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Qualitative/Quantitative results

In the study of the NSE equations

∂tv +∇ · (v ⊗ v)− ν∆v +∇p = f div v = 0,

there is a landmark paper by O. Reynolds (1883) “An experimental
investigation of the circumstances which determine whether the motion
of water shall be direct or sinuous, and of the law of resistance in parallel
channels”,

Invariance of scaling of the Navier Stokes equations is studied x ′ = Lx
and v′ = Uv, obtaining the non-dimensional form

∂tv +∇ · (v ⊗ v)− 1

Re
∆v +∇p = f, Re = UL ν−1

and a criterion about the stability in terms of Re.
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Qualitative/Quantitative results

1941 Kolmogorov’s theory predicts that simulating turbulent flows by
using the Navier-Stokes Equations

∂tv +∇ · (v ⊗ v)− ν∆v +∇p = f,

div v = 0,

u(0, x) = u0(x),

requires N = O(Re9/4) degrees of freedom, where

Re = UL ν−1

denotes the Reynolds number and U and L are a typical velocity and
length, respectively.
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Qualitative/Quantitative results

This number N is too large, in comparison with computational
capabilities (especially available memory) of actual computers, to perform
a Direct Numerical Simulation (DNS).

“It must be admitted that the problems are too vast to be solved
by a direct computational attack.” (J. von Neumann, 1949)

Indeed, for realistic flows (geophysical flows) Re = O(108), yielding N of
order 1018....but also smaller values of Re are challenging.
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Introduction to averaging

It is clear that we cannot resolve all (significant) scales of the flow, but
we can try to decompose the velocity as

v = v + v′

where v is the mean velocity (to be specified) and v′ are the turbulent
fluctuations (baptized in this way by Lord Kelvin).

There are some fundamental issues:

Is this physically sound?

How to mathematically define averages.

Write algebraic, partial, integro, pseudo differential (whatsoever)
equations for the averages.
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The basic (mathematical) goal

The basic goal is to have a system of PDE’s involving only the averaged
field, with good mathematical properties.

This his approach for describing and simulating the large scales, find its
“modern” origin with J. Smagorinsky, J.-L. Lions, and
O.A. Ladyžhenskaya ∼ 1960, with rather different motivations.

The analysis of these models was strictly linked with the theory of
monotone operators of which the p-Laplacian is the fundamental model
∆pu := div (|∇u|p−2∇u).
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Smagorinsky model

The Smagorinsky model ∼ 1960 have been used earlier by von Neumann
and Richtmyer ∼ 1950.

∂tv − CS`
2div

(
|∇v|∇v

)
+∇ · (v ⊗ v)− ν∆v +∇p = f,

div v = 0,

v(0, x) = v0(x),

where ` has the dimension of a length (smallest resolved scale)

For this model extensive testing of the numerical properties has been
performed.

A limitation (others to be discussed later on) is that it suggests that
involves a single length scale, the Prandtl one.
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A few remarks

The operator used by Smagorinsky (J.L. Lions for analysis) is not
rotational invariant. Better expression would be

A = −CS`
2div

(
|Dv|Dv

)
with Dv :=

∇v +∇vT

2
.

Theory pretty similar (Korn inequality), but fine properties of regularity
for operator with ∇ or D are still being studied (B., Růžička, Mazya,
Chianchi, Diening, Breit 2020-2021-2022....)
The existence theory uses the theory of monotone operators

〈Av − Au, v − u〉 ≥ 0

to pass to the limit in the Galerkin approximations.

The generalization

Ap = −div
(
|Dv|p−2Dv

)
was studied starting from Ladyžhenskaya for p > 2 as a possible
approximation of NSE by more dissipative models
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Prandtl and solid walls

Known numerical issues
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Prandtl and solid walls

The Smagorinsky model fits with Dirichlet conditions and it is based on
the assumption of a constant relevant length scale (too optimistic,
special features appear near to the boundary layer).

It has been adapted (van Driest damping for channel flow)

−∇ · (κ2z2|Dv|Dv) in {z > 0} ⊂ IR3

by imposing that the factor ` is a multiple of the distance from the flat
boundary: ` = `(z) = κz , where κ ∈ [0.35, 0.42] is the Von Kármán
constant
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Rotational models

The Boussinesq assumption suggests that –in average–fluctuations
dissipate energy: additional turbulent viscosity νT ≥ 0, which is
proportional to

the mixing length

the kinetic energy of fluctuations

at least in the Kolmogorov-Prandtl approximation.

