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Coherent structures in turbulent flows

@ Rotating vortices : Saturn’s hexagon,

@ Leapfrogging of two coaxial rings (Simulation below from Niemi 2005)
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General problem

» Given a dynamical system (finite/infinite dimensional)

X(t)=v(X(t)), v:E—=F

@ Find the equilibria (stationary solutions) : v(X) = 0

@ Analyze the phase portrait around the equilibrium state (whether periodic or
quasi-periodic solutions can be captured ?!)
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2d Euler equations

@ Helmholtz equation (1858) :
drw + v(t,x) - Vw =0, v=V'y= (=0, i1))

with w : [0, T] x R> = R and

0 = 2 [ 108~ (e )y

@ We have a large family of stationary radial solutions :

w(t,x) = f(|x|), f € L.
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Find time periodic solutions ? '

@ Rigid periodic motion (traveling waves) :

w(t, x) = wo (e_imx)

We distinguish two cases :

@ Nonrigid periodic solutions : there exists T > 0 such that
w(T,x) = wo(x)
We may explore them around equilibria of type :
@ Vortex patches.

@ Nonuniform vortices. (It will be discussed in Claudia’s talk)

© Point vortex system.
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Rigid time periodic solutions

@ Vortex patches : If wg = 1p, then for any t € R, w(t) = 1p,.

@ Radial shaped patches (discs, annulus,..) are stationary solutions.

@ Kirchhoff ellipses : any ellipse rotates uniformly with angular velocity Q = (aii)Z

@ Numerical observation Deem-Zabusky 1978 : existence of m—fold rotating patches

OO0 a

@ Burbea (1982) : There exists a family of rotating patches (V},)m>» bifurcating
from the disc at the spectrum Q € {21 m > 2}.

2m
Vortex patch problem
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Doubly connected case

@ de la Hoz-H.-Mateu-Verdera(2016) :Let C(b, 1) be the annulus of small radius b,
2

m 1-
m > 3 and assume that 1 + b — m < 0. There are two branches of non
trivial m-fold doubly connected periodic patches bifurcating from the annulus at

two different angular velocities Q.

©=0.333,0.336, ..., 0.354 A © = 0.3549 ©=0.129,0.132, ..., 0.156 A 2 = 0.158
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Boundary regularity.

Extension to active scalar equations : gSQG, SWQG, 3D QG,..
Geometry effects (Euler on the disc or on the sphere).

Rigidity and flexibility of stationary solutions.

Quai-periodic patches.

Contributions : Berti, Cao, Castro, Cérdoba,de la Hoz, Dritschel, Garcia,
Gbémez-Serrano, Hassainia, H., Houamed, lonescu, Mateu, Masmoudi, Park,
Renault, Roulley, Soler, Verdera, Wheeler, L. Xue, Z. Xue, Yao,..
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Point v model

@ Helmholtz (1856) : If wo = 3 " 70,, 7 € R?,y; € R* then

N
w(t,x) = Z Yi0z (1)
j=1

95l) _ LS W g

dt  2in zi—z

with

@ Kirchhoff (1876) : the system is Hamiltonian with

zj(t . L
7]’% = i04H, H(zi,..zn) = = Z Vi vk log |z — zi]
1j#KSN

@ Grobli (1877)-Poincaré (1893) : this system is integrable for N < 3.

@ It is not integrable in general for N > 4.
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Pairs of vortices

EO_ 1w dm@_ 1
dt  2irw zi— 20 dt  2irw Z — 21

@ Thus the vector Z(t) = z1(t) — z(t) satisfies
dZ(t) _m+7 1

dt 2ir  Z(t)

@ The equations are given by

@ We distinguish two scenarios :

@ Case v; + 72 # 0. The pairs rotate uniformly about
the center of mass, with = 1tz

27 d?
W
T
?jq
@ Case 71 + 92 = 0. The pairs translate uniformly with U = 5 .
1 %
7
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Rotating configuration : link with polynomials

» Rotating configurations : z(t) = €*z(0),j =1,..., N

@ Taking v; = 1 and rescaling the time we find the system

1
*-:E j=1,...,N
ZJ Zj_zk’J ’ )
k#j

N
@ Let P(z) = H(z — zj), then
j=1

o Stieltjes 1885 : Case Zj c R. P —2zP' +2NP =0 (Hermite polynomials).
@ Thomson (1883) : Case z; € T. We find P(z) = zV — 1 : regular N-gon.
© Aref 2012 : Different nested polygons were discovered.

