On parameter identification in macroscopic models for pedestrian crowds

Part I: G. Jankowiak, A. Iuorio, P. Szmolyan Part II: S. Gomes and A. Stuart

> SITE seminar NYU Abu Dhabi

Microscopic modelling

Force based models: position of an individual is determined by forces acting on it.

Newton's laws of motion

$$\begin{aligned} & \mathcal{T}_{i} & \dots & \mathcal{T}_{i} \\ & \mathrm{d}X_{i} = V_{i} \, \mathrm{d}t & & \text{follows the} \\ & \mathrm{d}V_{i} = F_{i}(X_{1}, \dots, X_{N}, V_{1}, \dots, V_{N}) \, \mathrm{d}t + \sigma_{i} \, \mathrm{d}B_{i}^{t}. \end{aligned}$$

Here $X_i = X_i(t)$ is the location of the i-th individual, $V_i = V_i(t)$ its velocity, F_i the forces acting on it, and dB_i some additive noise.

Overdamped Langevin dynamics:

$$\mathrm{d}X_i = F(X_1,\ldots,X_N)\,\mathrm{d}t + \sigma_i\,\mathrm{d}B_i^t.$$

Stochastic optimal control: Each individual wants to minimise a cost functional $J_i(X_1, \dots, X_N, V_i) = \mathbb{E}(\int_0^T L_i(X_i, V_i) + F(X_1, \dots, X_N) \, \mathrm{d}t)$

under the constraint that $dX_i = V_i dt + \sigma_i dB_i^t$, where L and F denote the running cost.

Microscopic modelling

Lattice based models:

- Consider a domain divided into a cells.
- Each cell centre represents a possible position of an individual.
- Individuals can jump from one cell to another with a certain transition rate.

Probability p_i to find an individual at a discrete lattice site X_i :

Challenges on the microscopic level:

- Highly nonlinear coupling
- Curse of dimensionality \Rightarrow development of reduced models
- Computational complexity

Macroscopic description

Nonlinear conservation law

Pedestrian density $\rho = \rho(x, t)$ satisfies

$$\partial_t \rho = \operatorname{div} \left(D(\rho) \nabla (E'(\rho) - V + W * \rho) \right).$$

where V = V(x) is a given external potential, $D = D(\rho)$ a nonlinear diffusivity, $E = E(\rho)$ the internal energy and W = W(x) an interaction energy.

Traffic flow model: Lighthill-Whitham-Richards (LWR) model

$$\partial_t \rho = \nabla \cdot (\rho v \nabla \phi).$$

where $\phi = \phi(x)$ is a given normalized potential and the velocity is computed via the *fundamental diagram*:

$$v(
ho) = v_{max} \left(1 - rac{
ho}{
ho_{max}}
ight)$$

where \textit{v}_{\max} denotes the maximum velocity and $\rho = \rho_{\max}$ the maximum density.

Hughes model for pedestrian flow

Hughes model for pedestrian flow

$$\begin{split} \lambda \xi_{\Delta p} \\ \partial_t \rho - \operatorname{div}(\rho \mathfrak{f}^2(\rho) \nabla \phi) &= 0, \\ \varepsilon_{2t} \phi + |\nabla \phi| &= \frac{1}{\mathfrak{f}(\rho) + \varepsilon_3} \quad \text{Erbonal equation} \\ \text{Possible models for } \mathfrak{f}: \mathfrak{f}(\rho) &= \rho_{max} - \rho \text{ or } \mathfrak{f}(\rho) = (\rho_{max} - \rho)^2. \end{split}$$

Analytical issues:

- nonlinear hyperbolic conversation law
- density dependent stationary Hamilton-Jacobi equation (eikonal type) $\rightarrow \phi \in C^{0,1}$ only
- fully coupled system

Available analytic results (existence and uniqueness) only for a regularised version of the Hughes model in 1D. $^{\rm 1}$

¹M. DiFrancesco, P.A. Markowich, J.F. Pietschmann, MTW, On Hughes model for pedestrian flow: the one-dimensional case, JDE, 2011

Available data

- Video surveillance data: e.g. kinect cameras giving height profiles
- Experimental data: e.g. pedestrian data base of the Forschungszentrum in Jülich.

(a) Kinect sensors mounted on the ceiling.