In the analysis of Baldwin and Lomax 1978 (another algebraic model)
more accuracy in the simulation of the vorticity near to the boundary

νrotT ∼ `2(x)|ω(x)|,

where ` is a multiple of the distance from the boundary and
ω = curl v = ∇× v.

Rotational equation: curl (νrotT ω)
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Rotational Smagorinsky (Baldwin & Lomax)

Hence arriving to the model

∂tv − ν0 divDv + (∇v)v + CBLcurl
(
d2|ω|ω

)
+∇q = f in Ω,

div v = 0 in Ω,

v = 0 on ∂Ω,

(1)

where
d = d(x) = dist(x , ∂Ω).

Since ν0 << CBL the role of the classical linear dissipative term should be
disregarded: results valid in the limit is vanishing viscosities. (The
presence of ν0 > 0 would make the analysis much simpler).
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Modeling: alternate scalings

If one thinks of a flow as composed of eddies of different sizes

in a region of large eddies the velocity and its curl changes are both
O(1) of the typical distance;

in a region of smaller eddies the velocity changes over a distance of
O(eddy length scale), so the local deformation is O(1/eddy length
scale)

The BL model introduces a turbulent viscosity νT = (Cd)2|ω|, where d is
the (local) smallest resolved scale

νT =

{
O(d2) in regions where |ω| = O(1)

O(d) in the smallest resolved scale where |ω| = O(d−1).

Luigi C. Berselli On rotational eddy viscosity models



Introduction Modeling Analytical Theory Possible improvements

Modeling: alternate scalings

If one thinks of a flow as composed of eddies of different sizes

in a region of large eddies the velocity and its curl changes are both
O(1) of the typical distance;

in a region of smaller eddies the velocity changes over a distance of
O(eddy length scale), so the local deformation is O(1/eddy length
scale)

The BL model introduces a turbulent viscosity νT = (Cd)2|ω|, where d is
the (local) smallest resolved scale

νT =

{
O(d2) in regions where |ω| = O(1)

O(d) in the smallest resolved scale where |ω| = O(d−1).

Luigi C. Berselli On rotational eddy viscosity models



Introduction Modeling Analytical Theory Possible improvements

Modeling: alternate scalings

By extrapolation motivated by experiments the following alternate scaling
has been also proposed

νT = (Cδ)α=p−1|Dv |p−2 1 < p <∞.

It satisfies

νT =

{
O(dp) in regions where |ω| = O(1)

O(d) in the smallest resolved scale where |ω| = O(d−1),

which corresponds to the critical value α = p − 1 (α = 2 if p = 3).

We give a justification of the critical value p − 1, based on dimensional
arguments.

Both the ∇v and ω have dimensions T−1, where T is a time.
Hence in B&L model νT = d2|ω| ∼ L2T−1, has the dimensions of a
viscosity.

This is the only way to identify (by using only a typical length and the
vorticity) a quantity with the dimensions of a viscosity.
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Modeling: alternate scalings

A possible choice is that of using a third quantity: the friction velocity

v∗ =
√
τwall/ρ ∼ LT−1.

We propose to find a turbulent viscosity of the following form

νT ∼ vθ∗d
α|ω|p−2,

The dimensions of this quantity are νT ∼ Lθ+αT 2−θ−p, hence to be
dimensional consistent one has to solve the following system{

θ + α = 2

2− θ − p = −1
=⇒ θ = 3− p and α = p − 1.

which has a single solution
It turns out again that the “correct” exponent is α = p − 1 and

S(v∗, d(x), ω) ∼ v3−p
∗ d(x)p−1|ω|p−2ω.
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The Rotational Smagorinsky: a PARABOLIC (in certain
spaces) problem DEGENERATE at the boundary

The model we are considering is then the following

∂tv + ω × v + curl
(
Cα`

α|ω|ω
)

+∇q = f in (0,T )× Ω,

ω = curl v in (0,T )× Ω,

div v = 0 in (0,T )× Ω,

v = 0 on (0,T )× ∂Ω,

v(0) = v0 in Ω,

(2)

