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1.1. Behavioral Crowd Dynamics

The study of human crowds can contribute to the well-being of our
society. The study generates challenging analytic and computational
problems. The dynamics is in�uenced by social interactions and collective
learning. The modeling requires a multiscale vision and accounts for the
quality and geometry of the venue where the dynamics occur.

1. Behavioral Crowds: Complexity and Key Problems

2. Mathematical Tools and Social Dynamics

3. Pattern Dynamics and Safety Problems
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1.2. Behavioral Crowds: Complexity and Key Problems

• The greatest part of known models are based on the assumption of
rational, almost optimal, behaviors of individuals. However, real
conditions can show irrational behaviors that can generate events, where
crisis substitute safety.

• When irrational behaviors appear, small deviations in the input can
create large deviations in the output. Some of these events are not easily
predictable, however once they appeared, a rational interpretation can
often explain them. The term �black swan� is a metaphoric expression
used by Nassam Taleb to denote not predictable events.

• In some cases it might happen that antagonist groups �ght in a crowd.
The consequence is that unsafe situations can involve not aware citizens
and generate safety-security problems.

• Recent studies have been focused on the modeling of heterogeneous
awareness of the crowd to contagion problems.
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1.3. Behavioral Crowds: Complexity and Key Problems

• The recent literature on crowd modeling has enlightened the need of a
modeling approach, where the behavioral features of crowds, to be
viewed as a living, hence complex system, are taken into account.

• The most important feature is the ability to express a strategy which is
heterogeneously distributed among walkers and it depends on their state
and on that of those in their surrounding environment.

• Heterogeneity can include a possible presence of di�erent groups. For
instance, attracting the crowd to their own strategy towards the selection
of optimal routes among the various available ones.

• Stress conditions which, in some cases are simply induced by
overcrowding, can have an important in�uence on the dynamics crowds
and a�ect safety.
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1.4. Behavioral Crowds: Complexity and Key Problems

Modeling Strategy

1. Assessment of the complexity features of crowds viewed as living
systems;

2. Selection of the social phenomena to be inserted in the model;

3. Subdivision into di�erent groups related both to social and
mechanical features which have to be precisely referred to the type
of dynamics which is object of modeling;

4. Selection of the modeling scale and derivation of a mathematical
structure consistent with the requirements in the �rst three items;

5. Derivation of models by inserting, into the said structure, the
mathematical description of interactions for both social and
mechanical dynamics including their reciprocal interplay.
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1.5. Behavioral Crowds: Complexity and Key Problems

• A Multiscale Vision: Modeling of individual based interactions are
used �rstly to derive models at the microscopic scale and, subsequently,
kinetic type models, namely at the mesoscopic scale. Asymptotic
methods lead to hydrodynamical models.

• The Role of Emotional State and Pattern Formation: The
presence of stress can induce signi�cant modi�cation in the overall
self-organization, and hence on the collective dynamics. A deep
understanding of possible social dynamics can contribute to account for
the interactions of di�erent even antagonist groups.

• Safety-Security Problems: Modeling and simulations can support
crisis management by means of platforms where the process of selecting
the most appropriate actions towards safety can be developed by
predictive engines which refer the real dynamics to a database, where a
huge number of simulations are stored.
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1.6. Behavioral Crowds: Complexity and Key Problems

Rare�ed, high density, contagion and heterogeneous �ows

N. Bellomo Social Crowds and Safety



1.7. Behavioral Crowds: Complexity and Key Problems

A Personal Quest on Kinetic Theory of Crowd Dynamics

• N. Bellomo and A. Bellouquid, and D. Knopo�, From the micro-scale
to collective crowd dynamics, SIAM Multiscale Model. Simul., 11,
(2013), 943�963.

• N. Bellomo and L. Gibelli, Toward a mathematical theory of
behavioral-social dynamics for pedestrian crowds, Math. Models Methods
Appl. Sci., 25, (2015), 2417�2437.

• N. Bellomo, L. Gibelli, and N. Outada, On the Interplay between
Behavioral Dynamics and Social Interactions in Human Crowds, Kinetic
Related Models, 12, (2019), 397�409.

• N. Bellomo, L. Gibelli, A. Quaini, and A. Reali, Towards a
mathematical theory of behavioral human crowds, Math. Models
Methods Appl. Sci., 32(2), (2022), 321�358. �Open access�.