Left: Seer et al., Validating social force based models with comprehensive real world motion data, Transportation Research Procedia, 2014. Right: Courtesy of Armin Seyfried (Forschungszentrum Jülich), BaSiGo experiments (5 days, 31 experiments, 200 runs, 28 industrial cameras, 2200 participants in total)

Fundamental diagram

Steffen, B. and Seyfried, A. Methods for measuring pedestrian density, flow, speed and direction with minimal scatter Physica A, 2010

Cultural differences

U. Chattaraj, A. Seyfried, *Comparison of pedestrian fundamental diagram across cultures*, Advances in Complex Systems 12(3), 2009

Part I: Stationary profiles and asymptotic profiles of a PDE model for unidirectional pedestrian flows

Goal: Understand the impact of inflow and outflow rates at entrances and exits as well as the geometry on pedestrian density profiles in a simple PDE model for unidirectional flows.

Collaborators: Gaspard Jankowiak, Annalisa Iuorio, and Peter Szmolyan

A macroscopic model for unidirectional pedestrian flows

Conservation law for the pedestrian density
$$\rho$$
:
 $\partial_t \rho + \nabla \cdot \mathbf{J} = 0$,
 $\mathbf{J} = -\varepsilon \nabla \rho + \rho (1 - \rho) \mathbf{u}$, (6)
where ε denotes the diffusion coefficient and \mathbf{u} is a given normalised vector field.
At the exit Σ and the entrance Γ we impose nonlinear boundary conditions and no flux along walls:

$$\begin{aligned} \mathbf{J} \cdot \mathbf{n} &= 0 & \text{on } \partial \Omega \setminus (\Gamma \cup \Sigma) \\ -\mathbf{J} \cdot \mathbf{n} &= \alpha (1 - \rho) & \text{on } \Gamma , \\ \mathbf{J} \cdot \mathbf{n} &= \beta \rho & \text{on } \Sigma . \end{aligned}$$

M. Burger and J.-F. Pietschmann Flow characteristics in a crowded transport model Nonlinearity, 29(11), 2016.

M.T. Wolfram (Warwick)

Stationary profiles for a straight corridors

Density profiles in 1D:

$$ho = rac{1}{2} + \sqrt{|\mathrm{J} - rac{1}{4}|} T_{\mathrm{J}, lpha, eta} \left(arepsilon^{-1} \sqrt{|\mathrm{J} - rac{1}{4}|} (x - \xi)
ight),$$

where $J = J(\alpha, \beta)$ and $\xi = \xi(\alpha, \beta) \in \mathbb{R}$, ξ is the value of x for which ρ takes the value $\frac{1}{2}$.

The profile shape is given by

$$\mathcal{T}_{\mathrm{J},\alpha,\beta} = \begin{cases} -\tan & \text{ if } \mathrm{J} > \frac{1}{4} \,, \\ \tanh & \text{ if } \mathrm{J} < \frac{1}{4} \text{ and } \alpha + \beta < 1 \,, \\ \tanh^{-1} & \text{ if } \mathrm{J} < \frac{1}{4} \text{ and } \alpha + \beta > 1 \,. \end{cases}$$

Stat. profiles for different in- and outflow rates.

wont equation average densidy

The area averaged model

Consider radially symmetric domains
$$\Omega \in \mathbb{R}^2$$

$$\Omega := \left\{ (x, y) : x \in [0, L], y \in \frac{1}{2} [-w(x), w(x)] \right\}$$
where $w: [0, L] \to (0, \infty)$ is the width in the
y-direction and vector fields
$$\mathbf{u}_x(x, -y) = \mathbf{u}_x(x, y) \text{ and } \mathbf{u}_y(x, -y) = -\mathbf{u}_y(x, y),$$

$$|\mathbf{u}| = 1,$$

$$\mathbf{u} \cdot n = \begin{cases} -1 & \text{on } \Gamma, \\ 1 & \text{on } \Sigma. \end{cases}$$

Then the density ρ and the flux **J** are symmetric w.r.t the x-axis.

