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Control problems for multi-agent systems

Classical examples in socio-economy, biology and robotics are given by forcing
animals/humans/robots to follow a specific path or to reach a desired zone...

... but also influencing consumers towards a given good, persuading voters during
political elections, influencing opinions over social networks

or reconstructing their interactions from their observations.
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Self-organization via attraction & repulsion dynamics
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Multi-scale framework
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Optimization across scales

Multiscale modelling of interacting agent systems : from dynamical systems to
kinetic equations and fluid dynamic models.

Numerical methods for optimal control of such large systems have to cope with
1 Non-locality and non-linearity of collective dynamics ;
2 Non-smooth and non-convex optimization ;
3 Curse of dimensionality.

Hence we want to reduce the problem complexity introducing a mean-field
description. 1
In this direction large interest has been shown to the so called mean-field op-
timal control and mean-field games in several mathematical fields (game
theory, stochastic processes, analysis of PDEs, optimal control. . . ), and in many
applications ( consensus or milling enforcement, evacuation problems, opti-
mal taxation, network formation, vaccination strategies . . . ). 2

1. M. Bongini, M. Fornasier, D. Kalise ’14 ; G. A., M. Herty, L. Pareschi, M. Zanella ’14 ; A.
Borzí, M. Caponigro, S. Wongkaew ’14 ; B. Piccoli, M. Caponigro, M. Fornasier, E. Trelat, ’15 ;
M. Bongini, M. Fornasier, F.Rossi, F. Solombrino ’15, G.A. M. Bongini, E. Cristiani, D. Kalise
’15 ; M. Bongini, M. Hansen, M. Fornasier, M. Maggioni, ’17
2. P. L. Lions., J.M. Lasry ’07 ; M.Y. Huang, R.P. Malhame, P.E. Caines ’06 ; D. Gomes, R.

Souza ’10 ; A. Bensoussan, J. Frehse, and P. Yam ’13 ; R. Carmona, F. Delarue ’13 ; M. Burger,
M. Di Francesco, P. A. Markowich, M.-T. Wolfram ’14 ; B. P. Cardaliaguet, S. Hadikhanloo,
’17 ; M. Burger et al’ ’20, S. Osher et al. ’21
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Control of a large crowd via few sparse agents

We want to enforce a desired behavior via sparse action of the control.
We consider the case of ‘few’ microscopic agents (leaders) controlling a conti-
nuos density of agents (followers) 3

min
u

JN,m(u){
ẋi = F1(xi, x) + F2(xi, y)

ẏk = G1(yk, x) +G2(yk, y) + uk

min
u

Jm(u){
∂tf = −∇ · ((F1[f ] + F2[gm]) f)

ẏk = G1(yk, x) +G2(yk, y) + uk

3. M. Fornasier, F. Rossi, B. Piccoli, E. Trelat, 14 ; G.A., L. Pareschi,’14 ; M. Bongini, M.
Fornasier, F. Rossi, F. Solombrino ’15 ; M. Burger, R. Pinneau, A. Roth, C. Totzeck, O. Tse ’21.
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Pedestrian dynamics : optimized strategies in evacuation problems

Target

Safely drive a crowd outside an unknown environment Ω via minimal intervention.

min {t|t ≥ 0, xi(t) /∈ Ω, i = 1, . . . , N} .

in G.A., M. Bongini, E. Cristiani, D. Kalise, SIAP 2016.Giacomo Albi University of Verona 8 / 52
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Pedestrian dynamics : optimized strategies in evacuation problems

Our goal is to evacuate a crowd of individuals from an environment they don’t
know under limited visibility 4 .