• N. Bellomo, J. Liao, A. Quaini, L. Russo, and C. Siettos, Human
behavioral crowds review, critical analysis, and research perspectives,
Math. Models Methods Appl. Sci., 33, (2023),
https://doi.org/10.1142/S0218202523500379. �Open access�.
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1.8. Behavioral Crowds: Complexity and Key Problems

Recent articles on behavioral crowd dynamics

• N.L. Kontorovsky, C.G. Ferrari, J. P. Pinasco, and N. Saintier, Kinetic
modeling of coupled epidemic and behavior dynamics: The social impact
of public policies, Math. Models Methods Appl. Sci., 32, 2037�2076,
(2022).

• D. Kim and A. Quaini, Coupling kinetic theory approaches for
pedestrian dynamics and disease contagion in a con�ned environment,
Math. Models Methods Appl. Sci., 30(9), (2020).

• J. Liao and L. Zhou, A kinetic modeling of crowd evacuation with
several groups in complex venues, Math. Models Methods Appl. Sci.,
32(10), 1785�1805, (2022).

• Y. Bi, D. Li, and Y. Luo, Combining keyframes and image classi�cation
for violent behavior recognition, Applied Sciences, 12, 8014, (2022).

• J. Ma, M. Wang, and L. Li, Research on crowd dynamic risk
management based on the psychological stress perception function,
Journal Statistical Mechanics, 123405, (2022).
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1.9. Behavioral Crowds: Complexity and Key Problems

• M. Grave, A. Viguerie, G.F. Barros, A. Reali, R.F.S. Andrade, and
A.L.G.A. Coutinho, Modeling nonlocal behavior in epidemics via a
reaction�di�usion system incorporating population movement along a
network, Computer Methods in Applied Mechanics and Engineering, 401,
115541, (2022).

• Z. Sabeur and B. A. Zavar, Crowd behaviour understanding using
computer vision, Crowd Dynamics, Volume 3, Series: Modelling
Simulations Science Engineering Technology, 49�72, (2022).

• N. Bakhdil, A. El Mousaoui, A. Hakim, A kinetic theory approach to
model pedestrian social groups in bounded domains, Kinetic Related
Models, 24, (2023), doi:10.3934/krm.2023017.

• P. Agnelli, B. Bu�a, D.A. Knopo�, and G. Torres, A spatial kinetic
model of crowd evacuation dynamics with infectious disease contagion,
Bulletin Math. Biol., 85(4), Article 23, (2023).
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1.10. Behavioral Crowds: Complexity and Key Problems

Motivation and EU Projects

• Safety in evacuation dynamics: Modeling and simulations can
contribute to decision making of crisis managers in charge to guide
evacuation dynamics.

• Contagion awareness: Modeling and simulations can contribute to
improve the awareness of contagion risk in citizens.

• Pollution problems in cities: Modeling and simulations of tra�c
�ows, vehicles and crowds, can contribute to mitigate the pollution risk.

• eVACUATE: A holistic, scenario independent, situation-awareness
and guidance system for sustaining the Active Evacuation Route for large
crowds. Seventh Framework Programme.

• Safeciti: Simulation Platform for the Analysis of Crowd Turmoil in
Urban Environments with Training and Predictive Capabilities. Seventh
Framework Programme.
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1.11. Behavioral Crowds: Complexity and Key Problems

The quest towards mathematical tools to describe behavioral crowd
dynamics should not forget about the ambitious goal of developing a
mathematical theory of living systems.

• N. Bellomo, A. Bellouquid, L. Gibelli, and N. Outada, A Quest
Towards a Mathematical Theory of Living Systems, Birkhäuser, New
York, (2017).

End of Part I
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2.1. Mathematical Tools and Social Dynamics

Mathematical tools towards social dynamics in crowds

This part of the lecture focuses on the search for mathematical tools to
model crowd dynamics accounting for collective social dynamics. We do
start for the study of mathematical structures at each scale and, out of a
critical analysis, we select the kinetic theory approach.

A key issue of the search for mathematical tools is the the
approach rely on recent results on the mathematical theory of
living systems.
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2.2. Mathematical Tools and Social Dynamics

The dynamics depends on the geometry and quality of the venue

P

P

P

Inlet 

Exit 

Figure � Domain with exit and internal obstacles.

The set of all walls, including that of obstacles and of entrance and exit
doors, is denoted by Σ.
The physical quality of the venue is modeled by a parameter α ∈ [0, 1],
where α = 0 and α = 1 denote the worst and best quality, respectively.
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2.3. Mathematical Tools and Social Dynamics

Micro-scale structures Consider a human crowd with N pedestrians each
labeled by the subscript i ∈ {1, . . . , N}, their state is de�ned by:
position: xi = xi(t) = (xi(t), yi(t)); velocity:
vi = vi(t) = (vix(t), viy(t)); and activity (social variable): ui = ui(t).

