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When will a density-stratified fluid reach an equilibrium state?

Equilibrium state Nonequilibrium state

I

* hydrostatic equilibrium: The
isoline of density field (isopycnal)
should be perpendicular to the

. direction of gravity. Otherwise,

density  the buoyance force will generate

a flow.
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Diffusion driven flow

For a diffusing solute, the
impermeable (i.e. no-flux)
boundary condition requires
that the isopycnals must
always be perpendicular to an
impermeable boundary to
ensure that there is no
diffusive flux normal to the
boundary.

Three conditions: 1 density stratified fluid, 2 diffusing scalar, 3 boundary is not parallel to the
gravitational direction.



Ocean

Three conditions: 1 density stratified fluid, 2
diffusing scalar, 3 boundary is not parallel to
the gravitational direction.

In ocean: 1 Stratified by salt 2 salt diffuse 3
continental shelf is not parallel to the
gravitational direction.

This upwelling diffusion driven flow plays a
crucial role in facilitating the vertical exchange
of oceanic properties

Continental continental
Shelf Break

Continental
Shelf

Deep Sea

>
Sediment - eschooltoday.com

1. OM Phillips, 1970,0n flows induced by diffusion in a stably stratified fluid

2. Wunsch, Carl, 1970, On oceanic boundary mixing.

3. RW Dell, LJ Pratt ,2015,Diffusive boundary layers over varying topography



Particle self-assembl
Submission ID: V0079

Self-assembly and cluster formation
in stratified fluids: a novel mechanism

for particulate aggregation

Roberto Camassa’, Daniel M. Harris?, Robert Hunt',
Zeliha Kilic?, Richard M. McLaughlin’

'Wniversity of North Carolina at Chapel Hill, ‘Brown University, *Arizona State University

Roberto Camassa, Daniel M. Harris, Robert Hunt, Zeliha Kilic, Richard M. McLaughlin, A first-principle mechanism for
particulate aggregation and self-assembly in stratified fluids, Nature Communications,2019
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Discovery of Particle self-assembly phenomenon

Experiment: Drop Spheres in Stratified Fluid
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the arrestment of a sphere falling in a sharply

stratified fluid.

if p, < pp< Py, pp, = 1.03p, — 0.0295p;, sphere can levitate. p; is the
top fluid density p, is the bottom fluid density p,, is the sphere density



Discovery of Particle self-assembly
phenomenon

Experiment: Drop Spheres in Stratified Fluid

@ 25cm radius
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Fresh water:
p= 9987
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Mixed Layer <1cl
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p=1.038657
P

45 cm

Due to an error in calculating the density of the particles, the experiment failed. My
supervisor professor Richard M McLaughlin decided to take a break and returned the next
day to clean the experimental apparatus. When he came to the lab the next day, he was

surprised to find that all the particles had aggregated together.

Having a break is important.



The Diffusion Fish

Time: 0 h om  Michael R. Allshouse, Michael F. Barad & Thomas
Peacock, Nature Physics, 2010, Propulsion
generated by diffusion-driven flow
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Layer formation in Double-diffusive systems

Temperature stratification and salt
concentration stratification

PF Linden, JE Weber, 1977, JFM, The
formation of layers in a double-diffusive
system with a sloping boundary
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Earth’s geothermal gradient induces
convective flows in the fluid contained in
long narrow rock fractures, which leads to /7
significant solute dispersion on geological Eriist - iffer mantle ®

timescales g I e

AW Woods, SJ Linz, 1992, Natural

convection and dispersion in a tilted ' E h
fracture \ N ’ a rt

drawn to scale

The stratifying scalar causes non-uniform density distributions in the fluid
and drives diffusion-driven flow. In contrast, the passive scalar represents
the concentration of a different solute that doesn’t contribute to density
variation but is instead passively advected by the fluid flow.

Temperature field is the stratifying scalar, the solute concentration field is
passive scalar.




Model the dispersion induced diffusion driven flow

Gap:

1. Most existing theories primarily focus on linearly stratified fluids, and there is a
scarcity of theoretical investigations into diffusion-driven flow in nonlinearly stratified
fluids. p = a — bz

2. Many studies focus on how diffusion-driven flow enhances the dispersion of a passive
scalar and the corresponding analysis for the stratifying scalar are rare.

Model the non-linear stratified fluids, non passive scalar.



