background density and temperature



Resultswith kinetic KSmodel
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Well-posedness of the control-to-state map
Existence of optimal controls
Monte Carlo solution of the kinetic model and of its adjoint
Nonlinear conjugate gradient method

See later sections.

J. Bartsch, G. Nastasi, A. Borzì, Optimal Control of the Keilson-Storer Master Equation in a Monte Carlo Framework, Journal
of Computational and Theoretical Transport, 50 (2021), 454-482.

J. Bartsch, A. Borzì, MOCOKI: A Monte Carlo approach for optimal control in the force of a linear kinetic model, Computer
Physics Communications, 266 (2021), 108030.



Stochasticmodels and PDFs
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Consider a continuous-time continuous-space stochastic process with
X : T × Ω → R, and Range(X) = R. Since different random variables are
labelled by different t in T = [0,+∞), we can denote the probability
density function (PDF) of the random variable X at t ∈ T with f (·, t).

Similarly, we denote with f (·, t2|v1, t1) the conditional probability density
function of X(t2, ω) given the occurrence of the value v1 of X(t1, ω)with
f (v1, t1) > 0.

For a Markov process, we have f (v, t) =
∫
R f (v, t|z, 0) f0(z) dz, and

continuity implies the following identity

f (v, τ |z, t) =
∫
R
f (v, τ |r, s) f (r, s|z, t) dr,

where τ > s > t. This is the Chapman-Kolmogorov equation for the
conditional PDFs.
We have

∫
R f0(x) dx = 1, and so

∫
R f (x, t) dx = 1, t ≥ 0.



Einstein, Smoluchowski, ...
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With the Chapman-Kolmogorov equation and specification of the
probability space (Ω,F , P) for the random variable X(t, ·)with t fixed, one
can (re-)obtain the evolution equations for the density.
In the deterministic case, we obtain the Liouville equation.
In the case of stochastic drift-diffusion-jump processes, we have

∂tf (x, t)+div(a(x, t) f (x, t)) =
σ2

2
∂2xx f (x, t)+λ

∫
R
[f (x−y, t)−f (x, t)] g(y) dy.

where Pt is exp distributed in time with λe−λ∆t , λ the rate of jumps,
whose amplitude is distributed according to g = g(x).



Fokker-Planck, Kolmogorov, ...
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For piecewise-deterministic processes, we have

∂tfs(x, t) + div(as(x, t) fs(x, t)) =
S∑

j=1

Qsj(x) fj(x, t), s = 1, . . . , S,

where Qsj is given by Qsj =

 µj qsj if j 6= s,

µs (qss − 1),
corresponding to a

stochastic transition probability matrix {qij} and switching times with
exponential PDF of transition events ψs(t) = µse−µst .

In general, we could refer to Lévy processes and corresponding FP
systems, which include Brownian motion with drift, the Poisson process,
subdiffusion processes, the family of piecewise deterministic Markov
processes (PDMP), Switching Diffusion Process (SDP), and Stochastic
Hybrid System (SHS).



The Fokker-Planck equation
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The evolution of the PDF associated to a stochastic drift-diffusion process
X(t) ∈ Rd is modelled by the Fokker-Planck (FP) equation

∂tf +
d∑

i=1

∂xi (ai f )−
d∑

i,j=1

∂2xixj (Dij f ) = 0, f (0) = f0,

where D = 1
2 σσ

>. Boundary conditions of different type correspond to
barriers for the stochastic process X(t) inΩ ⊂ Rd .



The FP equation - continuity eq.
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The Fokker-Planck equation ∂tf + div (a(x, t) f ) = 1
2σ

2∆f is the
continuity equation of the ensemble of stochastic trajectories of a
drift-diffusion process.

dX(t) = sin(X(t)) dt + dW(t)
with X(0) = X0 ∼ N (µ, σ̄2),
µ = 0 and σ̄ = 0.5.
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Notice that a(x, t) = sin(x) = − d
dx cos(x) = −∇U(x)where

U(x) = cos(x).
Compare with moments’ equations in the case dX(t) = [A(t) X(t) + b(t)] dt + σ dW(t):

µ̇(t) = A(t)µ(t) + b(t), Σ̇(t) = Σ(t) A(t)> + A(t) Σ(t) + σ σ
>



Motion of a pedestrian
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Consider the motion of an individual, subject to random perturbation,
whose (planar) position at time t is denoted with X(t) ∈ R2, and its
velocity field (drift) is given by u. We have

dX(t) = u(X(t), t) dt + σ dW(t), X(t0) = X0,

where u depends on x and t.
Assume that reflecting barriers keep the pedestrian in a regionΩ ⊂ R2.