Ω is a smooth bounded domain in IR3

` is the Prandtl mixing length,

0 < α < 2 = 3− 1 is a given exponent,

Cα > 0 is a calibration constant,

v is the mean velocity,

ω is the mean vorticity,

q the Bernoulli pressure + potentials
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The Rotational Smagorinsky: main result

Theorem (Existence in weighted spaces, weight=distance from boundary)

Let `(x) = d(x , ∂Ω) and α ∈ [0, 2), 0 < T <∞, v0 ∈ L2
σ(Ω), and

f ∈ L3/2(0,T ; (W 1,3
0 (Ω, dα)∗). Then, ∃ a weak solution to (2) s.t.

v ∈ C ([0,T ]; L2
σ(Ω)) ∩ L3(0,T ;W 1,3

0,σ (Ω, dα)),

and for all t ∈ [0,T ]

1

2
‖v(t)‖2 +

ˆ t

0

ˆ
Ω

Cαd
α |ω|3 dx ds =

1

2
‖v0‖2 +

ˆ t

0

〈f , v〉W 1,3
0 (Ω,dα)ds.

The limitation α < 2 seems to be intrinsic to the problem due to the fact
that dα is not anymore a Muckenhoupt weight for α ≥ 2
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Classical abstract tools

We recall that for a Stationary problem

Au = f A : V → V ′ (separable reflexive Banach)

existence follows from

A bounded: ‖Au‖V ′ bounded if ‖u‖V bounded.

A hemi-continuous: λ 7→< A(u + λv),w > continuous

A monotone: < Au − Av , u − v >≥ 0

A coercive: <Av ,v>
‖v‖ →∞ if ‖v‖ → ∞

Often this framework is not enough and more general properties are
needed.
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Brezis’ pseudo-monotonicity

A powerful generalization came with early work of Brezis and the notion
of pseudo-monotonicity

A is pseudo-monotone if ∀ (xn)n∈N ⊆ X from

xn
n→∞
⇀ x in X ,

lim sup
n→∞

〈Axn, xn − x〉X ≤ 0,

it follows that 〈Ax , x − y〉X ≤ lim infn→∞ 〈Axn, xn − y〉X for all y ∈X .

Bounded+coercive+pseudo-monotone ⇒ existence
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Brezis’ pseudo-monotonicity

The proto-typical example of pseudo-monotone is

A + B hemi-continuous monotone + compact

This derives from some general properties: Let A,B : V → V ∗

If A is monotone and hemicontinuous, then A is pseudo-monotone.

If A is strongly continuous, then A is pseudo-monotone.

If A and B are pseudo-monotone, then A + B is pseudo-monotone.

Strategy used by J.L. Lions for the p-Navier-Stokes equations: the
treatment of “lower order terms” as a compact operator needs usually
additional information on the time derivative.
The incorporation of the time derivative into the function space is
however critical w.r.t the coercivity.
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additional information on the time derivative.
The incorporation of the time derivative into the function space is
however critical w.r.t the coercivity.
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The evolution problem

For I := (0,T ), T ∈ (0,∞), and p ∈ (1,∞), we set

X := Lp(I ,V ) and Y := L∞(I ,H).

W := W 1,p,p′(I ,V ,V ∗) :=
{
u ∈ X | ∃ du

dt ∈ Lp
′
(I ,V ∗)

}
,

the Bochner–Sobolev space w.r.t. the evolution triple (V ,H, id).

For u0 ∈ H and f ∈ Lp
′
(I ,V ∗), a solution u ∈W of the evolution

equation du
dt + Au = f is

ˆ
I

〈du
dt

(t) + A(u(t)), v(t)
〉
V

=

ˆ
I

〈f (t), v(t)〉V dt ∀v ∈ X ,

uc(0) = u0 in H.

Luigi C. Berselli On rotational eddy viscosity models



Introduction Modeling Analytical Theory Possible improvements

The evolution problem

For I := (0,T ), T ∈ (0,∞), and p ∈ (1,∞), we set

X := Lp(I ,V ) and Y := L∞(I ,H).

