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Microscopic modelling

Force based models: position of an individual is determined by forces acting on it.

Newton’s laws of motion

dXi = Vi dt

dVi = Fi (X1, . . . ,XN ,V1, . . . ,VN) dt + �i dB
t
i .

Here Xi = Xi (t) is the location of the i-th individual, Vi = Vi (t) its velocity, Fi the forces
acting on it, and dBi some additive noise.

Overdamped Langevin dynamics:

dXi = F (X1, . . . ,XN) dt + �i dB
t
i .

Stochastic optimal control: Each individual wants to minimise a cost functional

Ji (X1, . . . ,XN ,Vi ) = E(
Z T

0
Li (Xi ,Vi ) + F (X1, . . . ,XN) dt)

under the constraint that dXi = Vidt + �idBt
i , where L and F denote the running cost.
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Microscopic modelling

Lattice based models:

Consider a domain divided into a cells.

Each cell centre represents a possible position of an individual.

Individuals can jump from one cell to another with a certain transition rate.

Probability pi to find an individual at a discrete lattice site Xi :

ṗi = T �
i+1pi+1 + T +

i�1pi�1 � (T +
i + T �

i )pi

$x_{i+1}$$x_i$

Challenges on the microscopic level:

Highly nonlinear coupling

Curse of dimensionality =) development of reduced models

Computational complexity
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Macroscopic description

Nonlinear conservation law

Pedestrian density ⇢ = ⇢(x , t) satisfies

@t⇢ = div
�
D(⇢)r(E 0(⇢)� V +W ⇤ ⇢

�
.

where V = V (x) is a given external potential, D = D(⇢) a nonlinear di↵usivity, E = E(⇢)
the internal energy and W = W (x) an interaction energy.

Tra�c flow model: Lighthill-Whitham-Richards (LWR) model

@t⇢ = r · (⇢vr�).

where � = �(x) is a given normalized potential and the velocity is computed via the fundamental
diagram:

v(⇢) = vmax

✓
1�

⇢

⇢max

◆

where vmax denotes the maximum velocity and ⇢ = ⇢max the maximum density.
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Hughes model for pedestrian flow

Hughes model for pedestrian flow

@t⇢� div(⇢f2(⇢)r�) = 0,

|r�| =
1

f(⇢)

Possible models for f: f(⇢) = ⇢max � ⇢ or f(⇢) = (⇢max � ⇢)2.

Analytical issues:

nonlinear hyperbolic conversation law

density dependent stationary Hamilton-Jacobi equation (eikonal type) ! � 2 C0,1 only

fully coupled system

Available analytic results (existence and uniqueness) only for a regularised version of the Hughes
model in 1D. 1

1M. DiFrancesco, P.A. Markowich, J.F. Pietschmann, MTW, On Hughes model for pedestrian flow: the one-dimensional case,
JDE, 2011
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Available data

Video surveillance data: e.g. kinect cameras giving height profiles
Experimental data: e.g. pedestrian data base of the Forschungszentrum in Jülich.

(a) Kinect sensors mounted
on the ceiling.

(b) Experiments in Juelich

Left: Seer et al., Validating social force based models with comprehensive real world motion data,

Transportation Research Procedia, 2014. Right: Courtesy of Armin Seyfried (Forschungszentrum Jülich),

BaSiGo experiments (5 days, 31 experiments, 200 runs, 28 industrial cameras, 2200 participants in total)
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Fundamental diagram

(a) Voronoi diagram. (b) Fundamental diagram (c) Overview FD

Ste↵en, B. and Seyfried, A. Methods for measuring pedestrian density, flow, speed and direction with

minimal scatter Physica A, 2010

M.T. Wolfram (Warwick) Pedestrians 7 / 32

Trafic flow rig)=Umox (1-fmox)



Cultural di↵erences

(a) Experiments. (b) Fundamental diagram.

U. Chattaraj, A. Seyfried, Comparison of pedestrian fundamental diagram across cultures, Advances in Complex

Systems 12(3), 2009
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Part I: Stationary profiles and asymptotic profiles of a PDE model for unidirectional

pedestrian flows

Goal: Understand the impact of inflow and outflow rates at entrances and exits as well as
the geometry on pedestrian density profiles in a simple PDE model for unidirectional flows.

Collaborators: Gaspard Jankowiak, Annalisa Iuorio, and Peter Szmolyan
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A macroscopic model for unidirectional pedestrian flows

Conservation law for the pedestrian density ⇢:

@t⇢+r · J = 0 ,

J = �"r⇢+ ⇢ (1� ⇢) u ,

where " denotes the di↵usion coe�cient and u is a
given normalised vector field.

At the exit ⌃ and the entrance � we impose nonlinear
boundary conditions and no flux along walls:

J · n = 0 on @⌦ \ (� [ ⌃) ,

�J · n = ↵(1� ⇢) on � ,

J · n = �⇢ on ⌃ .