The FP equation can be written in flux form ∂tf = ∇ · F(f ), where

Fj(x, t; f ) =
σ2

2
∂xj f (x, t)− uj(x, t) f (x, t).

Reflecting barriers correspond to flux-zero boundary conditions F · n = 0
on ∂Ω× (0, T), where n is the unit outward normal on ∂Ω.



Ensemble control problem
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Consider the control of the motion of a pedestrian by the velocity field u,
in order to follow a desired trajectory given by xD(t) = (x1(t), x2(t)). We
may choose θ(x, t) = |x − xD(t)|2 (similarly for ϕ(x)) in the ensemble
functional:

J(f , u) =
∫ T

0

∫
Ω

(
θ(x, t) +

ν

2
|u(x, t)|2

)
f (x, t) dx dt +

∫
Ω

ϕ(x) f (x, T) dx.

In this setting, θ represents an attracting (valley). A bump θ would
represent a repulsive (soft obstacle) potential.

Wemay require that the control belongs to the following admissible set:

Uad = {u ∈ U , u(x, t) ∈ KU, a.e. in Q}.



FP optimality system
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∂tf (x, t) +∇ · (u(x, t) f (x, t))− σ2

2
∆f (x, t) = 0

F · n = 0, f (x, 0) = f0(x)

∂tp(x, t) + u(x, t) · ∇p(x, t) +
ν

2
|u(x, t)|2 + σ2

2
∆p(x, t) + θ(x, t) = 0

∂np = 0, p(x, T) = ϕ(x)

〈f (ν u+∇p) , v − u〉 ≥ 0 v ∈ Uad.

Consider this variational inequality pointwise, and notice that f > 0 a.e. in
Q. Then, it is sufficient (ν u+∇p) (v − u) ≥ 0, which characterizes the
solution tominv∈KU [v · ∇p+ ν

2 |v|
2] at any point in Q.

By comparison, one recognizes that along the optimal solution, the
adjoint equation coincides with the Hamilton-Jacobi-Bellman equation.



TheHJB equation
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We can consider the expected value (ensemble) functional

Jt0,x0(u) = E[
∫ T

t0

(
θ(X(s), s)+

ν

2
|u(X(s), s)|2

)
ds+ϕ(X(T)) | X(t0) = x0 ],

Correspondingly, we have the optimal control u∗ = argminu∈U Jt0,x0(u),
and the so-called value function

q(x, t) := min
u∈U

Jt,x(u) = Jt,x(u∗),

which satisfies the Hamilton-Jacobi-Bellman equation

∂tq+ H(x, t,∇q,∆q) = 0, q(x, T) = ϕ(x),

with the Hamilton-Pontryagin function

H(x, t,∇q,∆q) := min
v∈KU

[
σ2

2
∆q(x, t) + v · ∇q(x, t) + θ(x, t) +

ν

2
|v|2].



Open and closed loop controls
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Open-loop: a(x, t; u) = (v(t) + w(t) ◦ x), where u := (v,w),
v,w : [0, T] → Rn. In this case, the dependence of the control function on
x is given.

dX(t) = (v(t) + w(t) ◦ X(t)) dt + σ dW(t),

where ◦ denotes the Hadamard product.

Closed-loop: a(x, t; u) = u(x, t)

dX(t) = u (X(t), t) dt + σ dW(t),

where u : Ω× [0, T] → Rn. In this case, the dependence of the control
function on x has to be determined.
Potentials:

θ (x, t) = −10−3

2πr2
e−

|x−xD(t)|
2

2r2 , φ (x) = −10−3

2πr2
e−

|x−xD(T)|
2

2r2 .

xD(t) = (t − 1, sin(π t/2))



Tracking of trajectory I
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Figure Evolution of E[X(t)] (circles); the dashed line depicts the desired trajectory. Top: the closed-loop case; bottom:
the open-loop case.



Tracking of trajectory II
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Figure Trajectories of the SDEmodels with the closed-loop control (top) and the open-loop control (bottom). Left:
trajectories starting with X0 = x0 = (−1, 0); right: trajectories starting at X0 = (1, 1).