Integrating the conservation law w.r.t. y gives

$$\frac{\partial}{\partial t} \int_{-w(x)/2}^{w(x)/2} \rho \, dy + \int_{-w(x)/2}^{w(x)/2} \nabla \cdot \mathbf{J} \, dy = 0 \, .$$

The area averaged model

Then we can derive an area averaged 1D model for the re-scaled density ρ :

$$\partial_t \rho + \partial_x \left(k(x) \left(-\varepsilon \partial_x \rho + \rho \left(1 - \rho \right) \right) \right) = 0.$$

with boundary conditions

$$j = \alpha (1 - \rho)$$
 at $x = 0$,
 $j = \beta \rho$ at $x = L$.

Here
$$k(x) = \tilde{w} \langle \tilde{\mathbf{u}}_x \rangle$$
 where $\langle \cdot \rangle = w^{-1} \int \cdot dy$ and $x \to \tilde{x} = \int_0^x \langle \mathbf{u}_x \rangle(s) ds$.

In the following we wish to analyze the impact of α , β and k(x) on the structure of the stationary profiles to this approximate model using

- Computational experiments.
- Geometric singular perturbation analysis (GSPT).

GSPT for smooth closing domain

We consider C^1 positive functions k, which satisfy

$$g(x):=\frac{1}{k(x)}\frac{dk(x)}{dx}<0.$$

We introduce the new variable $\xi = x$ and include the equation $\dot{\xi} = 1$ to obtain:

$$\begin{aligned} \dot{j} &= -g(\xi)j, \\ \dot{\xi} &= 1, \\ \varepsilon \dot{\rho} &= \rho(1-\rho) - j. \end{aligned}$$

The respective boundary conditions are given by

$$j = \alpha (1 - \rho)$$
 at $\xi = 0$,
 $j = \beta \rho$ at $\xi = 1$.

GSPT

Scaling: Introduce $\chi = \frac{x}{\varepsilon}$ and obtain

$$egin{aligned} j' &= -arepsilon egin{smallmatrix} g(\xi) j, \ \xi' &= arepsilon, \
ho' &=
ho(1-
ho) - j \end{aligned}$$

GSPT: analyze the singular limit ε on the slow and the fast scale separately and then glue the results together.

Layer problem (setting $\varepsilon = 0$ in the scaled system):

$$j' = 0,$$

 $\xi' = 0,$
 $\rho' = \rho(1 - \rho) - j$

Manifold of equilibria:

$$C_0 := \{(j, \xi, \rho) : j = \rho(1 - \rho)\}.$$

GSPT

Reduced problem (setting $\varepsilon = 0$ in the original system)

$$\dot{j} = -g(\xi)j,$$

 $\dot{\xi} = 1.$

More advantageous to rewrite it in terms of ρ and ξ :

$$\dot{
ho} = -g(\xi) \frac{
ho(1-
ho)}{1-2
ho},$$

 $\dot{\xi} = 1.$

Gluing everything together

Stationary profiles for closing channel

M.T. Wolfram (Warwick)

19/32

Stationary profiles for a bottleneck

Part II: Parameter identification in pedestrian dynamics models

Goal: Use the Bayesian framework to estimate parameters in the fundamental diagram using individual trajectories.

Collaborators: Susana Gomes and Andrew Stuart

Macroscopic model for uni-directional flows

Evolution of the pedestrian density $\rho = \rho(x, t)$ can be described by a Fokker-Planck equation

$$\partial_t \rho(x, t) = \operatorname{div} \left(\Sigma \nabla \rho(x, t) - \rho(x, t) F(\rho) \right),$$

where
$$\Sigma = \text{diag}(\sigma_1^2, \sigma_2^2)$$
 and
 $F(\rho) = f(\rho)e_1$ and $f(\rho) = v_{\text{max}}(1 - \frac{\rho}{\rho_{\text{max}}})$.

Boundary conditions: for the flux $j = -\Sigma \nabla \rho + \rho F(\rho)$

$$\begin{split} j \cdot n &= -a\big(\rho_{max} - \rho\big), & \text{for all } (x_1, x_2) \in \Gamma_{in}, \\ j \cdot n &= b\rho, & \text{for all } (x_1, x_2) \in \Gamma_{out}, \\ j \cdot n &= 0, & \text{for all } (x_1, x_2) \in \Gamma_N, \end{split}$$

Scaling

Let $\tilde{\rho}=\frac{\rho}{\rho_{\max}},$ then the FPE equation can be rescaled as

$$\partial_t \widetilde{
ho} =
abla \cdot \left(\Sigma
abla \widetilde{
ho} - \widetilde{
ho} \widetilde{F}(\widetilde{
ho})
ight)$$

where $\tilde{F}(\tilde{\rho}) = \tilde{f}(\tilde{\rho})e_1$, with $\tilde{f}(\tilde{\rho}) = v_{\max}\left(1 - \tilde{\rho}\right)$.