W := W 1,p,p′(I ,V ,V ∗) :=
{
u ∈ X | ∃ du

dt ∈ Lp
′
(I ,V ∗)

}
,

the Bochner–Sobolev space w.r.t. the evolution triple (V ,H, id).

For u0 ∈ H and f ∈ Lp
′
(I ,V ∗), a solution u ∈W of the evolution

equation du
dt + Au = f is

ˆ
I

〈du
dt

(t) + A(u(t)), v(t)
〉
V

=

ˆ
I

〈f (t), v(t)〉V dt ∀v ∈ X ,

uc(0) = u0 in H.

Luigi C. Berselli On rotational eddy viscosity models



Introduction Modeling Analytical Theory Possible improvements

Tools for existence

Extension to time-dependent problems

Definition (Bochner pseudo-monotonicity)

A :X ∩Y→X ∗ is Bochner pseudo-monotone if for a sequence
(un)n∈N⊆X ∩Y from

un
n→∞
⇀ u in X .

un
∗
⇁ u in Y (n→∞),

un(t)
n→∞
⇀ u(t) in H for a.e. t ∈ I ,

and

lim sup
n→∞

〈Aun,un − u〉X ≤ 0,

it follows that
〈Au,u − v〉X ≤ lim infn→∞ 〈Aun,un − v〉X for every v ∈ X .
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Tools for existence

Definition (Bochner coercivity)

An operator A : X ∩Y → X ∗ is called:

(i) Bochner coercive with respect to f ∈ X ∗ and u0 ∈ H if there is
a constant M := M(f , u0,A) > 0 such that for every
u ∈ X ∩Y from

1
2‖u(t)‖2

H + 〈Au − f ,uχ[0,t]〉X ≤ 1
2‖u0‖2

H for a.e. t ∈ I ,

it follows that ‖u‖X∩Y = ‖u‖X + ‖u‖Y ≤ M.

(ii) Bochner coercive if it is Bochner coercive with respect to
f and u0, for every f ∈ X ∗ and u0 ∈ H.

Theorem (Abstract existence)

if A : X ∩Y → X ∗ is bounded, Bochner pseudo-monotone, and
Bochner coercive, then the corresponding evolution problem
du
dt + Au = f is solvable for any initial datum u0 ∈ H.
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Existence theorem: practical case

Proposition

Let A : V → V ∗ and ∃ p ∈ (1,∞) and ∃ c0, c1 > 0 such that:

(C.1) ‖Av‖V ∗ ≤ c0‖v‖p−1
V ∀ v ∈ V .

(C.2) A : V → V ∗ is pseudo-monotone.

(C.3) 〈Av , v〉V ≥ c1‖v‖pV ∀ v ∈ V .

Then, the induced operator A : X ∩Y → X ∗

〈Au, v〉X :=

ˆ
I

〈A(u(t)), v(t)〉V dt,

is well-defined, bounded, Bochner pseudo-monotone, Bochner coercive.

It is enough to check properties for each fixed t ∈ I !
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Functional setting: Weighted spaces

Lp(Ω, %) :=
{
f : Ω→ IRn measurable :

ˆ
Ω

|f (x)|p %(x)dx <∞
}
.

note that Lp(Ω, dα) ⊂ L1(Ω) if

α < p − 1.

W k,p(Ω, %) := {f : Ω→ IRn : Dαf ∈ Lp(Ω, %) for all α s.t. |α| ≤ k} ,

( ´
Ω
dα|∇f|p dx

) 1
p

is an equivalent norm in W 1,p
0 (Ω, dα), provided that

0 ≤ α < p − 1.
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Definition

We say that a weight % ∈ L1
loc(IR3) belongs to the Muckenhoupt class Ap,

for 1 < p <∞, if there exists C such that

sup
Q⊂IRn

(  
Q

%(x)dx

)( 
Q

%(x)1/(1−p) dx

)p−1

≤ C ,

where Q denotes a cube in IR3.

Lemma

The function %(x) =
(
d(x)

)α
is a Muckenhoupt weight of class Ap if and

only if −1 < α < p − 1.