Resultswith FPmodels
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Existence and uniqueness of FPmodels with different control
mechanisms
Existence of optimal controls
First- and second-order analysis of FP optimality systems in
the Lagrange framework
Characterization of optimality with the Pontryagin maximum
principle
Analysis of discretization of optimality systems (Chang &
Cooper, Splitting)
Development and analysis of numerical optimization schemes
(NCG, proximal methods, sequential quadratic hamiltonian
method)
Applications in biology, finance, microscopy, pedestrian
motion, quantum systems



Resultswith FPmodels
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FPNash games and avoidance
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Consider two uncoupled pedestrians, labelled with p = 1, 2. Each
pedestrian’s position is denoted with X(p)(t) ∈ Ω ⊂ R2: dX(p)(t) = b(p)(X(p)(t), t, u(p)(t)) dt + σ dW(t)

X(p)(0) = X(p)
0 ,

The drift b(p)(X(p)(t), t, u(p)(t)) ∈ R2 has the structure

b(p)(X(p)(t), t, u(p)(t)) = v(p)(X(p)(t), t) + u(p)(t)

where v(p)(X(p)(t), t) represents the planned velocity (path) of the
pedestrian assuming the absence of other pedestrians and of
perturbations. The (open-loop) function u(p)(t)models the avoidance
action.
A Wiener process is included to model dispersal due to, e.g., collision
among individuals (crowd), and the motion is confined in a bounded
regionΩ ⊂ R2 (a room).



Goals and costs
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Goals : two pedestrians wish to reach different target positions X(p)
T , i.e.

minimizeE
(
Vp(X(p)(T)− X(p)

T )
)
, p = 1, 2, where Vp is a convex potential.

Interaction : the two pedestrians would like to avoid a situation where their
distance is below an overcrowding limit, thus minimize
Prob

{
|X(2)(t)− X(1)(t)| < r

}
= E(Qp) = E(1{|X(2)(t)−X(1)(t)|<r}).

E(Qp) =

∫
Ω

∫
Ω

1|y−x|<ρf
(1)(x, t)f (2)(y, t)dxdy

≈ ρ

∫
Ω

f (1)(x, t) f (2)(x, t)dx =: W(f (1), f (2)),

where f (1) and f (2) represent the probability density functions (PDFs) of the
two positions, and ρ = c rD is used as a weighting parameter.
We include a H1(0, T) cost of the control to guarantee a bounded continuous
slow-varying control.



Avoidance as a FP game
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The PDF f (p) associated to the stochastic process X(p) obeys

∂tf (p)(x, t)−
σ2

2
∆f (p)(x, t) +∇ ·

(
b(p)(x, t, u(p)(t)) f (p)(x, t)

)
= 0,

with given f (p)(x, 0) = f (p)0 (x). Reflecting barriers for the motion result in
flux-zero boundary conditions for the FP equations.

To the pedestrian p is associated the following reduced payoff functional

Jp(u(1), u(2)) = α

∫
Ω

Vp(x−x(p)T )f (p)(x, T)dx+
ν

2
‖u(p)‖2H1(0,T;RD)+W(f (p), f (−p)).

No player can improve payoff by unilaterally changing its strategy. The
pair (ū1, ū2) is a Nash equilibrium (NE) point if

(ū1, ū2) = argmin
u1∈U1

J1(u1, ū2) = argmin
u2∈U2

J2(ū1, u2)



A weakly coupled Nash game
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The avoidance problem has the structure Jp(u(1), u(2)) = Gp(u(p)) + W(u(1), u(2))
where

Gp(u(p)) = α

∫
Ω

Vp(x − x(p)T ) f (p)(x, T)dx +
ν

2
‖u(p)‖2H1(0,T;RD).

Now, define

Ĵ (u(1), u(2)) = G1(u(1)) + G2(u(2)) + W(u(1), u(2)).

Theorem
Assume that Ĵ has aminimum (ū(1), ū(2)). Then (ū(1), ū(2)) is a Nash equilibrium of
the Nash game.
This theorem states that the existence of a minimum of Ĵ is a sufficient condition
for a Nash equilibrium. This condition is not necessary, in the sense that
there can be NE that are not minima of Ĵ .



An optimal control problem for avoidance
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With theorem above, a solution ot our NE avoidance problem is given by the solution of the
following optimal control problem: Find ū = (ū(1), ū(2)) such that

Ĵ (ū) ≤ Ĵ (u) for all u = (u(1), u(2)) ∈ U(1) × U(2).

This is the reduced formulation of the following FP control problem.

min Ĵ (f (1), f (2), u(1), u(2)) := G1(f (1), u(1)) + G2(f (2), u(2)) + W(f (1), f (2))

∂t f (1)(x, t)− σ2

2
∆ f (1)(x, t) +∇ ·

(
b(1)(x, t, u(1)(t)) f (1)(x, t)

)
= 0,

f (1)(x, 0) = f (1)0 (x),

∂t f (2)(x, t)− σ2

2
∆ f (2)(x, t) +∇ ·

(
b(2)(x, t, u(2)(t)) f (2)(x, t)

)
= 0,

f (2)(x, 0) = f (2)0 (x) .