The framework corresponds to a pseudo-Newtonian mechanics:

dui
dt

= zi,

dzi
dt

=
∑
j∈Ωi

ψi(xi,vi,ui,xj ,vj ,uj ;α,Σ),

dxi
dt

= vi,

dvi
dt

=
∑
j∈Ωi

ϕi(xi,vi,ui,xj ,vj ,uj ;α,Σ),

where Ωi be the interaction domain of the i-pedestrian, the notation
j ∈ Ωi indicates summation of all j-particles in Ωi.
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2.4. Mathematical Tools and Social Dynamics

Macro-scale structures, where (ρ, ξ,u) de�ne the state of the system:

- ρ = ρ(t,x) is the local density of the crowd at the point x and time
t, normalized with respect to the maximum packing density ρM .

- ξ = ξ(t,x) = ξ = ξ(t, x)ω(t, x) is the mean velocity at the point x
and time t, where the speed ξ is normalized with respect to the
maximum limit speed ξM . ξ is the dimensionless mean speed and ω
is the unit vector giving the direction of the local mean velocity;

- u = u(t,x) is the dimensionless local mean activity representing the
speci�c social-emotional state considered in each case study, with
u ∈ Du for a speci�c parameter domain.

The interaction domain Ω = Ω(t,x;ω(t,x)) is analogous to that at the
lower scales. The pedestrians at x perceive the action of all pedestrians in
Ω )non'local interactions).
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2.5. Mathematical Tools and Social Dynamics

Macro-scale structures

At the macroscopic scale, the human crowd is described by a second
order di�erential system for ρ(t,x), ξ(t,x) and u(t,x):

∂ρ

∂t
+∇x · (ρ ξ) = 0,

∂ξ

∂t
+ ξ · ∇xξ = A[ρ, ξ, u],

∂u

∂t
+∇x · (u ξ) = S[ρ, ξ,u],

(1)

where A is a pseudo-mechanical acceleration acting on pedestrians in the
in�nitesimal volume dx and S is a source term that implements locally
the emotional state generated by the interaction with the surrounding
pedestrians. Square brackets denotes that functional dependence with
respect to its arguments.
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2.6. Mathematical Tools and Social Dynamics

• Mesoscopic (kinetic): The micro-state of the interacting entities is
identi�ed by the position and velocity, while their representation is
delivered by a suitable probability distribution function over the
micro-state:

fi = fi(t, x, v, θ, u), x ∈ Σ ⊂ R3, v ∈ [0, 1], θ ∈ [0, 2π) u ∈ [0, 1],

where the overall system is subdivided into functional subsystems labeled
by the subscript i.
Macroscopic observable quantities can be obtained by weighted
moments. The local density and mean velocity ;

ρi(t,x) =

∫ 1

0

∫ 2π

0

∫ 1

0

fi(t, x, v, θ, u) vdv dθ du,

ξi(t,x) =
1

ρi(t,x)

∫ 1

0

∫ 2π

0

∫ 1

0

v fi(t, x, v, θ, u) vdv dθ du.
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2.7. Mathematical Tools and Social Dynamics

Common features in the modeling of interactions

1. All a-particles have a visibility angle related to their velocity
direction and a visibility radius depending on the quality and shape
of the venue. Within this visibility area, they can have a sensitivity
domain depending on the local density.

2. All a-particles are subject to di�erent stimuli, namely trend towards
a direction corresponding to a meeting point, a walking direction,
attraction by the motion of the other a-particles which, however, is
contrasted by a desire to avoid overcrowded areas.

3. The choice of the velocity direction corresponds to a weighted
selection of the stimuli related to the quality of the venue, the
emotional state and the local density.

4. Subsequently, a-particles adapt their speed to local density
accounting for the quality of the venue.

5. The emotional states is not a constant quantity, but it acts as a
microscopic variable to be inserted in the interactions at each scale.
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2.8. Mathematical Tools and Social Dynamics

• Rationale of the kinetic theory approach

I The overall system is subdivided into functional subsystems
constituted by entities, called active particles, whose individual state
is called activity.

I The state of each functional subsystem is de�ned by a probability
distribution over the micro-scale state: position, velocity, and
activity.