We show that invisible sparse strategies (i.e., by means of few, unrecognized
agents) influence the crowd effectively ;
We propose a mesoscopic description of this dynamics when the number of
pedestrian is large.
Develop a set of numerical techniques for the synthesis of optimal exit strate-
gies.
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4. G. A., M. Bongini, E. Cristiani, D. Kalise ’15, G.A. E. Cristiani, L. Pareschi, D. Peri ’19 ;
G.A., F. Ferrarese, C. Segala ’22
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Model guidelines : followers

The non-informed agents of the crowd are called followers, and are subject to a
second-order dynamics with

an isotropic metric short-range repulsion force ;
a relaxation term toward a given characteristic speed (1 m/s in normal condi-
tions) ;
if the exit is not visible

an isotropic topological alignment force, i.e., given N ∈ N, the i-th agent aligns
with those inside BN (xi, t), the smallest ball at time t containing at least N
agents.

a random walk, in order to explore the unknown environment ;

if the exit is visible
a sharp motion toward the exit.

Giacomo Albi University of Verona 10 / 52
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Model guidelines : leaders

The informed agents of the crowd are called leaders. They are less than followers
(NL � NF) and evolve according to a first-order dynamics with

an isotropic metric short-range repulsion force ;

an optimal force which is the result of an offline optimization procedure, mini-
mizing some cost functional.

First vs. second-order model : for followers a second-order model is necessary since
they must perceive velocities to align. The bigger inertia is compensated by stronger
forces w.r.t. the ones in leaders’ dynamics.

Metric vs. topological interaction : alignment is topological since empirical evidence
suggests that only close neighbors play a role.
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Microscopic model

Microscopic model

For i = 1, . . . , NF and k = 1, . . . , NL
ẋi = vi,

v̇i = A(xi, vi) +
∑NF

j=1 H(xi, vi, xj , vj) +
∑NL

`=1H(xi, vi, y`, w`)

ẏk = wk =
∑NF

j=1Rζ,r(yk, xj) +
∑NL

`=1 Rζ,r(yk, y`) + uk,

Let θ(x) represents the characteristic function of the target’s visibility zone and

A(x, v) := (1− θ(x))Cz(z − v)+θ(x)Cd
(
xd − x
|xd − x|

− v
)

+Cv(α2−|v|2)v,

where z ∼ N (0, σ2), α is the characteristic speed.
where

H(x, v, y, w) := −Cr
FRγ,r(x, y) + (1− θ(x))

Ca

N ∗
(w − v)χBN (x,t)(y)

Rγ,r(x, y) =

{
e−|y−x|

γ y−x
|y−x| if y ∈ Br(x)\{x},

0 otherwise ;

In the dynamics of yk, ζ 6= γ.
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Microscopic model

Dynamics of followers
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Microscopic model

Control strategy : “dumb”

The control uk : [0, T ]→ Rdk, k = 1, . . . , NL as “dumb” strategy :

uk(t) =

(
xd − yk(t)

|xd − yk(t)|
− yk(t)

)
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(Left) Dynamics with “dumb” strategy and (Right) occupancy of the exit’s visibility zone
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Microscopic model

Control strategy : MPC

The control uk : [0, T ]→ Rd, k = 1, . . . , NL, with uk minimizing the functional

J(u) =

∫ t+Tp

t

CF
NF∑
i=1

‖xi − xd‖2 + CL
NF∑
i=1

NL∑
k=1

‖xi − yk‖2 + ν
NL∑
k=1

‖uk‖2
 dτ

applying Model Predictive Control (MPC) technique.

Time steps
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2-step MPC
6-step MPC

(Left) MPC scheme and (Right) occupancy of the exit’s visibility zone
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Microscopic model

Smart strategy : Modified Compass Search

The control uk : [0, T ]→ Rdk, k = 1, . . . , NL, uk minimizes the functional

J(u) = min {t|t ≥ 0, xi(t) /∈ Ω, i = 1, . . . , N} .

To minimize such functional we resort on a metaheursitic optimization method,
named Modified Compass Search 5.

leaders’ trajectories are piecewise constant ;
starting from an initial guess, at each iteration we modify the current
best strategy with small random variations ;

we keep the variation if the evaluated cost is smaller than before ;

the method generates a sequence converging to a local minimum.