Boundary conditions:

$$\begin{split} \tilde{j} \cdot n &= -a \big(1 - \tilde{\rho} \big), & \text{for all } (x_1, x_2) \in \Gamma_{in}, \\ \tilde{j} \cdot n &= b \tilde{\rho}, & \text{for all } (x_1, x_2) \in \Gamma_{out}, \\ \tilde{j} \cdot n &= 0, & \text{for all } (x_1, x_2) \in \Gamma_N. \end{split}$$

where $\tilde{j} = -\Sigma \nabla \tilde{\rho} + v_{max} (1 - \tilde{\rho}) \tilde{\rho} e_1$.

The maximum density ρ_{max} is not present in the scaled formulation.

er ical dota

5 realizations of the McKean-Vlasov process.

Microscopic dynamics:

Assumption: Individual trajectories are realizations of a McKean-Vlasov process

$$\mathrm{d}X(t) = F(
ho(X(t),t))\,\mathrm{d}t + \sqrt{2\Sigma}\mathrm{d}B(t)$$

where $B(\cdot)$ is a standard Brownian motion and ρ solves the FPE with $\rho_{\max} = 1$.

Consistent coupling: pdf of the McKean-Vlasov process satsfies the FPE.

Inverse problem:

Estimate v_{max} and ρ_{max} in the fundamental diagram using individual trajectories.

5 realizations of the McKean-Vlasov process.

Microscopic dynamics:

Assumption: Individual trajectories are realizations of a McKean-Vlasov process

$$\mathrm{d}X(t) = F(\rho(X(t), t))\,\mathrm{d}t + \sqrt{2\Sigma}\mathrm{d}B(t)$$

where $B(\cdot)$ is a standard Brownian motion and ρ solves the FPE with $\rho_{\max} = 1$.

Consistent coupling: pdf of the McKean-Vlasov process satsfies the FPE.

Inverse problem:

Estimate v_{max} and ρ_{max} in the fundamental diagram using individual trajectories.

The parameter ρ_{max} does not influence the SDE for trajectories. \Rightarrow the parameter ρ_{max} cannot be learned from the data available to us. Data-misfit function

$$\Phi(\mathbf{v};X) = \frac{1}{4} \int_0^T |\dot{X} - F(\rho(X(t),t);\mathbf{v})|_{\Sigma}^2,$$

However, the function $\Phi(v; \cdot)$ is almost surely infinite. Hence, we perform a parametric estimation of v_{max} by minimizing

$$\mathcal{I}(v;X) := \Psi(v;X) + \underbrace{\frac{1}{2c}|v-m|^2}_{\text{prior: } v_{\text{max}} \in \mathcal{N}(m,c)},$$

where

$$\Psi(v;X) = \frac{1}{4} \int_0^T \left(|F(\rho(X(t),t);v)|_{\Sigma}^2 dt - 2\langle F(\rho(X(t),t);v), dX(t) \rangle_{\Sigma} \right).$$

- Functionals can be generalized for multiple trajectories
- We either sample from the posterior distribution

$$\mathbb{P}(v|X) \propto \exp(-\mathcal{J}))\mathbf{1}(v > 0)$$

or minimize the negative log-likelihood of the functional $\mathcal{J}. \label{eq:constraint}$

Sampling from the posterior

Algorithm 1 The pCN algorithm

1: Set
$$k = 0$$
 and pick $v^{(0)}$.
2: for $k = 1, ..., N$, where N is the number of iterations, do
3: Propose $y^{(k)} = m + \sqrt{(1 - \beta^2)}(v^{(k)} - m) + \beta\xi^{(k)}, \quad \xi^{(k)} \sim N(0, c).$
4: Set $v^{(k+1)} = y^{(k)}$ with probability $\alpha_k := \alpha(v^{(k)}, y^{(k)})$
5: Set $v^{(k+1)} = v^{(k)}$ otherwise.
6: $k \rightarrow k + 1.$
7: end for