The strategies u(p) = (u(p)1 , u(p)2 ), p = 1, 2, are sought in the following admissible set

U(p) = {u ∈ H1
0(0, T;R2)| ua ≤ ui(t) ≤ ub, i = 1, 2 a.e. in (0, T)}

where ua, ub ∈ R, ua < ub.



Experiment-2: Turnwald 1C-A3 – Setting
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Two pedestrian are asked to reach specific targets and avoid each other 1.

x-axis

y-
ax
is

D(1)

A(1)

D(2)

A(2)

(1,1)

(6,4)

(6,1)

(1,4)

-1
-1

+8

+8

FigureSettings for the Turnwald game described in test-case Turnwald 1C-A3: (left) the
computational setting ; (right) the human experiment setting.

1Turnwald, A., Althoff, D., Wollherr, D., Buss, M. (2016). Understanding human
avoidance behavior: interaction-aware decision making based on game theory.
International Journal of Social Robotics, 8(2), 331-351.
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FigureZoomed-in plots of trajectories with ρ = 0.01, 200 respectively. (a) motion for
ρ = 0.01 and the two pedestrian meet at t = 2.5; (b) trajectories with ρ = 200 and
avoidance.

S. Roy, A. Borzì, A. Habbal,

Pedestrian motionmodelled by Fokker - Planck Nash games, Royal Society open science, 4: 170648, 2017.
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Thanks a lot for your kind invitation and for your interest inmywork
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Additional technical details



Existence and uniqueness
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Consider the weighted function spaces Hm
k : f ∈ Hm

k if f and all its
derivatives up to orderm belong to

(
L2(Rd), (1 + |x|k) dx

)
.

∂tf (x, t) + div
(
a(x, t; u) f (x, t)

)
= g(x, t), f (x, 0) = f0(x),

where {
g ∈ L1

(
[0, T];Hm

k (R
d)
)

and f0 ∈ Hm
k (R

d)

a ∈ L1
(
[0, T]; Cm+1(Rd)

)
with ∇a ∈ L1

(
[0, T]; Cm

b (R
d)
)

Theorem
Let T > 0 andm ∈ N fixed, and let a, f0 and g satisfy our hypotheses.
Then there exists a unique solution f ∈ C

(
[0, T];Hm

k (R
d)
)
of the Liouville initial-value

problem. Moreover, there exists a constant C > 0, independent of f0, a, g, f and T, such that
the following estimate holds true for any t ∈ [0, T]:

‖f (t)‖Hm
k

≤ C
(
‖f0‖Hm

k
+

∫ t

0
‖g(τ)‖Hm

k
dτ

)
exp

(
C
∫ t

0
‖∇a(τ)‖Cmb dτ

)
.



The control-to-statemap G
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This map associates to a given control u a state f with a fixed initial
condition f0. Letm ≥ 2, k ≥ 2 and the data be given as above.

Theorem
Let δu be an arbitrary admissible variation of u. The control-to-state map G
is Gâteaux differentiable at u and the Gâteaux derivative δδuG satisfies the
Liouville problem

∂tδδuG+div
(
a(t, x; u) δδuG

)
= − div

(
a(t, x; δu)G(u)

)
, δδuG|t=0 = 0 ,

(1)
where we have defined a(t, x; δu) := δu1 + x ◦ δu2.

Theorem
Themap G is Fréchet differentiable from intUad into L∞T (L2), and its Fréchet
differential at any point u ∈ intUad is given by DG(u). The differential
DG(u)[δu] is the unique solution to equation (1). There exists a constant
C > 0 such that∥∥∥G(u+ δu) − G(u) − DG(u)[δu]

∥∥∥
L∞T (L2)

≤ C ‖δu‖2L∞T .



Existence of optimal controls
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We introduce the reduced cost functional

Jr(u) := J
(
G(u), u

)
,

Correspondingly, we have the reduced optimal control problem

min
u∈Uad

Jr(u) .

Theorem
The ensemble optimal control problemwith γ ≥ 0, δ ≥ 0, ν > 0 admits at
least one solution u∗ ∈ Uad . The corresponding state f ∗ := G(u∗) belongs
to the space C

(
[0, T];Hm

k (Rd)
)
, (m, k) ∈ N2.

Notice that J is Fréchet (sub-)differentiable over C([0, T]; L2)× int Uad ,
since it is linear in f and the control costs are given by (sub-)differentiable
norms.



Optimality system
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Consider the case ν = 0, and take

Uad = {u ∈ L2([0, T];Rd)× L2([0, T];Rd) | ua ≤ u(t) ≤ ub, t ∈ [0, T]}

We introduce the Lagrange multiplier q, and λ̂ ∈ ∂ (||u||L1).