5. C. Audet, K.-C. Dang, and D. Orban 2014
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Microscopic model

Clog up effect around exit

15 20 25 30 35
2

4

6

8

10

12

14

100 200 300 400 500 600
0

20

40

60

80

100

120

(Left) Dynamics with “smart” strategy and (Right) occupancy of the exit’s visibility zone
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Microscopic model

Clog up effect around exit

Dynamics with “smart”
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Microscopic model

MPC vs Compass Search
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Kinetic approximation

When the number of interacting agents NF is very large ⇒ huge system of
ODEs and control problem untreatable
The idea is to describe the followers-leaders dynamics considering a continuos
density function for followers and maintaining leaders at the microscopic level.
Thus recovering a mesoscopic+microscopic system 6.
Here we follow a kinetic approximation of the crowd dynamics and to
approach the mean-field limit 7.
This approach allows to develop asymptotic DSMC methods for the efficient
simulation of the dynamics 8.

6. J. A. Canizo, J. A. Carrillo, J. Rosado ’10, J. A. Carrillo, Y. P. Choi, M. Hauray, S. Salem
’15
7. B. Duering, P. Markowich, J.-F. Pietschmann, M.T. Wolfram ’09, J. A. Carrillo, M.

Fornasier, G. Toscani and F. Vecil, ’10, L. Pareschi, G. Toscani ’13, G.A., L. Pareschi, M.
Zanella ’14
8. A.V. Bobylev, K. Nanbu, ’00 ; R.E. Caflisch, L.Pareschi, G. Dimarco ’10.
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Kinetic approximation
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A binary interactions approach

When a follower (x, v) interacts with another follower (x̂, v̂) or a leader (x̃, ṽ),
they update their state variables according to

(FF)


v∗ = v + ηF [θ(x)Czξ + S(x, v)︸ ︷︷ ︸

A(x,v)

+ρFH(x, v, x̂, v̂)]

v̂∗ = v̂ + ηF
[
θ(x̂)Czξ + S(x̂, v̂) + ρFH(x̂, v̂, x, v)

]

(FL)

{
v∗∗ = v + ηLρLH(x, v, x̃, ṽ)

ṽ∗∗ = ṽ

where ηF , ηL are the interaction strength and ξ ∼ N (0, ς2).

We consider the following densities for follower and leaders,

f = f(t, x, v) g(t, x, v) =
NL∑
k=1

δyk(t),wk(t)(x, v)

We assume that the total mass of the followers and leaders are such that

ρF =

∫
f(x, v)dxdv = NF and ρL =

∫
g(x, v)dxdv = NL.

To simplify the discussion we neglect the topological interaction in H(·). 9

9. J. Haskovec ’13, A. Blanchet, P. Degond ’17-18 ; G.A. F. Ferrarese ’23.
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they update their state variables according to

(FF)


v∗ = v + ηF [θ(x)Czξ + S(x, v)︸ ︷︷ ︸

A(x,v)

+ρFH(x, v, x̂, v̂)]

v̂∗ = v̂ + ηF
[
θ(x̂)Czξ + S(x̂, v̂) + ρFH(x̂, v̂, x, v)

]
(FL)

{
v∗∗ = v + ηLρLH(x, v, x̃, ṽ)
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Boltzmann-Povzner dynamics

We assume that f, g satify Boltzmann-Povzner dynamics 10 + the ODEs for leaders
∂tf + v · ∇xf = λFQ(f, f) + λLQ(f, g),

ẏk =

∫
R2d

Rζ,r(yk, x)f(x, v)dx dv +
NL∑
`=1

Rζ,r(yk, y`)+uk,
(1)

where λF and λL are the interaction frequencies and

Q(f, f) = E
[∫

R2d

(
1

JFF
f(x, v∗)f(x̂, v̂∗)− f(x, v)f(x̂, v̂)

)
dx̂ dv̂

]
,

Q(f, g) = E
[∫

R2d

(
1

JFL
f(x, v∗∗)g(x̃, ṽ∗)− f(x, v)g(x̃, ṽ)

)
dx̃ dṽ

]
.

with v∗, w∗, v∗∗, w∗∗ are the pre-interaction velocities and
E[·] is the expected value w.r.t. ξ.