Enhanced dispersion

Keep the capillary tube vertical to reduce diffusion

13



p (Orv1 + v10y,v1 + v30y,v1) = pAvy — 0y, p — sinfgp,

p (Orvs + 010y, v3 + v30,,v3) = pAvg — 0,,p — cosbgp,

atp_l_v' VJO: H*Apa

V.-v=0,
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Lubrication approximation for thin film fluid

,O()Lll/U ;o L2

Lzy; = Yi, ‘/t(U; — Ui, 72 = D, —lt! = 1, )O(]p’ = P;
3 K
V- L ViL ViL L
e:—3:—3<<1, Re = — 3, Pe = — 3, SC:L, Ri:ig.
| %} LA vV R PoOK ‘/1

Dropping primes and rearranging the equation results

2
€ ‘ o
0 (—Scatvl + eRe (v10y,v1 + U38y3t}1)> = (62(9:31’01 -+ 853’01) — 0y, p — ReRipsin 0,

SC Y1 Y3

ezatp + ePe (Ula‘ylp + U38’93p) - 62851)0 + 8;%pa
Oy, 1 + Oy, v3 = 0.

4
P (E—&vg + e°Re (v10y,v3 + vgamvg)) — ¢° (6282 vg + 02 ’Ug) — 0y, p — €ReRipcos b,

We consider the formal power series expansions for the velocity, density and pressure

o0 o0 o0
Vi = ViK€ P = pPkE , P = Pk€
k=0 k=0 k=0
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Liy; = vi, Viv; = v, s—p =p, —t' =t pop =p,
LS
Vs L Vi L WL L
e=—2=22«1, Re=-2 pe=_2 ge=-L Ri==3
Vi Iy 2 K PoK Vi

p=po+€p2, Opo=0; po,
» PeReRi (1 — 2y5(10 + 3ys3(2ys — 5))) cos(0)

P2 = (aylpo) 1440 ;
— 1)(2y3 — 1
v1 = —edy, poReRi costﬁ’yg(y3 1)2( 43 ),

(y3 — 1)2_

2
V3 = —6(9:31 poReRi cos 023 7

The fact that fol po,dys = 0 implies that as € tends to zero, the diffusion-driven flow only

distorts the isopycnal of the density without amplifying the dispersion of the stratifying scalar
in the longitudinal direction of the channel.
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Potential solution:
1. Choose different scaling relation between different physical quantities

Find an alternative method such that:
1. obtain an approximation that accurately describe density dynamics across a wider parameter range
2. Don’t need to deal with the complicated scaling analysis.

_ 2 _ 52 Ph
p=po+e€pz, Opo=09, po, t;-‘;;‘fr;e\ e e
(9, po)? PeReRi (1 — 2y3(10 + 3y3(2ys — 5))) cos(6) S '
. ys(ys —1)(2ys — 1)
= — 0
V1 edy, poReRi cos 5 : C——
2 2 Ny : trajectory
_ ) ) Y3 (y3 — 1) 1 Dmanlfqlnc\i
vy = —ed, poReRicost o : s
n . . . *" Slowmod
All quantities are function of d,, po, py is a slow manifold of ¢ i »-~>\\
the system K / " 2-D manifold
// 7 —_0-D manifold
Take a look at some example involves slow manifolds. / * (ie. equilibrium point)
/
p
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Shear dispersion

Extraction
Syringe UV-A Tube Light

Injection

. Collection
Syringe

Reservoir

Syringe

0/T + Peu(y)0,T = AT, T(x,y,0) =Ti(z,y), OnT|y, =0

As t tends to infinity, we have the approximation

T=T+0(y)0. T, A0=—Peu, nb|y,=0
0T + Peti0,T = kg 0T, Keg = 1+ ub

Gl Taylor,1953,Dispersion of soluble matter in solvent flowing slowly through a tube

T is the cross-sectional average concentration, which is the slow manifold in this problem.
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S pl ra | Se pa ratO r From https://www.youtube.com/watch?v=fvAOnkKCVf4

—

. separate solid components in a slurry L Ding, S Burnett, A Bertozzi, Separation of bidensity
. Widely used in mining and food industries suspensions in gravity-driven thin-film flow in helical
. The depth of the fluid layer is small channels

compared to the channel width. o



Lubrication approximation yields

ReRiz (~152h + 6h% +3822) ((1+ 85 ) r30.p + 4% )
48 (1 + &= z)%’r3,u
o?Re’Ri*zp? (—4224}1 + 702°h? — 72zh* + 32R° + 725)
RA0R? (1 + 7925) rip?