The optimality system reads

∂tf + div
(
a(x, t; u) f

)
= 0, f|t=0 = f0

− ∂tq − a(x, t; u) · ∇q = − θ, q|t=T = −ϕ(
γ urj + λ̂rj +

∫
Rd

div

(
∂a
∂urj

f

)
q dx , vrj − urj

)
L2(0,T)

≥ 0 v ∈ Uad ,

j = 1, 2 , r = 1, . . . , d



Liouville adjoint equation
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Consider the adjoint Liouville intial-value problem{
−∂tq − a(x, t; u) · ∇q = −θ, inRd × [0, T]
q(x, T) = −ϕ(x), inRd

where θ ∈ L1
(
[0, T];Hm

k (R
d)
)

and ϕ ∈ Hm
k (R

d)

a ∈ L1
(
[0, T]; Cm+1(Rd)

)
with ∇a ∈ L1

(
[0, T]; Cm

b (R
d)
)

Theorem
Let T > 0 andm ∈ N fixed, and let a,ϕ and θ satisfy the given assumptions.
Then there exists a unique solution q ∈ C

(
[0, T];Hm

k (R
d)
)
of the initial-value problem.

Moreover, there exists a constant C > 0, independent ofϕ, a, θ, q and T, such that the
following estimate holds true for any t ∈ [0, T]:

‖q(t)‖Hm
k

≤ C
(
‖ϕ‖Hm

k
+

∫ t

0
‖θ(τ)‖Hm

k
dτ

)
exp

(
C
∫ t

0
‖∇a(τ)‖Cmb dτ

)
.



Numerical approximation
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Consider a computational domain [−B,B]2 =: Ω, B � 0, and a
cell-centred finite-volume setting with equally spaced, non-overlapping
cells; cell size h > 0.
Discretization in time: intervals with equal length∆t > 0
Assume that f and q have compact support of f at all times t ∈ [0, T],
T > 0; set homogeneous Dirichlet boundary conditions.
Liouville equation

strong stability conserving Runge-Kutta method of second order
in time and Kurganov-Tadmor scheme in space (SSPRK2-KT)

Adjoint equation

additionally use second-order Strang splitting (KTS)



Kurganov-Tadmor approximation
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Uses generalized MUSCL flux with approximation rule for f at cell-edges and has
total-variation diminishing (TVD) property

Lemma The semi-discrete KT scheme is at least second-order accurate in space for smooth
f , except possibly at the points of extrema of f .

Lemma The SSPRK2-KT scheme is positivity preserving and conservative, in the sense that∑Nx
i,j f

k
i,j =

∑Nx
i,j f

0
i,j, k = 1, . . . ,Nt .

Lemma The solution f ki,j with a Lipschitz continous right-hand side g obtained with the
SSPRK2-KT-scheme is discrete L1 stable in the sense that

∥∥∥f k+1
·,·

∥∥∥
1,h

=
∥∥f0·,·∥∥1,h + ∆t

k∑
m=0

∥∥gm·,·∥∥1,h , k = 0, . . . ,Nt − 1

provided that the CFL condition holds (λ := ∆t/h),

λ
(
‖a0‖L∞T (L∞(Ω)) +

(
a1 + a2 B

)
max

{
|ua|, |ub|

})
≤ 1

4
.



Strang splitting scheme
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Rewrite the adjoint equation

− ∂tq(x, t) − a(x, t; u) · ∇q(x, t) = − θ(x, t)

as

− ∂tq(x, t)−∇ · (a(x, t; u(t)) q(x, t)) = − (∇ · a(x, t; u)) q(x, t) − θ(x, t).

We solve the Liouville part

− ∂tq(x, t)−∇ · (a(x, t; u(t)) q(x, t)) = 0

using the SSPRK2-KT scheme and the source and reaction term part

− ∂tq(x, t) = − (∇ · a(x, t; u)) q(x, t) − θ(x, t).

using Euler’s method.