M. Burger and J.-F. Pietschmann Flow characteristics in a crowded transport model Nonlinearity, 29(11), 2016.
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Stationary profiles for a straight corridors

Density profiles in 1D:

⇢ =
1

2
+

r
|J�

1

4
| TJ,↵,�

 
"�1

r
|J�

1

4
|(x � ⇠)

!
,

where J = J(↵,�) and ⇠ = ⇠(↵,�) 2 R, ⇠ is the
value of x for which ⇢ takes the value 1

2 .

The profile shape is given by

TJ,↵,� =

8
><

>:

� tan if J > 1
4 ,

tanh if J < 1
4 and ↵+ � < 1 ,

tanh�1 if J < 1
4 and ↵+ � > 1 .

Stat. profiles for di↵erent in- and outflow rates.
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The area averaged model

Consider radially symmetric domains ⌦ 2 R2

⌦ :=

⇢
(x , y) : x 2 [0, L], y 2

1

2
[�w(x),w(x)]

�

where w : [0, L] ! (0,1) is the width in the
y -direction and vector fields

ux (x ,�y) = ux (x , y) and uy (x ,�y) = �uy (x , y) ,

|u| = 1 ,

u · n =

(
�1 on �,

1 on ⌃.

Then the density ⇢ and the flux J are symmetric w.r.t the x-axis.

Integrating the conservation law w.r.t. y gives

@

@t

Z w(x)/2

�w(x)/2
⇢ dy +

Z w(x)/2

�w(x)/2
r · J dy = 0 .
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The area averaged model

Then we can derive an area averaged 1D model for the re-scaled density ⇢:

@t⇢+ @x (k(x) (�"@x⇢+ ⇢ (1� ⇢))) = 0 .

with boundary conditions
j = ↵ (1� ⇢) at x = 0 ,

j = �⇢ at x = L .

Here k(x) = w̃hũx i where h·i = w�1
R
·dy and x ! x̃ =

R x
0 hux i(s)ds.

In the following we wish to analyze the impact of ↵, � and k(x) on the structure of the
stationary profiles to this approximate model using

Computational experiments.
Geometric singular perturbation analysis (GSPT).
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Geometry Regime

Streamlines Low density High density High flux
ue uL ↵ = 0.05, � = 0.2 ↵ = 0.3, � = 0.1 ↵ = 0.8, � = 0.8
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GSPT for smooth closing domain

We consider C1 positive functions k, which satisfy

g(x) :=
1

k(x)

dk(x)

dx
< 0.

We introduce the new variable ⇠ = x and include the equation
.
⇠ = 1 to obtain:

.
j = �g(⇠)j ,
.
⇠ = 1,

"
.
⇢ = ⇢(1� ⇢)� j .

The respective boundary conditions are given by

j = ↵ (1� ⇢) at ⇠ = 0,

j = �⇢ at ⇠ = 1.
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GSPT

Scaling: Introduce � = x
" and obtain

j 0 = �"g(⇠)j ,

⇠0 = ",

⇢0 = ⇢(1� ⇢)� j ,

GSPT: analyze the singular limit " on the slow and the fast scale separately and then glue
the results together.

Layer problem (setting " = 0 in the scaled system):

j 0 = 0,

⇠0 = 0,

⇢0 = ⇢(1� ⇢)� j ,

Manifold of equilibria:

C0 := {(j , ⇠, ⇢) : j = ⇢(1� ⇢)} .

M.T. Wolfram (Warwick) Pedestrians 16 / 32



GSPT

Reduced problem (setting " = 0 in the original system)

.
j = �g(⇠)j ,
.
⇠ = 1.

More advantageous to rewrite it in terms of ⇢ and ⇠:

.
⇢ = �g(⇠)

⇢(1� ⇢)

1� 2⇢
,

.
⇠ = 1.
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Gluing everything together

(a) ⇠ = 0 (b) ⇠ 2 [0, 1] (c) ⇠ = 1

(d)

(e)
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Stationary profiles for closing channel
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Stationary profiles for a bottleneck
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Part II: Parameter identification in pedestrian dynamics models

Goal: Use the Bayesian framework to estimate parameters in the fundamental diagram using
individual trajectories.

Collaborators: Susana Gomes and Andrew Stuart
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Macroscopic model for uni-directional flows

Evolution of the pedestrian density ⇢ = ⇢(x , t)
can be described by a Fokker-Planck equation

@t⇢(x , t) = div (⌃r⇢(x , t)� ⇢(x , t)F (⇢)) ,

where ⌃ = diag(�2
1 ,�

2
2) and

F (⇢) = f (⇢)e1 and f (⇢) = vmax(1�
⇢

⇢max
).