Lemma

For −1 < α < p − 1 there exists a constant C = C (Ω, α, p) such that

ˆ
Ω

dα|∇v |p dx ≤ C

ˆ
Ω

dα|curl v |p dx ∀ v ∈W 1,p
0,σ (Ω, dα). (3)
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Hardy-Sobolev-CKN inequalities

We will extensively use: p ∈ [1, n), α 6= p − 1 and q ∈ [p, np
n−p
]

(ˆ
Ω

d
q
p (n−p+α)−n|f |q dx

) 1
q

≤ c

(ˆ
Ω

dα|∇f |p dx
) 1

p

, (HS)

called CKN if d(x , ∂Ω) is replaced by ‖x‖ = d(x , 0).

(p, α)-Hardy inequality, for p ∈ (1,∞) and α 6= p − 1,(ˆ
Ω

dα−p|f |p dx
) 1

p

≤ c

(ˆ
Ω

dα|∇f |p dx
) 1

p

. (H)

Lemma

(V ,H, id) :=
(
W 1,3

0,σ (Ω, dα), L2
σ(Ω), id

)
is an evolution triple:

α ∈ [0, 2) :

(ˆ
Ω

|u|2 dx
)1/2

≤ Cα,Ω

(ˆ
Ω

dα|curl u|3 dx
)1/3

.

Luigi C. Berselli On rotational eddy viscosity models



Introduction Modeling Analytical Theory Possible improvements

Hardy-Sobolev-CKN inequalities

We will extensively use: p ∈ [1, n), α 6= p − 1 and q ∈ [p, np
n−p
]

(ˆ
Ω

d
q
p (n−p+α)−n|f |q dx

) 1
q

≤ c

(ˆ
Ω

dα|∇f |p dx
) 1

p

, (HS)

called CKN if d(x , ∂Ω) is replaced by ‖x‖ = d(x , 0).

(p, α)-Hardy inequality, for p ∈ (1,∞) and α 6= p − 1,(ˆ
Ω

dα−p|f |p dx
) 1

p

≤ c

(ˆ
Ω

dα|∇f |p dx
) 1

p

. (H)

Lemma

(V ,H, id) :=
(
W 1,3

0,σ (Ω, dα), L2
σ(Ω), id

)
is an evolution triple:

α ∈ [0, 2) :

(ˆ
Ω

|u|2 dx
)1/2

≤ Cα,Ω

(ˆ
Ω

dα|curl u|3 dx
)1/3

.

Luigi C. Berselli On rotational eddy viscosity models



Introduction Modeling Analytical Theory Possible improvements

Hardy-Sobolev-CKN inequalities

We will extensively use: p ∈ [1, n), α 6= p − 1 and q ∈ [p, np
n−p
]

(ˆ
Ω

d
q
p (n−p+α)−n|f |q dx

) 1
q

≤ c

(ˆ
Ω

dα|∇f |p dx
) 1

p

, (HS)

called CKN if d(x , ∂Ω) is replaced by ‖x‖ = d(x , 0).

(p, α)-Hardy inequality, for p ∈ (1,∞) and α 6= p − 1,(ˆ
Ω

dα−p|f |p dx
) 1

p

≤ c

(ˆ
Ω

dα|∇f |p dx
) 1

p

. (H)

Lemma

(V ,H, id) :=
(
W 1,3

0,σ (Ω, dα), L2
σ(Ω), id

)
is an evolution triple:

α ∈ [0, 2) :

(ˆ
Ω

|u|2 dx
)1/2

≤ Cα,Ω

(ˆ
Ω

dα|curl u|3 dx
)1/3

.

Luigi C. Berselli On rotational eddy viscosity models



Introduction Modeling Analytical Theory Possible improvements

Functional setting

V := W 1,3
0,σ (Ω, dα) ‖v‖V :=

(ˆ
Ω

dα|curl v |3 dx
)1/3

H := L2
σ(Ω) ‖v‖H :=

(ˆ
Ω

|v |2 dx
)1/2

X := L3(I ,V ), Y := L∞(I ,H)

W :=
{

u ∈ L3(I ,V )| ∃ du

dt
∈ L3/2(I ,V ∗)

}
,

and define the operator A := S + B : V → V ∗

〈Sv ,w〉V :=

ˆ
Ω

dα|curl v |curl v · curlw dx ,

〈Bv ,w〉V :=

ˆ
Ω

(ω × v) · w dx ω = curl v .
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Verification of the hypotheses

Lemma (Monotonicity of A)

For smooth enough vector field ωi and for α ∈ IR+ it holds that

ˆ
Ω

(dα|ω1|p−2ω1 − dα|ω2|p−2ω2) · (ω1 − ω2)dx ≥ 0,

for any bounded function such that d : Ω→ IR+ for a.e. x ∈ Ω.