Sampling from the posterior

Algorithm 2 The pCN algorithm

1: Set
$$k = 0$$
 and pick $v^{(0)}$.
2: for $k = 1, ..., N$, where N is the number of iterations, do
3: Propose $y^{(k)} = m + \sqrt{(1 - \beta^2)}(v^{(k)} - m) + \beta\xi^{(k)}, \quad \xi^{(k)} \sim N(0, c).$
4: Set $v^{(k+1)} = y^{(k)}$ with probability $\alpha_k := \alpha(v^{(k)}, y^{(k)})$
5: Set $v^{(k+1)} = v^{(k)}$ otherwise.
6: $k \rightarrow k + 1.$
7: end for

The crux of sampling: how to solve a nonlinear parabolic PDE more than a million times efficiently ?

Solving 2D parabolic PDEs quickly

Solve 2D nonlinear Fokker-Planck equation of the form

$$\partial_t \rho(x,t) = \operatorname{div}(\Sigma \nabla \rho - \rho(1-\rho) \nabla \phi)$$

for a given $\Sigma = \text{diag}(\sigma_1^2, \sigma_2^2)$ and potential $\phi = \phi(x_1, x_2)$.

Discretization:

- Space: HDG for the linear diffusion and DG for the non-linear convective part (with upwinding).
- Time: 4-stage third order RK IMEX scheme in time.

Allowed us to make larger time steps and use a much coarser grid.

• Unidirectional corridor: solve 1D stationary problem.

Varying β - TD vs. stat.

Varying # trajectories - TD vs. stat.

Bottleneck

Posterior of v_{max} using real trajectory data

Invase problem:

Given & find thox Given X1.... XN find Omox Given X1.... XN find Omox in SD5

Posterior of *v_{max}* using real trajectory data

Average pedestrian density calculated from real trajectory.

Ongoing & future work:

- Use GSPT in case of more realistic geometries; such as corridors with piecewise constant width.
- Estimation of v_{max} , Σ , as well as the inflow and outflow rate a and b using real data.
- Non-parametric estimation of the fundamental diagram.

Some more info:

- M. Burger and J.-F. Pietschmann *Flow characteristics in a crowded transport model* Nonlinearity, 29(11):3528–3550, 2016.
- A. Iuorio, G. Jankowiak, P. Szmolyan and MTW, A PDE model for unidirectional flows: stationary profiles and asymptotic behavior, J Math Annal Appl 510(2), 2020
- A. Iuorio, G. Jankowiak, P. Szmolyan, MTW, Canards in a bottleneck, accepted for publication at Physica D 2023
- S. Gomes, A. Stuart and MTW, Parameter estimation for macroscopic pedestrian dynamics models from microscopic data, SIAM Appl. Math. 79(4) 1475-1500, 2019
- Pedestrian Dynamics Data Archive: thanks to Armin Seyfried, Maik Boltes and all their co-workers !

http://ped.fz-juelich.de/da/

Ongoing & future work:

- Use GSPT in case of more realistic geometries; such as corridors with piecewise constant width.
- Estimation of v_{max} , Σ , as well as the inflow and outflow rate a and b using real data.
- Non-parametric estimation of the fundamental diagram.

Some more info:

- M. Burger and J.-F. Pietschmann *Flow characteristics in a crowded transport model* Nonlinearity, 29(11):3528–3550, 2016.
- A. Iuorio, G. Jankowiak, P. Szmolyan and MTW, A PDE model for unidirectional flows: stationary profiles and asymptotic behavior, J Math Annal Appl 510(2), 2020
- A. Iuorio, G. Jankowiak, P. Szmolyan, MTW, Canards in a bottleneck, accepted for publication at Physica D 2023
- S. Gomes, A. Stuart and MTW, Parameter estimation for macroscopic pedestrian dynamics models from microscopic data, SIAM Appl. Math. 79(4) 1475-1500, 2019
- Pedestrian Dynamics Data Archive: thanks to Armin Seyfried, Maik Boltes and all their co-workers !

http://ped.fz-juelich.de/da/

Thank you very much for your attention.