I The dynamics of the probability distribution is obtained by a balance
of number of particles within elementary volume of the space of the
microscopic states, where the dynamics of in�ow and out�ow of
particles is related to interactions a modeled by stochastic games.
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2.9. Mathematical Tools and Social Dynamics

Representation and interactions

• The state of functional subsystems is de�ned by: fi = fi(t, x, v, θ, u).

• Interactions involve, at each time t and for each FS, three types of
a-particles which play the game. The test particle, the �eld particle, and
the candidate particle. Their distribution functions are, respectively
fi(t,x,v, u), fk(t,x,v∗, u∗), and fh(t,x,v∗, u∗). The test particle, is
representative, for each FS, of the whole system. It loses its state by
interaction with the �eld particles, while the candidate particle can
acquire, in probability, the micro-state of the test particle.

• Interactions, which are nonlocal and nonlinear, can be modeled by the
following quantities: Interaction domain Ωs, interaction rate η, transition
probability density A which can depend on the micro-state and on the
distribution function of the interacting particles.
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2.10. Mathematical Tools and Social Dynamics

Hierarchy of the decision process

Interactions correspond to a decision process by which each walker
develops a strategy obtained by the following sequence of decisions:

1. Contagion of the emotional state u;

2. Selection of the walking direction;

3. Selection of the walking speed.

Decisions are supposed to be sequentially dependent

A(v∗ → v, u∗ → u) = Au(u∗ → u)×Aθ(θ∗ → θ)×Av(v∗ → v).

which depend also on the quality of the venue-environment.
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2.11. Mathematical Tools and Social Dynamics

Contagion of the emotional state The dynamics by which the stress
initially in Σs di�use among all walkers is driven by the highest value:

u∗ > u∗ : Au(u∗ → u|u∗, u∗) = δ
(
u− u∗ − ε(u∗ − u∗)(1− u∗)

)
,

u∗ ≤ u∗ : Au(u∗ → u|u∗, u∗) = δ
(
u− u∗

)
.

Dynamics of the velocity direction: At high density, walkers try to drift
apart from the more congested area moving in the direction of the less
congested areas, while at low density, walkers head for the target unless
their level of anxiety is high and induces a trend to follow the mean
stream.

Dynamics of the speed: Once the direction of motion has been selected,
walkers adjust their speed to the local density and mean speed
conditions. If the walker's speed is lower (higher) than the mean speed,
then the trend of the walkers increase (decreases) the speed.
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2.12. Mathematical Tools and Social Dynamics

Role of the perceived density : Walkers moving along a direction perceive
a density higher (lower) than the real one in the presence of positive
(negative) gradients. The attraction towards the target as it increases by
decreasing density.

Role of the emotional state: Increasing the emotional state increases the
attraction to the stream.

Role of the walls and obstacles: The presence of walls, which is modi�ed
by the distance from the wall, acts in a way that the search of less
congested areas decreases with decreasing distance.

Boundary conditions: Let fr and f i denote, respectively, the distribution
function after and before the interaction with the wall with directions θi
and θr. Then a re�ection model states the boundary conditions

fr(t,x, v, θr, u) =
|vi · n|
|vr · n|

∫
R(θi → θr) f

i(t,x, v, θi, u) dθ′i.
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2.13. Mathematical Tools and Social Dynamics
A general structure can be derived for a multi-component crowd with FSs crossing:

(∂t + v · ∂x) fi(t,x,v, u) = Qi[f ](t,x,v, u)

=

n∑
h=1

n∑
k=1

∫
D×D

ηhk[f ](x,v∗,v
∗, u∗, u

∗;α)

×Aihk[f ](v∗ → v, u∗ → u|v∗,v∗, u∗, u∗;α)

× fh(t,x,v∗, u∗)fk(t,x,v∗, u∗) dv∗ dv
∗ du∗ du

∗

−fi(t,x,v, u)

n∑
k=1

∫
D

ηik[f ](x,v,v∗, u, u∗;α)fk(t,x,v∗, u∗) dv∗ du∗.

Models are obtained by implementing this structure by models of
micro-scale interactions.

Technical details are available in N. Bellomo, L. Gibelli, A. Quaini, and
A. Reali, Towards a mathematical theory of behavioral human crowds,
Math. Models Methods Appl. Sci., 32(2), (2022), 321�358. �Open
access�.
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2.14. Mathematical Tools and Social Dynamics

The derivation of macroscopic equations from the underlying description
at the microscopic scale, within the kinetic theory framework,
corresponds to the Sixth Hilbert Problem.