Accuracy of the SSPRK2-KT scheme
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Theorem
Let f ∈ C3 be the exact solution of the Liouville equation, with countably
many extrema, and let

∥∥f 0·,· − f0(·, ·)
∥∥
1,h = O(h2). Under the CFL condition,

the solution f ki,j obtained with the SSPRK2-KT scheme is second-order
accurate in the discrete L1-norm as follows∥∥f Nt

·,· − f (·, ·, T)
∥∥
1,h ≤ D(T,Ω, λ) h2.
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Accuracy of the KTS scheme
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Theorem
Let q ∈ C3 be the exact solution of the adjoint equation, with countably
many extrema, and let

∥∥q0·,· + ϕ(·, ·)
∥∥
1,h = O(h2). Under the CFL

condition, the solution qki,j obtained with the KTS scheme is second-order
accurate in the discrete L1-norm as follows∥∥qNt

·,· − q(·, ·, T)
∥∥
1,h ≤ E(T,Ω, λ) h2.
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Projected semi-smoothNewton
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Consider the generalized Jacobian at u in direction δu. It is defined as
follows

Jr(u) δu := δu + Φ,

whereΦ is the solution to(
− ν

d2

dt2
+ γ

)
Φ = −

∫
Rd

∂a
∂u

f̂ · ∇q dx +

∫
Rd

div
(∂a
∂u

f
)
q̂ dx,

Φ(0) = Φ(T) = 0 ,

where f̂ , q̂ satisfy the linearised Liouville and adjoint equations.

Projection in H1 of new iterate on Uad is determined as follows

PUad (u) = argminũ∈Uad

γ

2
‖ũ− u‖2L2 +

ν

2

∥∥∥∥ d
dt

(ũ− u)
∥∥∥∥2
L2
.



Optimization algorithm
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Algorithm 1: Projected semi-smooth Newtonmethod

Require: u0, f0, θ, ϕ, tol > 0, nmax
Ensure: Optimal control u∗ and optimal state f ∗ = G(u∗)
1: Set l = 0
2: while ‖ul+1 − ul‖ > tol and l < nmax do
3: Solve Liouville equation ∂t f + div

(
a(x, t; u) f

)
= 0 , f|t=0 = f0

4: Solve adjoint equation − ∂tq − a(x, t; u) · ∇q = − θ, q|t=T = −ϕ

5: Solve linearized Liouville eq. ∂t f̂ + div(af̂ ) = − div(âf ), f̂ (x)
∣∣
t=0

= 0

6: Solve linearized adjoint eq. −∂t q̂− a · ∇q̂ = â · ∇q, q̂
∣∣
t=T = 0

7: Assemble JacobianJr(ul) and the gradientFr
8: SolveJr(ul) dl = −Fr(ul) (with e.g. GMRES)
9: Find stepsize σl (with e.g. Armijo line-search and H1 projection)

10: ul+1 = ul + σldl
11: l = l + 1
12: endwhile
13: return (f (ul), ul)



Num. exp. - unimodal Gauss
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Num. exp. - bimodal Gauss
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(a) top view (b) side view
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Kineticmodelswith collision



Keilson-Storermodel

Kinetic models with collision 54/69

For modeling collisions, we focus on the Keilson-Storer (KS) model.

C[f ] :=
∫

f (w, t) A(w, v) dw − f (v, t)
∫

A(v,w) dw,

linear kinetic model of colloidals suspended in a bath in thermal
equilibrium
application in, e.g., the estimation of transport coefficients, laser
spectroscopy, molecular dynamics simulations, reorientation of
molecules in liquid water, and quantum transport
microscopic derivation of the KSmaster equation is available

The adjoint KSmodel has not a kinetic structure but this structure is
required in order to apply Monte Carlo (MC) methods that are necessary in
the regime of dilute gases, where the continuum assumption is no longer
valid.



Keilson-Storer collision term
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It has a gain – loss structure

C[f ] :=
∫

f (w, t) A(w, v) dw − f (v, t)
∫

A(v,w) dw,

with collision kernel A(v,w) := A0e
(
−β|w−γ v|2

)
and γ ∈ [−1, 1], A0, β > 0.

For the post-collision velocity holdsw ∼ N (γv, (2β)−1).

Properties:

γ / 1: weak collisions, Brownian motion
γ ≈ 0 : strong collision, Bhatnagar-Gross-Krook (BGK) operator
collision frequency 1

τ = A0
√
π/β

detailed balance: A(w, v) f eq(w) = A(v,w) f eq(v).
equilibrium solution f eq(v) is the Maxwellian distribution
A0 and β related to the background density and temperature



KS optimal control problem
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We consider the following Liouville KS problem

∂tf + v · ∇x f + u(x) · ∇v f = C[f ]
f |t=0 = f0,

f (x, v, t)|∂Ω×Rd
<×(0,T] = f (x, v − 2n(n · v), t)

with specular reflection space boundaries;Rd
< := {v ∈ Rd | v · n(x) < 0}.

The control field u is sought in H1
0(Ω).

Suppose a desired trajectory in the phase space zD(t), t ∈ [0, T], and
desired final configuration zT . We choose the potentials θ and ϕ.