@ More contributions : Aref, Clarkson, Demina, Kudrayshov, P. Newton, O'neil,
Tkachenko,..
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Desingularization of point vortices

» Contour dynamics approach

@ Deem-Zabusky 1978, Saffman-Szeto 1980 : Numerical evidence of a curve of
concentrated rotating symmetric pairs of patches connected to the pairs of the

point vortex system (simulations below from Luzzatto-Fegiz and Williamson(2010).
S :

r .~ N _ \

Zos @ \
(\ Wb g N -
T oo @@ o —

@ Turkington 1985 : Existence of co-rotating pairs (lack of information on its
topology and geometry).

© H.-Mateu (2017) : We gave an analytical proof using the contour dynamics
equation and implicit function theorem (for Euler and gSQG)

@ H.-Hassainia(2020) : similar result with asymmetric patches.
@ Garcia-Haziot(2022) : Global bifurcation results.

» Variational approach-Gluing methods : Gravejat-Smets 2019, Godard-Cadillac 2020,
Cao-Lai-Zhan 2020, Davilla-del Pino-Musso-Wei 2020,...
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Leapfrogging of two symmetric dipoles

@ Aref, Eckhardt, Pomphrey( 1980-1988) :
— The system of 4 point vortices is not integrable and Chaos may emerge.
— The system is integrable when ~; + v 4+ 73 + 74 = 0.

@ Symmetric case (pairs of vortex dipoles). Love(1893) : If 0 < Z—; < \/2 then the
4-points leapfrog (non-rigid time periodic motion in the translating frame)

e O
co0000 O
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Motion equation

@ Take 4 vortices (z1,7), (2, 7), (Z1, —7), (Z2, —7) and denote z; — zo = n+i€. Then

7:] :8§H(T/7£)7 _ _1 1 ,;
{5 = —0yH(n, %), Hm8) = 2|°g(yo2—£2 y§+n2)'

with yo = Im(z1 + 22), which is a constant of the motion.

@ The orbits are contained in the algebraic set

{noer (r+ gi;;)(sz +ih-2) =y

Il
S
—~
5
I
[y
SN—
N
—

@ The orbit is periodic iff 0 < 50 < ¥%=. The period takes the form

862(1—ap) [ (1—ap)? a 1—2a a _ &
T(fo) - :(l] 2ay) |: ago E(lfgco) - ag 0K(1*2¢0)j|’ a0 = 3o

@ The period is strictly increasing.
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@ We desingularize the 4 points by concentrated symmetric patches

o(t) = 1o,

1
+ = IDf

,27?121 -1

€ =2 e
bty 7Dy,

Df,k £ 60?,/( + Zk(t)7 |Ofk‘ =T, k= 1727

with Of , being simply connected domains localized around the unit disc. By a
symmetry reduction we find out that a particular solution is given by

& &
Vt E ]R, Ot72 == ()1L+ T(,fo),l.

Theorem (Hassainia-H.-Masmoudi 2023)

Let yo >0 and 0 < a < b < 2, there exists eo > 0 such that for all ¢ € (0,¢c0) there
exists a Cantor type set C. C [a, b] with

lim|Cc|=b—a
e—0
and for any & € C., Euler equation admits a solution satisfying
Vt E R, O;'T(Eo)ql = Of,l-

Here T (&) is the period of the four points vortices.

v
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@ This the first derivation of the long time leapfrogging motion.
@ These structures are captured far away the equilibria.
© The domain O;; is time periodic, but not rigidly rotating.

@ In 3d case, Davila, del Pino, Musso and Wei (2023) established a weak form of
short time leapfrogging of multi rings.

@ Jerrard-Smets (2018) : Leapfrogging for 3D Gross-Pitaevskii equation (weak form).
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Contour dynamics equation in the symmetric case

@ Symmetry reduction : from the ansatz

= 1 s _ 1 _ 1
w(t) - 521Dt5,1 + =2 lDf,Z EZIDtEl 2 1DE )

D5 « £ eOrx +ze(t), k=1,2, Ots+7'(50),1 =0:1
we reduce the 4 equations to just one equation on the boundary of Dj
@ First z1(t) — z(t) = 1/q(wot)e©“0") with wo the frequency of the 4-point system.