• D. Hilbert, Mathematical problems, Bull. Amer. Math. Soc., 8(10),
437-479, (1902).

End Part II
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3.1. Pattern Dynamics and Safety Problems

This Part 3 presents a number of simulations developed by Monte Carlo
Particle simulations based on the mathematical model presented in Part
2.
We have in mind simulations that can provide useful indications to crisis
managers.
Finally some research perspectives are reported.
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3.2. Pattern Dynamics and Safety Problems

Simulations can be developed to support crisis managers.

Phenomenological

observations

Safety

requirements

Strategy

Crowd

modeling

Venue

modeling
Actions

Simulation storing

Selection of optimal action
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3.3. Pattern Dynamics and Safety Problems

Case study I: The speci�c features of the dynamics are simply described.
A movie will show how the dynamics evolves in time.

The crowd is constituted by two groups moving to opposite directions in
a rectangular venue of 20m × 5m.

The group on the left is composed of 40 people uniformly distributed in a
rectangular area 4m× 4m with the initial emotional state set to u ' 0.4
while the group on the right is composed of 20 people uniformly
distributed in a rectangular area of 4m× 2m with an higher level of
stressful condition, namely u ' 0.8.

The speed ξ, at initial time, is also homogeneously distributed over all
walkers at a value ξ0 ∼= u0.
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3.4. Pattern Dynamics and Safety Problems

Case study II: The crowd is waiting on a platform of an underground
and it is uniformly distributed. Then the crowd receives an order to
evacuate. Simulations compare the exit of a crowd with and without
contagion of emotional state.
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3.5. Pattern Dynamics and Safety Problems

Case study III: The crowd of 30ML person is con�ned in a square where
some of the natural exits have been closed. The dynamics shows the
onset of dangerous aggregations during forced evacuations.
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3.6. Pattern Dynamics and Safety Problems

A forward look to research perspectives. Examples of social dynamics
to be included in crowds modeling

1. Awareness to contagion dynamics: Awareness modi�es the
walkers' trajectories in order to preserve social distances. Actually
the behavior di�ers to the case of strss by perception of danger.

2. Leaders dynamics: A few leaders can drive the crowd along optimal
paths by attracting them to their walking strategy.

3. Competition between antagonist groups: Extreme situations,
where antagonist groups contrast each other in a crowd.

4. Learning dynamics from vocal or visual signalling: Vocal or
visual signals are used to control the dynamics of the crowd in risk
situations.
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3.7. Pattern Dynamics and Safety Problems

On the Sixth Hilbert Problem: Derivation of hydrodynamic models
from the underlying description at the microscopic scale.

... To treat in the same manner, by means of axioms, those phy-
sical sciences in which already today mathematics plays an im-
portant part.

... As to the axioms of the theory of probabilities, it seems to me
desirable that their logical investigation should be accompanied
by a rigorous and satisfactory development of the method of
mean values in mathematical physics, and in particular in the
kinetic theory of gases. ... Boltzmann's work....

The micro-macro derivation for models of crowds dynamics in unbounded
domains, has been treated in N. B. and A. Bellouquid, Comm. Math.
Sci., 13 (2015). Proving how the structure of macroscopic models is
modi�ed by social behaviors and by the presence of walls or obstacles, is
a highly challenging open problem.
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3.8. Pattern Dynamics and Safety Problems

Can a uni�ed approach can be designed for crowds and swarms?

The answer is de�nitely YES as the two collective systems present
common features. However, one has to go beyond the classical theory of
swarms and look for a mathematical theory of behavioral swarms.

• N. Bellomo, S-Y. Ha, and N. Outada, Towards a mathematical theory
of behavioral swarms, ESAIM: Control, Optimisation and Calculus of
Variations, 26 (2020), 125.
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3.9. Closure

Thanks to the audience and to co-authors on recent (≥ 2020)
papers on crowd dynamics

• Bouchra Aylaj, University Hassan II, Casablanca, Morocco.

• Livio Gibelli, The University of Edinburgh, Scotland, U.K.

• Damian A. Knopo�, CONICET, Argentina.

• Jie Liao, Shanghai University of Finance and Economics, China.

• Nisrine Outada, IRD-Sorbonne, France; Cadi Ayyad Univ., Morocco,

• Annalisa Quaini, The University of Houston, USA

• Alessandro Reali, University of Pavia, Italy.

• Luisa Russo, CNR, Napoli, Italy.

• Costantinos Siettos, Universita' degli Studi di Napoli Federico II, Italy.

The END - Thank You!
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