10. A.K. Povzner 1962
Giacomo Albi University of Verona 24 / 52
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Theorem : Grazing collision limit

Fix the control u. Let consider the following scaling

ηF = ηL = ε, λF =
1

εNF , λL =
1

εNL , ς2 =
σ2

ε

and define (fε, yε) be a solution of (1). Then, as ε→ 0, (fε, yε) converges pointwise
to a solution of the Fokker-Planck-type equation

∂tf + v · ∇xf = −∇v · ((S +H[f ] +H[g])f) +
1

2
σ2(θCz)2∆vf,

ẏk =

∫
R2d

Rζ,r(yk, x)f(x, v) dx dv +
NL∑
`=1

Rζ,r(yk, y`) + uk, k = 1, . . . , NL

which is the “mean-field limit” of the microscopic model. Where we recall that

H[f ](x, v) =

∫
R2d

H(x, x̂, v, v̂)f(x̂, v̂) dx̂ dv̂,

S(x, v) = −θ(x)Czv + (1− θ(x))Cd
(
xd − x
|xd − x|

− v
)

+ Cv(α2 − |v|2)v.

Giacomo Albi University of Verona 25 / 52
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Idea of the proof

We write a weak formulation of (1), therefore given Tδ ⊇ C∞c (Rd × Rd;R) a
suitable space function, for any test function ϕ ∈ Tδ,

λ 〈Q(f, f), ϕ〉 = λE
(∫

R4d
(ϕ(x, v∗)− ϕ(x, v)) f(x, v)f(x̂, v̂) dxdvdx̂dv̂

)
We derive the Taylor expansion around v∗ − v up to the second order of the
interaction operator in the weak formulation the operator.

λ 〈Q(f, f), ϕ〉 = λE
(∫

R4d
∇vϕ(x, v) · (v∗ − v)f(x, v)f(x̂, v̂) dxdvdx̂dv̂

)
+
λ

2
E(K2[f, ϕ]) + λRϕ,

Using the grazing collision scaling, and taking the limit for ε→ 0 for any ϕ ∈ Tδ
we obtain the mean-field equation.

Giacomo Albi University of Verona 26 / 52
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Asymptotic stochastic particle method

(Asymptotic) DSMC methods

We can simulate the binary interaction dynamic with small values of ε in
order to approximate the mesoscopic model 11.

We use a splitting method, for transport and collisional part of the scaled
Boltzmann equation.
We rewrite the collision step as

∂tf =
1

ε

[
QF,+ε (f, f)− ρF f

]
+

1

ε

[
QL,+ε (f, g)− ρLf

]
where Q+

ε is the gain part of the collision operator.
We use a Monte-Carlo method to perform the evolution of the density f .

11. G.A., L. Pareschi, 2013
Giacomo Albi University of Verona 27 / 52
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Asymptotic stochastic particle method

Nanbu-like algorithm

Let us consider a time interval [0, T ] and discretize it in ntot intervals of size
∆t. Denote with fn(x, v) the approximation of f(x, v, n∆t).
The forward Euler scheme writes

f
n+1

=

(
1−

(ρF + ρL)∆t

ε

)
f
n

+
ρF∆t

ε

Q+,F
ε (fn, fn)

ρF
+
ρL∆t

ε

Q+,L
ε (fn, gn)

ρL

Under the restriction that ∆t ≤ ε/(ρF + ρL) then fn+1 is a convex combi-
nation of densities.

The algorithms cost is linear, O(Ns), w.r.t. to the number of sample particles
Ns used to reconstruct the density fn.