u?ﬂ:_

h is the fluid depth, which is the slow manifold in this problem. Notice that velocity is a function of the slow manifold.
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Slow Manifold-Based Approach

T = Z T, =T=T+ a,0,T + a28§T Use the expansion of derivative directly.
k=0

Shear dispersion

1. W. Gill and R. Sankarasubramanian, 1970, Exact analysis of unsteady convective diffusion

2. G. Mercer and A. Roberts, 1990. A centre manifold description of contaminant dispersion in channels with
varying flow properties

3. Lingyun Ding, Richard M. McLaughlin, 2022, Determinism and invariant measures for diffusing passive
scalars advected by unsteady random shear flows

Thin film fluid
1. A.Roberts, 1993, The invariant manifold of beam deformations
2. A.Roberts, 1996, Low-dimensional models of thin film fluid dynamics,

Centre Manifold Theory
1. J. Carr, 2012,Applications of Centre Manifold Theory
2. B. Aulbach and T. Wanner, 1996,Integral manifolds for Carathéodory type differential equations in Banach spaces



How about considering the following expansion?

vi0(y,t) + 011 (¥,8) By p+v12(y,t) 0y p+ ...,

v3 = v3,0(y,t) +v31 (¥,1) 0y p+ V32 (¥, 1) 0,0+ ...,
p=p(y,t)+p1(y,1) 0y p+ p2 (y,t) 0y 5+ ...,
p=po+p1(y,t)0yp+p2(y, )0, p+..., y=(y1.¥3)

U1

Where f(y,t) = folf(yl,yg, t)dy; denotes the cross-sectional average

The resulting leading order approximation is the same as the result obtained by the lubrication approximation.
This method also can not predict the enhancement dispersion induced by the diffusion driven flow.
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v1 =v10(y,t) +vi1(y,t) 0y, p+v12(y,1) 851,5 +...,

vy = v30(y,t) +v31(y,t) 0y, p+v32(y,t) 851[) + ...,
p=p(y,t)+p1(y,t) 0y, p+p2(y,1) 05 p+ ...,
pP=po+pi(y.t)0yp+p2(y. )0y 5+, y=(y1,u3).

Let’s introduce nonlinearity!

U1 = Ul,O(ya t) + V1,1 (ya t: aylf_)) a’ylﬁ + U1,2 (y? t? ay1 )67 631 Ii_)) 851}5 + ...,
U3 = UB,O(ya t) + U31 (ya t: 6@;1 f:_)) a'ylﬁ + U3,2 (Y: t: ay1 ff_)v 831 /5) 851/5 + ...
p=p(y,t)+p1(y.t,0y,p) Oy, p+ p2 (Yv t, Oy, p, 8;515) 3,515 +.
p="po(y,t) +p1(y,t,0y,p) Oy, p+ D2 (yata Oy, P, @ﬁlﬁ) 3;‘;15 LERRE

This expansion yields precise approximations for velocity, density, and pressure fields.

23



Relation between derivatives

To provide an intuitive justification, let's assume that flow effects are negligible, and diffusion is the
dominant process in the system.

0p = 0,,p,

_ 1 U1 2 /OO —¢2
= —erfc | —= ], erfc(z)=— dt.
7= gere(y) e = [

i v3

- € 4t 2 - yle_H n - 1 1 " U1 _"9’_12
ay].p_ _2\/7?\/59 8ylp_ _W; aylp— —ﬁ () Hn—l () e (2\/?) .

O p=0t"F3), 530,302 5> ... t— o0

Where H,, is the Hermite polynomial of degree n.

In presence of the fluid flow, the derivative may have different decay rate. However, this relation still holds.

p>0,p>0;p>... t—



We consider the derivative as a small parameter within the framework of standard asymptotic calculations.

Collecting the terms that is comparable to d,, p yields the following equation

1

0= 8_33@1,1 — ReRi (sin 0p1 — cos(ys — 5)) : U1:1|y3:0,1 =0,

_ 92 _
Pevl,laylp — a’é}Bpl’ ay3p1|y3:0,1 =0.