Lemma (Boundedness of B)

For all α ∈ [0, 2) the operator B : V → V ∗ is bounded. It satisfies
〈Bu, v〉V ≤ c‖u‖2

V ‖v‖V and 〈Bu, u〉V = 0, for all u, v ∈ V .

Lemma (Compactness of B)

For all α ∈ [0, 2) the operator B : V → V ∗ is compact.

Luigi C. Berselli On rotational eddy viscosity models



Introduction Modeling Analytical Theory Possible improvements

Verification of the hypotheses

Lemma (Monotonicity of A)

For smooth enough vector field ωi and for α ∈ IR+ it holds that

ˆ
Ω

(dα|ω1|p−2ω1 − dα|ω2|p−2ω2) · (ω1 − ω2)dx ≥ 0,

for any bounded function such that d : Ω→ IR+ for a.e. x ∈ Ω.

Lemma (Boundedness of B)

For all α ∈ [0, 2) the operator B : V → V ∗ is bounded. It satisfies
〈Bu, v〉V ≤ c‖u‖2

V ‖v‖V and 〈Bu, u〉V = 0, for all u, v ∈ V .

Lemma (Compactness of B)

For all α ∈ [0, 2) the operator B : V → V ∗ is compact.

Luigi C. Berselli On rotational eddy viscosity models



Introduction Modeling Analytical Theory Possible improvements

Sketch of the proof

multiplying and dividing a.e. x ∈ Ω by the positive function dα/3∣∣∣∣ˆ
Ω

(curl v × u) · w
∣∣∣∣ ≤ ˆ

Ω

d−α/6|u| dα/3|curl v | d−α/6|w |

≤
(ˆ

Ω

d−α/2|u|3
)1/3(ˆ

Ω

dα|curl v |3
)1/3(ˆ

Ω

d−α/2|w |3
)1/3

.

From (HS), for p ∈ [1, 3), α ∈ [0, 2), u ∈W 1,p
0,σ (Ω, dα)

(ˆ
Ω

d−
α
2 |u|

p(6−α)
2(3−p+α) dx

) 1
q

≤ c

(ˆ
Ω

dα|∇u|p dx
) 1

p

,

with

q :=
p(6− α)

2(3− p + α)
< p∗.

∀α ∈ [0, 2) ∃ p ∈ (1 + α, 3) such that 3 < q < p∗. Next, Ω bounded
implies V ↪→ L3(Ω, d−

α
2 ).
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Extension to other values of p > 3

The results remains valid (minor changes) for all p > 3.

Theorem

Let p > 3, α ∈ [0, p − 1), 0 < T <∞, v0 ∈ L2
σ(Ω), and

f ∈ Lp
′
(0,T ; (W 1,p

0 (Ω, dα)∗). Then, ∃ a weak solution to

∂tv + ω × v + curl
(
dα|ω|p−2ω

)
+∇q = f + BC and IC

such that

v ∈ C ([0,T ]; L2
σ(Ω)) ∩ Lp(0,T ;W 1,p

0,σ (Ω, dα))

1

2
‖v(t)‖2 +

ˆ t

0

ˆ
Ω

Cαd
α|ω|p =

1

2
‖v0‖2 +

ˆ t

0

〈f , v〉W 1,p
0 (Ω,dα).
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Extension to other values of p < 3?

The argument used to estimate B for p = 3 fails∣∣∣∣ˆ
Ω

(curl v × u) · w
∣∣∣∣

≤
(ˆ

Ω

d−αp
′/p|u|2p

′
) 1

2p′
(ˆ

Ω

dα|curl v |p
) 1

p
(ˆ

Ω

d−αp
′/p|w |2p

′
) 1

2p′

,

estimate the 1st-3rd with (HS) for q = 2p′ < p∗ ↔ p > 9
5 .