Boundary conditions: for the flux j = �⌃r⇢+ ⇢F (⇢)

j · n = �a
�
⇢max � ⇢

�
, for all (x1, x2) 2 �in,

j · n = b⇢, for all (x1, x2) 2 �out ,

j · n = 0, for all (x1, x2) 2 �N ,
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Scaling

Let ⇢̃ = ⇢
⇢max

, then the FPE equation can be rescaled as

@t ⇢̃ = r ·
⇣
⌃r⇢̃� ⇢̃F̃ (⇢̃)

⌘

where F̃ (⇢̃) = f̃ (⇢̃)e1, with f̃ (⇢̃) = vmax (1� ⇢̃) .

Boundary conditions:

j̃ · n = �a
�
1� ⇢̃

�
, for all (x1, x2) 2 �in,

j̃ · n = b⇢̃, for all (x1, x2) 2 �out ,

j̃ · n = 0, for all (x1, x2) 2 �N .

where j̃ = �⌃r⇢̃+ vmax (1� ⇢̃)⇢̃e1.

The maximum density ⇢max is not present in the scaled formulation.
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5 realizations of the McKean-Vlasov pro-

cess.

Microscopic dynamics:

Assumption: Individual trajectories are realizations of
a McKean-Vlasov process

dX (t) = F (⇢(X (t), t)) dt +
p
2⌃dB(t)

where B(·) is a standard Brownian motion and ⇢
solves the FPE with ⇢max = 1.

Consistent coupling: pdf of the McKean-Vlasov pro-
cess satsfies the FPE.

Inverse problem:

Estimate vmax and ⇢max in the fundamental diagram using individual trajectories.

The parameter ⇢max does not influence the SDE for trajectories.
) the parameter ⇢max cannot be learned from the data available to us.
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Parameter estimation using the Bayesian framework

Data-misfit function

�(v ;X ) =
1

4

Z T

0
|Ẋ � F

�
⇢(X (t), t); v

�
|2⌃,

However, the function �(v ; ·) is almost surely infinite.
Hence, we perform a parametric estimation of vmax by minimizing

J (v ;X ) :=  (v ;X ) +
1

2c
|v �m|2

| {z }
prior: vmax2N (m,c)

,

where

 (v ;X ) =
1

4

Z T

0

⇣
|F

�
⇢(X (t), t); v

�
|2⌃ dt � 2hF

�
⇢(X (t), t); v

�
, dX (t)i⌃

⌘
.

Functionals can be generalized for multiple trajectories

We either sample from the posterior distribution

P(v |X ) / exp(�J ))1(v > 0)

or minimize the negative log-likelihood of the functional J .
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Sampling from the posterior

Algorithm 1 The pCN algorithm

1: Set k = 0 and pick v (0).
2: for k = 1, ...,N, where N is the number of iterations, do

3: Propose y (k) = m +
p

(1� �2)(v (k) �m) + �⇠(k), ⇠(k) ⇠ N(0, c).
4: Set v (k+1) = y (k) with probability ↵k := ↵(v (k), y (k))
5: Set v (k+1) = v (k) otherwise.
6: k ! k + 1.
7: end for

The crux of sampling: how to solve a nonlinear parabolic PDE more than a million times
e�ciently ?
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Solving 2D parabolic PDEs quickly

Solve 2D nonlinear Fokker-Planck equation of the form

@t⇢(x , t) = div(⌃r⇢� ⇢(1� ⇢)r�)

for a given ⌃ = diag(�2
1 ,�

2
2) and potential � = �(x1, x2).

Discretization:

Space: HDG for the linear di↵usion and DG for the non-linear convective part
(with upwinding).
Time: 4-stage third order RK IMEX scheme in time.

Allowed us to make larger time steps and use a much coarser grid.

Unidirectional corridor: solve 1D stationary problem.
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Varying � - TD vs. stat.
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Varying # trajectories - TD vs. stat.
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Bottleneck
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Posterior of vmax using real trajectory data

Are our assumptions on the data correct?

Average pedestrian density calculated from real

trajectory.
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Ongoing & future work:

Use GSPT in case of more realistic geometries; such as corridors with piecewise constant
width.

Estimation of vmax, ⌃, as well as the inflow and outflow rate a and b using real data.

Non-parametric estimation of the fundamental diagram.

Some more info:

M. Burger and J.-F. Pietschmann Flow characteristics in a crowded transport model
Nonlinearity, 29(11):3528–3550, 2016.

A. Iuorio, G. Jankowiak, P. Szmolyan and MTW, A PDE model for unidirectional flows:
stationary profiles and asymptotic behavior, J Math Annal Appl 510(2), 2020

A. Iuorio, G. Jankowiak, P. Szmolyan, MTW, Canards in a bottleneck, accepted for
publication at Physica D 2023

S. Gomes, A. Stuart and MTW, Parameter estimation for macroscopic pedestrian dy-
namics models from microscopic data, SIAM Appl. Math. 79(4) 1475-1500, 2019

Pedestrian Dynamics Data Archive: thanks to Armin Seyfried, Maik Boltes and all their
co-workers !

http://ped.fz-juelich.de/da/

Thank you very much for your attention.
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