Giacomo Albi University of Verona 28 / 52
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Asymptotic stochastic particle method

Convergence of the Binary Interaction Algorithms
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Left : Relative error, ‖fε − f0‖
L2
r
, after ε =

√
1/Ns the error is not improving, due to the

statistical fluctuations of the method.

Right : CPU time for ε = 0.01 time step ∆t = ε, T = 1.

In case of topological interaction one has to additionally consider the cost of approximate
the setcontaining the closest agents. This step can be performed via construction of a grid, or
relying on a k-NN search on a tree. In this case the computationl cost becomes
O(Ns log(Ns)) 12

12. G.A. F. Ferrarese ’23.
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Numerical experiments

Uncontrolled case
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Giacomo Albi University of Verona 31 / 52


kin2D_noctrl.mov
Media File (video/quicktime)



Introduction Control of crowd dynamics Kinetic approximation Conclusions & Perspectives

Numerical experiments

Dumb strategy

Control u : [0, T ]→ Rd as a “dumb” strategy : uk(t) =
(
xd−yk(t)
|xd−yk(t)| − yk(t)

)
;
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Numerical experiments

Smart strategy

Control u : [0, T ]→ Rd as a “smart” strategy such that

min
u
J(u) =

∫ T

0

(
P (t) + ν

NL∑
k=1

|uk(t)|2
)
dt,

where P (t) represents the number of followers outside exit at time t.
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Numerical experiments

Evacuation with multiple exits

Denote by Ω ≡ Rd the walking area, identify the different exits by xde ∈ Ω with
e = 1, . . . , Ne and assume that the target is completely visible from any point
belonging to Σe.

1

3

2
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Numerical experiments

Evacuation with multiple exits

Figure – Uncontrolled case.
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Numerical experiments

Evacuation with multiple exits : ’dumb’ strategy

Figure – Go to target strategy.

u
self/opt
k (t) = β

xdk − yk(t)

‖xdk(t)− yk(t)‖
+ (1− β)(mF (t)− yk(t)),

where xdk is the target position at time t, mF (t) is the followers centre of mass.
We assume β = 1 for selfish leaders and β ∈ [0, 1] for optimized leaders.
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Numerical experiments

Control framework

Evacuation time

J (x,y,uopt) = {t > 0 | (xi(t), yj(t)) /∈ Ω } .

Total mass with multiple exits

J (x,y,uopt) =

∫
Rd

∫
Ω\∪eΣe

(fN
F

(T, x, v) + gN
L

(T, x, v))dxdv.

Optimal mass splitting over multiple exits

J (x,y,uopt) =

Ne∑
e=1

∣∣∣MF
e (T )−M des

e

∣∣∣2 .
where M des

e is the desired mass to be reached in the visibility area Σe and
MF

e (T ) is the total mass of followers and leaders who reached exit xde up to
final time T .
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Numerical experiments

Optimized CS strategy : minimum time evacuation

Figure – Optimized compass search strategy.

uopt(t) = arg min
uopt
J (x,y,uopt) = {t > 0 | (xi(t), yj(t)) /∈ Ω } .
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Numerical experiments

Minimum time evacuation

uncontrolled go to target CS (50 it)
Evacuation time >1000 >1000 768

Total mass evacuated 46% 98% 100%

Table – Performance of leader strategies.

Figure – Decrease of the value functional as a function of the compass search iteration.
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Numerical experiments

Mass maximization in presence of obstacles

Consider two rooms, one inside the other.

Assume the internal room to be bounded by three walls while the external room
by four walls.

1

2

Assume that walls can be perceived only by physical contact (evacuation in
case of null visibility).