To apply (HS) the exponent is q = p
p−1

3p−3−α
3−p+α ,

=⇒ α ≤ 5p − 9

3
but α < p − 1 implies

p − 1 ≤ 5p − 9

3
⇐⇒ p ≥ 3.

Sharpness of Hardy–Sobolev → existence of weak sol. (if possible) needs
different methods/formulations of the problem (very weak sol?)
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The argument used to estimate B for p = 3 fails∣∣∣∣ˆ
Ω

(curl v × u) · w
∣∣∣∣

≤
(ˆ

Ω

d−αp
′/p|u|2p

′
) 1

2p′
(ˆ

Ω

dα|curl v |p
) 1

p
(ˆ

Ω

d−αp
′/p|w |2p

′
) 1

2p′

,

estimate the 1st-3rd with (HS) for q = 2p′ < p∗ ↔ p > 9
5 .

To apply (HS) the exponent is q = p
p−1

3p−3−α
3−p+α ,

=⇒ α ≤ 5p − 9

3
but α < p − 1 implies

p − 1 ≤ 5p − 9

3
⇐⇒ p ≥ 3.

Sharpness of Hardy–Sobolev → existence of weak sol. (if possible) needs
different methods/formulations of the problem (very weak sol?)
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Frame invariance and vortex identification

It is well-known since works by Speziale and Launder et al. ∼ 1980 that
LES modeling may have problems in rotational frames (or more general
under non-inertial change of reference system)

The mean velocity u, being an average of u transforms in the same way
as u, while

τ = −(u′ ⊗ u′)

should have the same invariance of u′ which is not necessarily that of
full-frame invariance (invariance with respect to x∗ = Q(t)x + b(t)), but
only extended Galilean invariance.
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Restrictions on τ

Reynolds stress models expression invariant for arbitrary translation
accelerations and should only be affected by rotations of the
reference frame through the intrinsic mean vorticity W = ω + 2Ω
(angular velocity)

All frame-dependent effects must vanish in the limit of 2D turbulence

Reynolds stress models must be consistent with the Taylor
Proudman theorem (statistically steady turbulence in a rapidly
rotating frame should be 2D)
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Failure of the classical EV models

Smagorinsky: νT = l2|Du|, it is frame-indifferent for all mean flows.
However, since it is frame-indifferent in 3D as well as in 2D,
incapable of describing the effects of rotation in retarding the energy
transfer process

B&L: νT = l2|W | = l2|ω + 2Ω| is ok in terms of invariance (use of
intrinsic vorticity)
In the limit of 2D there is a violation of material frame-indifference
(Coriolis force can be included in the pressure in 2D ). Next, the BL
model predicts that there is an increase in turbulent dissipation
corresponding to an increase in the rotation rate of the framing
which violates constraint ( violating of Taylor-Proudman theorem)

Nevertheless these two models have appealing analytical properties fitting
with the mathematical theory of monotone operators.
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Frame invariance vs vortex identification

The heuristic behind problem of designing a LES model in the family of
EV can be summarized as:

A major drawback of the eddy viscosity subgrid-scale stress mod-
els is their inability to represent correctly, with a single universal
constant, different turbulent fields in rotating or sheared flows,
near solid walls, or in transitional regimes.

This is at the basis of selective/dynamic eddy viscosity models (Germano
Piomelli, Moin, and Cabot 1991)

. . . the extra stress-tensor should be active only in the regions of
“high vortex activity”....
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Other models or criteria

A first 2D-criterion Okubo-Weiss (1970-1990) about Tr(∇u : ∇uT ) < 0
(elliptical point)
Then 3D Q-criterion Hunt, Wray, and Moin 1988 order to adaptively
detect regions of intense vorticity as those such that

1

2
(|ω| − |Du|) > 1

2
(Arbitrary threshold).

An associated EV model is then νT ( 1
2 (|ω| − |Du|)) with a

smooth-nonnegative function νT , even the identity.

Also this model suffers from growth when rotation increases & it is based
on a non-invariant quantity (not much better changing to 1

2 (|W | − |Du|))
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Vortex identification

So two problems are mixing, one is the vortex identification and the other
is the identification/modeling of an eddy viscosity.