Our problem is to find u ∈ H1
0(Ω) such that the following ensemble cost

functional is minimised

J(f , u) :=
∫ T

0

∫
Q
θ(x, v, t)f (x, v, t) dx dv dt +

∫
Q
ϕ(x, v)f (x, v, T) dx dv +

ν

2
‖u‖2H1

where Q = Ω× Rd .



The KS adjoint equation
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The Liouville KS adjoint equation is given by

−∂tq(x, v, t)− v · ∇xq(x, v, t)− u(x) · ∇vq(x, v, t) = C̃[q](x, v, t)− θ(x, v, t)

with

C̃[q](x, v, t) =
∫

A(v,w) q(x,w, t) dw − q(x, v, t)
∫

A(v,w) dw.

The operator C̃[q] has not a gain-loss structure, but such a structure can be
partially recovered defining

C∗[q](v, t) =
∫
A∗(w, v) q(w, t) dw − q(v, t)

∫
A∗(v,w) dw,

A∗(w, v) = 1
γ A(v,w)∫ (

A(w, v)− A(v,w)
)
dw = 1−γ

τq
=: C∗

0.

‘adjoint’ mean free time τq = γ τ



Reformulation of the KS adjoint

Kinetic models with collision 58/69

We choose θ and ϕ as follows

θ(z, t) := − Cθ
2πσ2

θ

exp
(
−|z − zD(t)|2

2σ2
θ

)
, σθ > 0.

and

ϕ(z) := − Cϕ
2πσ2

ϕ

exp
(
−|z − zT)|2

2σ2
ϕ

)
, σϕ > 0.

With this choice, θ and ϕ play the role of sources (or sinks) of particles.

The adjoint KSmodel is given by

−∂tq − v · ∇xq − u(x) · ∇vq = C∗[q] + C∗
0q − θ, q|t=T = −ϕ.

The forward and adjoint problems can be written introducing the
free-streaming operators

Lu = v · ∇x + u · ∇v , and L∗u = −Lu.



The reduced gradient inH1
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The L2 gradient of the reduced cost functional is given by

∇Jr(u)
∣∣
L2(x) = −ν∆u(x) + ν u(x) +

∫ T

0

∫
Rd

q(x, v, t)∇v f (x, v, t) dv dt.

However, the update for the control needs the H1 reduced gradient.
Considering the Riesz representative of J′r(u) on different Hilbert spaces:(

∇Jr(u)
∣∣
L2 , δu

)
L2 =

(
∇Jr(u)

∣∣
H1 , δu

)
H1 , δu ∈ H1.

Thus, the H1 gradient is obtained as the solution to the following
boundary-value problem

−∆ψ + ψ = ∇Jr(u)
∣∣
L2 , ψ

∣∣
∂Ω

= 0.

That is,∇Jr(u)
∣∣
H1 = ψ.



KS optimality system
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∂tf (x, v, t) + Luf (x, v, t) = C[f ](x, v, t),
f (x, v, 0) = f0(x, v)
f (x, v, t)|∂Ω×Rd

<
= f (x, v − 2n(n · v), t)

− ∂tq(x, v, t) + L∗uq(x, v, t) = C∗[q](x, v, t) + C∗
0 q(x, v, t)− θ(x, v, t),

q(x, v, T) = −ϕ(x, v)
q(x, v, t)|∂Ω×Rd

>
= q(x, v − 2n(n · v), t)

−ν∆u(x) + ν u(x) +
∫ T

0

∫
Rd

q(x, v, t)∇v f (x, v, t) dv dt = 0

u|∂Ω = 0.



Simulation scales &Numerics
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In the long term, we are concerned with methods for calibration, control, and optimization of kinetic models, especially in
the mesoscopic regime where probabilistic aspects of the evolution of particles play an essential role.

This is the case in the simulation of rarefied gases with high Knudsen number (the ratio of the mean-free path and the
characteristic length of the problem).

The mesoscopic setting accommodates the case where the coefficients of the model are prescribed probabilistically by
some distribution functions.

Although kinetic models are partial-integro differential equations, methods developed in a deterministic context cannot

always be applied and computation by Monte Carlo methods could be required.



Monte Carlomethods
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Split the solution operator using the kinetic description of gases that
consists of a deterministic free flight (Newton’s law of motion) between
two collisions

ẋ = v, v̇ = u(x),

and probabilistic collision (Keilson-Storer kernel) according to a certain
collision frequency τ

δt = −τ log(r), w = γv +
p
2β
.

where r uniform random number, p normal random number.

Particles are list of pointers Fk , Qk storing position and velocity at time
step k. A computational mesh is required only to compute the integral for
the evaluation of the gradient.