@ We parametrize the domain O;; as

6 €T 0 /14 2er(wot, ) €

with r : (p,0) € T?> — r(p,0) € R. Then the contour dynamics equation writes

G(r)(¢,0) £ 2wodor — e°woO(0)dar + 99 [F(e, q,r)] = 0.
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Linearization

@ First, G(0) = O(e).

@ By linearization at any small state r, we get

9, G(r)[h] = ®wodyph + By [(% —sr—c’g+e’ Vs(r)) h}
— 3H[h] — " Qo[h] + £*R*(r)[A],

@ with 7 the Hilbert transform in the toroidal case and @y is given by

Qo[hl(w,0) £ 59 [/T h(s, ) cos(n + 9)0/77},

eiZG(«p) ei2@(<p) i26
sy =re{ (4 . )ov).
T (Va@rsn@@nin) (V@ es@@) i)
@ For € =0, the operator is degenerating ( in time),
0-G(r)[h] = %(9 — H)h

The spatial modes +1 are trivial resonances!
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Formal Nash-Moser scheme

@ Newton scheme : To construct a solution to F(r) = 0 we use the scheme :
ro s given such that F(r) is small enough, roi1 = ry + hy, hy == —F'(r) " F(rn)

To do that, it is enough that F: X — Y is C' and F'(r0) : X — Y is an
isomorphism.

@ |n our context, F'(ro) is not an isomorphism !

@ Nash-Moser scheme is a regularization of Newton scheme where we require that
F'(r») admits a right inverse (with a loss of regularity+ suitable tame estimates)
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A toy model (Resonance and loss of regularity)

Consider the operator : Loh = szwo(fo)awh + Ogh
@ To solve Loh = f, we use Fourier expansion

. fk
— h N i(ke+n6) h b= n
9) Z k,n€ ’ ks 52(.4.)0(50)/( +n

k,n€EZ
@ In the Cantor set
= {& € [a,b], Y(k, n) # (0,0), [*wo(&0)k + n| > 5rors= |-

we get ‘
Lo Fllwe < &7 || Fllmser

@ We know that & +— wo(€) does not degenerate,

inf |’ > 0.
505[5*,5*]| (&)l

Hence for 7 > 1
|Co| > b—a—Ce°
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Good approximation and new scaling

@ We cannot start from rop = 0 because
G0 =0(). (.6 O=0E""). (©:6)(0)6(0)=0("")

@ We have to find a good approximation. Actually we obtain the following result :
there exists 7 such that

7 =0() and G(%) = 0(")
@ The functional that we will use is ( u € (0, 1))
Flp) = 25 G(r= +p), F(0) = O(=™")
@ We show that in a suitable Cantor set

(ap]:)fl(o) = 0(57275)’ (ap]:)*l(o)]_—(o) _ O(Eliéiﬂ)
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Invertibility of the linearized operator and strategy

@ The linear operator is given by
OpF(p)[h] = " wodoh + 85 [V (0)h] — §HIA] — 515 Qolh] + =*0RE (o) M),

where

VE(p)(9,0) 2 1 — £2w0® — 280, 0) — Zatp(i0,0) + £2VE(p) (10, 6)

@ Is it possible to invert the operator 9, F(p), for p and € small enough?
e Difficulties :

@ The operator is quasi-linear ( variable coefficients at the main order).

@ Small divisor problems.

© Trivial resonance of the spatial modes +1.

@ Degeneracy in € in the time direction
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e Tools:

@ KAM techniques in the spirit of the works of Berti-Montalto and
Feola-Giuliani-Procesi, to conjugate the linear operator into a Fourier multiplier.

@ Monodromy matrix to handle the modes +1.
© Nash Moser scheme to construct solutions to the nonlinear problem.

© Measure of the Cantor set.
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Thank you for your attention !
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Reduction of the transport part

@ There exists a change of coordinates transform % such that on the Cantor set

Clp) = m {Eoe (a, b); ‘wao)k—i—ncsfo){ ZM}

(k,n)€Z2
[n|>1

we have
B0, F(p)B = *wody + c(e,60)00 — 3H — @+ "Ry

with
Quhl(p,0) £ 7506 {/T h(p,m) cos (n+0 —2[0(¢) — ] )dn

@ It remains to analyze the mode 1 based on the study of the monodromy matrix.

@ The invertibility is achieved by a perturbative argument.
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