The first observation is that ω is not a measure of rotation

1 Both laminar and turbulent boundary layer flows possesses vorticity.
(Blausius) Vorticity of laminar boundary layer flow is concentrated
near the wall surface and should be viewed as irrotational since the
streamlines and path-lines are all parallel and straight.

2 Vorticity doesn’t directly represent rotation even though rigid body
rotation must possess vorticity. Therefore, vorticity could be small
while rotation is strong and vorticity could be large while rotation is
weak or none
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Vortex identification

The problem is that vorticity a Lagrangian transported quantity, but it is
not frame-indifferent. While being well-defined, it could be not the real
indication of rotation (like in vortices).

Moreover different observer in non-inertial reference frames could
determine large/small vorticity in a non-consistent way.

If rotation is an indication of unstable regions, the LES models should be
based on Lagrangian invariance .
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Vortex identification

Here, we illustrate the detection of rotationally coherent eddy boundaries
in velocity data derived from satellite-observed sea-surface heights η
under the geostrophic approximation Haller et al. 2016 (φ, θ)
longitude-latitude coordinate system.

·
φ = − g

R2f (θ) cos(θ)
∂θη

·
θ =

g

R2f (θ) cos(θ)
∂φη

where g is the constant of gravity, R is the mean radius of the Earth and
f (θ) = 2Ω sin(θ) is the Coriolis parameter, with Ω denoting the Earth’s
mean angular velocity. The publicly available (Archiving, Validation and
Interpretation of Satellite Oceanographic data) AVISO data are used.

Luigi C. Berselli On rotational eddy viscosity models



Introduction Modeling Analytical Theory Possible improvements

Vortex identification
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Vortex identification
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Vortex identification

Figure: Heavy particles (blue) converge to the centre of anticyclonic eddies.
Heavy particles (green) converge to the centre of cyclonic eddies.
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Vortex identification
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Helmholtz and beyond

Generally ∇u = Du + ω interpreted as “deformation + rotation”

Vorticity should be further decomposed into: 1) vortical vorticity
contributed to rotation and 2) non-vortical vorticity (e.g. vorticity
without rotation in laminar boundary layer flow)

ω = R + ω − R

R is vorticity as part of a vortex

ω = ω · R

|R|
R

|R|
+ remainder =

√
ΩΩΩ|ω| R

|R|
+ remainder

with

ΩΩΩ :=
(ω · R)2

|ω|2|R|2

Pure deformation ΩΩΩ = 0 while the rigidly rotational flow ΩΩΩ = 1. Note
that 0 ≤ ΩΩΩ ≤ 1

When vorticity is aligned with vortex axial, the deformation will become
very small.
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Omega vortex identification

New methods have been proposed to estimate ΩΩΩ (Liu et al 2016)

ΩΩΩ =
(ω · R)2

|ω|2|R|2
∼ |ω|
|Du|+ |ω|

∈ [0, 1]

In terms of a 2D rigid-body vortex with a uniform angular velocity φ it is
easy to verify Du = 0 and then ΩΩΩ = 1

When vorticity is aligned with rotation the deformation is small
(vortex=area where projection of vorticity in the rotating axial is about
the same)

Why the numerator |ω|, and the sum of deformation and vorticity
becomes the denominator?
The 2 quantities are not independent: the shear strain rate (stress in
Newtonian fluids) decreases as the vortical vorticity grows.
Dissipation of vortical flow is lower than the corresponding non-vortical
flow, like laminar boundary layer. The rotation state is more stable:
transition laminar → turbulent is a process toward to a more “stable
state”.
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Vortex Omega and LES

Unlike solid body which can have rotation without any deformation,
vortex in fluid flow is always a mixture of vorticity and deformation. The
omega criteria just shows the vorticity overtakes the deformation when
the “vortex” is formed.

The corresponding EV would by

νT = νT (
|ω|

|Du|+ |ω|
)

Or better

νT = νT (
|W |

|Du|+ |W |
)

Some argues to have a better identification with rotation

νT = νT (
|ω −

ffl
ω|

|Du|+ |ω −
ffl
ω|

)

This because in an accelerating rotating frame

ω∗ = QT (t)ωQ(t)− QT (t)
.

Q(t) ω∗ −
 
ω∗ = QT (t)

(
ω −

 
ω
)
Q(t)
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Thank you for your attention!
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