At initial time leaders and followers are uniformly distributed in the inner room.
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Numerical experiments

Mass maximization : microscopic case

Figure – Go to target strategy.
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Numerical experiments

Mass maximization : microscopic case

Figure – Optimized compass search strategy.
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Numerical experiments

Mass maximization : microscopic case

Go-to-target

Compass search

Figure – Mass maximization in presence of obstacles : evacuated mass.

go-to-target CS (3 it)
Evacuation time >3000 2718
Evacuated mass 34% 100%

Table – Performance of leader strategies.
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Numerical experiments

Mass maximization : mesoscopic case

Figure – Go to target strategy.
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Numerical experiments

Mass maximization : mesoscopic case

Figure – Optimized compass search strategy.
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Numerical experiments

Mass maximization : mesoscopic case

go-to-target CS (5 it)
Evacuation time >3000 2380
Evacuated mass 78.8% 100%

Table – Performance of leader strategies.

Go-to-target

Compass search

Go-to-target

Compass search

Figure – Mass maximization in presence of obstacles : occupancy of the visibility area Σ1 (left)
and Σ2 (right) as a function of time for go-to-target and optimal compass search stra-
tegies.
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Numerical experiments

Mass splitting in presence of obstacles

Microscopic case

go-to-target CS (50 it)
Evacuation time >3000 2704

Evacuated mass from xτ1 0% 45%
Evacuated mass from xτ2 34% 55%
Total mass evacuated 34% 100%

Table – Performance of leader strategies.

Mesoscopic case

go-to-target CS (50 it)
Evacuation time >3000 >3000

Evacuated mass from xτ1 0% 49%
Evacuated mass from xτ2 78.8% 50%
Total mass evacuated 78.8% 99%

Table – Performance of leader strategies.
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Numerical experiments

Mass splitting in presence of obstacles

Figure – Optimized compass search strategy.
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Conclusions and perspectives

Conclusions :
We have shown how it is possible to influence the whole crowd by introducing
few informed agents and by optimizing their strategies.
We have considered different scenarios to create more complex situations.

Some perspectives
Optimal position and number of leaders to control a certain configuration of
followers.
Cooperative strategies to optimally distribute the followers among different
exists.
Improve optimization of leaders trajectories (e.g. CBO, PSO) with theoretical
guarantees of convergence to global minimum.

Thank you !
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Conclusions and perspectives
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Macroscopic limits

Macroscopic limits

The derivation of a macroscopic model is a very difficult task. The main problem to pass
to macroscopic equations is that there is no classical Maxwellian equilibrium.

There are derivations of macroscopic limits for flocking and swarming dynamics assuming
a mono-kinetic ansatz and that the fluctuations are negligible, i.e. f(x, v, t) = ρ(x, t)δ(v−
V (x, t)) and T (x, t) = 0, for example for the Cucker-Smale model in this case we have 13

∂tρ +∇x · (ρV ) = 0,

ρ∂tV +∇x · (ρV ⊗ V ) =

∫
Rd
H(|x− y|)(V (t, y)− V (t, x))ρ(t, y)ρ(t, x) dy.

For the self-alignment particles of Vicsek type, with fixed speed, a phase transition study
in presence of noise has been proposed by (P. Degond, A. Frouvelle J.-G. Liu ’12), inves-
tigating the hyperbolicity of the macroscopic system.

13. J.A. Carrillo, M. Fornasier, J. Rosado, G. Toscani ’10
Giacomo Albi University of Verona 1 / 2



Macroscopic limits

Modified compass search algorithm

Choose an initial leaders strategy given by the go to target one.
Focus on the optimized leaders strategy u∗ = uopt,(0).
For j = 1, . . . , jMAX

Select π(t) points on each leaders trajectory, t ∈ SM = {t1, t2, . . . , tM} and
define

π
∗
(tm) = π(tm) + Bm, m = 1, . . . ,M

where Bm ∈ Unif([−1, 1]d) is a random perturbation.
Set

u
opt,(j)

(t) =
π∗(tm+1)− π∗(tm)

‖π∗(tm+1)− π∗(tm)‖
, t ∈ [tm, tm+1].

Compute the functional J (x,uopt,(j)).
If J (x,uopt,(j)) ≤ J (x,u∗) then set u∗ ← uopt,(j) and J (x,u∗)← J (x,uopt,(j)).
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