After Differencing the above equation twice with respect to y;, we can decouple the density and velocity

0= 8331)1,1 — RePeRisin 6’8@,1;3’01,1, U1=1|'y3:0,1 = 0, 833‘01,1 ’ygzo,l — —ReRicos 9,
P 1
8,3‘3;)1 = RePeRid,, p (Slﬂ 6p1 — cosO(ys — 2)) , 8y3p1|y3:0’1 =0, 8§2p1|y32051 = 0.

The solutions are

_ 2ycot(f) sin(yys) sinh(y(1 — y3)) — sin(y(1 — y3)) sinh(yys3)

T Ped,, p sin(vy) + sinh(vy) ’
o1 = cot B (y:a 1 cos(v(1—y3)) cosh(_’}/yg) — C_OS(’}/yg) cosh(y(1 — yg))) |
2 ~(sin(7y) + sinh(7))

1

v = 7 (—RePeRisin 98?;1,5)% :
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Ul,l ().UI £

~—1L

_ 2y cot(f) sin(yys) sinh(y(1 — y3)) — sin(y(1 — y3)) sinh(yys3)

,

YL = Ped,, p sin(+y) + sinh(~)
_ ( 1 cos(y(1 —ys)) cosh(yys) — cos(yys) cosh(y(1 — y3))
p1 =cotl |y — - — . :
2 7(sin(y) + sinh(7))
1 1
= — (—RePeRisin60,,p)* .
Y V2 ( 1 P)

)

-0.2 // N
~
~ - =0
4/ — —

-0.4 = =

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6

Y3 Y3
¥~ 1 serves as an effective indicator of the boundary layer's thickness,

y can be considered the characteristic velocity of the system.
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Converge to Lubrication approximation in the limit

As 0., p — 0, we have

ReRiys(ys — 1)(2y3 — 1) cos(6)
12
PeRe’Ri%y (2(ys3(2ys — 7) + T)ys — Tys + 3) sin(26)0y, p
N 40320

PeReRi (1 — 2y3(3y3(2ys — 5) + 10)) cos(0)d,,, p )
gy — PR L= 205005 2 )< OP 1 6 (3,,97)

U1,1 — —

+0((9,0)°).

;-
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Effective equation

Ocp + Pe (v10y, p + v30y,p) = Ap.

Taking the cross-sectional average on both side of the equation and utilizing the compressibility condition and
non-flux boundary condition yields

— S 2 _
dip + Pedy,vip = 0, p
Substituting the expansion of the velocity field and density field to the above equation yields
atf_) — ay1 (Heffay1 15) 3

sin(~y) sinh(~) N 5(cos(y) — cosh(7))
(sin(v) +sinh(7))2 " 27(sin(7) + sinh(y))

Keff = 1 + cot2(9) (

Dimension reduction: (yq,y3,t) = (y1,t), (2+1)->(1+1) g
For three dimension diffusion driven flow:( y1, ¥, y¥3,t) = (y1,t), (3+1)-> (1+1)
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Numerical simulation  Re=t Ri=aw0, Pe=do. Se=1. 0=

density t=0
y Effective equation
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Re = 0.1, Ri=>50000, Pe=100, Sc=1, 6= g

3 I =5
; density t=0 1 ,
- [ . N Effective equation
- 0.8t e, = = = Full simulation
¥ A t:r ----------- Diffusion equation
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atﬁ ayl (H:effavl

?

E sin(y)sinh(7) _ 5(cos(y) — cosh(y)) +1)

Kegg = 1 + cot2

(sin(7) nh( ))?  27(sin(y) + sinh(y))
et = 1 4 cot”( ((1 — 23) 2y +5) SH:E@,? + 5cos(n) + O (726_7)) , Y — 00,

2879~12
22680 4086482400

Keff = 1 + cot (9)( +O('}/16))? v — 0.

100 / The lower bound and upper bound of the effective diffusivity
R
107 4 ] 1 < ket () < 14 cot?(0)
/. X Reff Y

102}
10-3 3 H,.n‘—l

cot=()
104 ¢ = = = gsmall v approximation | |

----------- large v approximation
107 £= ‘ = —
10° 10’ 10°
y
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Conclusion

1. We introduce a novel asymptotic expansion inspired by center manifold theory, which yields
precise approximations for velocity, density, and pressure fields.

2. We derive a nonlinear effective equation for the density field, serving as a reduced model of
the original system.

3. We find the lower bound and upper bound of the effective diffusivity induced by the
diffusion-driven flow.

Future work:
1. Apply the method to other system involves the slow manifold.
2. More rigorous justification of the expansion, stability analysis.
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