KS adjoint andMonte Carlo
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∂sq− v · ∇xq − u(x) · ∇vq = C∗[q] + C∗
0q− θ, q|s=0 = −ϕ.

The KS adjoint model consists out of a free-streaming part, a collision
part, a reaction term and a source term. We have collision frequency
(γτ)−1 and post-collision velocitiesw∗ ∼ N

(
v/γ, (2βγ2)−1

)
.

For reaction term C∗
0 q:

For all particles p in Qk: Generate r∗ := b∆t C∗
0c particles with

the velocity Qk[p].v and position Qk[p].x.
Add these particles to the existing ones in Qk.

For the source term−θ:
Generate Nfrac new particles with phase space components
having the normal distribution with mean zD(tk) and variance
σ2θ : v ∼ N

(
zD(tk), σ2θ

)
.

Add these particles to the existing ones in Qk



Monte Carlo algorithm
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Input
u0(t), f0(x, v)
θ(x, v, t), ϕ(x, v)

solve KS

equation using MC

collision + pusher

+ control

⇒ fl(x, v, t)

solve KS adjoint

equation using MC

collision + pusher

+ control + θ, ϕ
⇒ ql(x, v, t)

Calculate gradient gl ← [ fl, ql, ul

Update control

ul+1 = ul + σldl

Calculate step-direction using

the NCG method: dl ← [ gl, gl−1

Calculate step-size σl ←[ gl, f l+1, ql+1

Check termination

criterion

l = l + 1

∆t ∆t

Diagnosis,

〈(x, v)〉, (gl)l , (Jr (ul))l , . . .

l = l + 1



Num. exp. - Harmonic oscillator
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f0(x, v) = 1
2π·0.15·5.0 exp

(
− 1

2

[( x−5.0
0.15

)2
+

( v−0.0
5.0

)2])
,

zD(t) = (1.5 cos(ωt) + 5.0,−1.5 sin(ωt))T , F(x) = −ω2(x − 5)



Boltzmann equation
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We use the Boltzmann collision kernel (binary collision)

CB[f , f ](x, v, t) =
∫
R3

∫
S2
|v − w|c(|v − w|, ϑ)(fv′ fw′ − fv fw) dϑ dw,

with

v′ =
v + w
2

+
|v − w|

2
ϑ, w′ =

v + w
2

− |v − w|
2

ϑ

Choose the external force u = (E ,B)

F(x, v; u) =
(
a0(x) + a1 E(x) + a2 v × B(x)

)
.

Consider the Boltzmann equation in full phase space

∂tf (x, v, t) + v · ∇x f (x, v, t) + F(x, v; u) · ∇v f (x, v, t) = CB[f , f ](x, v, t)

v

w

v′

w′



Experiments
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Control for charged particles
confinement;F(x) = E(x)

Control for beam constriction;
F(x, v) = v × B(x)

Work in collaboration with SPARC Industries



Connections betweenmodels

Kinetic models with collision 68/69

The Boltzmann equation for massive particlesM immersed in a
viscous fluid and subject to collisions with much smaller
particles of massm << M is approximately linear and
describes Brownian motion2

A linear Boltzmann equation becomes the drift-diffusion
(Fokker-Planck) equation in the small-diffusion limit3

The Liouville equation results by vanishing viscosity of the
Fokker-Planck equation4

Collisions in the classical Boltzmann equation can be framed
in the PDP framework5

In phase space and with underlying hamiltonian dynamics, the
Liouville equation is the Vlasov equation

2
D. Montgomery, Brownian motion from Boltzmann’s equation, Phys. Fluids, 14 (1971), 2088–2090.

3
J. Keilson and J. E. Storer, On Brownian motion, Boltzmann’s equation, and the Fokker-Planck equation, Quart. Appl.

Math., 10 (1952), 243–253.
4
E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer, 1996.

5
S. Rjasanow andW. Wagner, Stochastic Numerics for the Boltzmann Equation, Springer, 2005.



Remarks on ensemble control
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1. Open-loop and closed-loop strategies can be accommodated
both in this framework.

Open-loop: the functional dependence on x is given while
dependence on t (i.e. u = u(t)) must be determined;
Closed-loop: the functional dependence on both x and tmust
be determined (i.e. u(x, t)).

2. Also in the open-loop case a robust control can be obtained.
3. Appropriate choice of the functional dependence on x may

allow to obtain a good approximation of the closed-loop
control function while being easier to implement.

4. This framework can be applied in general in the context of
continuity equations and density functions representations.

5. It is a rich source of challenging mathematical problems.
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