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Coherent structures in turbulent flows

1 Rotating vortices : Saturn’s hexagon,

2 Leapfrogging of two coaxial rings (Simulation below from Niemi 2005)
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General problem

I Given a dynamical system (finite/infinite dimensional)

Ẋ(t) = v(X(t)), v : E → F

Find the equilibria (stationary solutions) : v(X) = 0
Analyze the phase portrait around the equilibrium state (whether periodic or
quasi-periodic solutions can be captured ? !)
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2d Euler equations
Helmholtz equation (1858) :

∂tω + v(t, x) · ∇ω = 0, v = ∇⊥ψ = (−∂2ψ, ∂1ψ)

with ω : [0,T ]× R2 → R and

ψ(t, x) = 1
2π

ˆ
R2

log(|x − y |)ω(t, y)dy .

We have a large family of stationary radial solutions :

ω(t, x) = f (|x |), f ∈ L∞c .
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Find time periodic solutions ?

We distinguish two cases :
1 Rigid periodic motion (traveling waves) :

ω(t, x) = ω0
(
e−i Ωtx

)
2 Nonrigid periodic solutions : there exists T > 0 such that

ω(T , x) = ω0(x)

We may explore them around equilibria of type :
1 Vortex patches.
2 Nonuniform vortices. (It will be discussed in Claudia’s talk)
3 Point vortex system.
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Rigid time periodic solutions
Vortex patches : If ω0 = 1D0 then for any t ∈ R, ω(t) = 1Dt .
Radial shaped patches (discs, annulus,..) are stationary solutions.
Kirchhoff ellipses : any ellipse rotates uniformly with angular velocity Ω = ab

(a+b)2

Numerical observation Deem-Zabusky 1978 : existence of m−fold rotating patches

Burbea (1982) : There exists a family of rotating patches (Vm)m≥2 bifurcating
from the disc at the spectrum Ω ∈ {m−1

2m ,m ≥ 2}.
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Doubly connected case

de la Hoz-H.-Mateu-Verdera(2016) :Let C(b, 1) be the annulus of small radius b,

m > 3 and assume that 1 + bm − 1− b2

2 m < 0. There are two branches of non
trivial m-fold doubly connected periodic patches bifurcating from the annulus at
two different angular velocities Ω±m .

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

Ω = 0.333, 0.336, …, 0.354 ∧ Ω = 0.3549

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Ω = 0.129, 0.132, …, 0.156 ∧ Ω = 0.158

Taoufik Hmidi 7 / 25



More topics :

Boundary regularity.
Extension to active scalar equations : gSQG, SWQG, 3D QG,..
Geometry effects (Euler on the disc or on the sphere).
Rigidity and flexibility of stationary solutions.
Quai-periodic patches.
Contributions : Berti, Cao, Castro, Córdoba,de la Hoz, Dritschel, García,
Gómez-Serrano, Hassainia, H., Houamed, Ionescu, Mateu, Masmoudi, Park,
Renault, Roulley, Soler, Verdera, Wheeler, L. Xue, Z. Xue, Yao,..
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Point vortex model

Helmholtz (1856) : If ω0 =
∑N

j=1 γjδzj , zj ∈ R2, γj ∈ R? then

ω(t, x) =
N∑

j=1

γjδzj (t),

with
dzj (t)

dt = 1
2iπ

∑
k 6=j

γj

zj − zk
, j = 1, ...,N

Kirchhoff (1876) : the system is Hamiltonian with

γj
dzj (t)

dt = i∂zj H, H(z1, ..zN) = − 1
π

∑
16j 6=k6N

γjγk log |zj − zk |

Gröbli (1877)-Poincaré (1893) : this system is integrable for N 6 3.
It is not integrable in general for N > 4.
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Pairs of vortices

The equations are given by
dz1(t)

dt = 1
2iπ

γ1

z1 − z2
,

dz2(t)
dt = 1

2iπ
γ2

z2 − z1

Thus the vector Z(t) = z1(t)− z2(t) satisfies

dZ(t)
dt = γ1 + γ2

2iπ
1

Z(t)
We distinguish two scenarios :

1 Case γ1 + γ2 6= 0. The pairs rotate uniformly about
the center of mass, with Ω = γ1+γ2

2πd2

2 Case γ1 + γ2 = 0. The pairs translate uniformly with U = γ1
2πd .
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Rotating configuration : link with polynomials

I Rotating configurations : zj (t) = eiΩtzj (0), j = 1, ...,N
Taking γj = 1 and rescaling the time we find the system

zj =
∑
k 6=j

1
zj − zk

, j = 1, ...,N

Let P(z) =
N∏

j=1

(z − zj ), then

1 Stieltjes 1885 : Case zj ∈ R. P ′′ − 2zP ′ + 2NP = 0 (Hermite polynomials).
2 Thomson (1883) : Case zj ∈ T. We find P(z) = zN − 1 : regular N-gon.
3 Aref 2012 : Different nested polygons were discovered.

More contributions : Aref, Clarkson, Demina, Kudrayshov, P. Newton, O’neil,
Tkachenko,..
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Desingularization of point vortices

I Contour dynamics approach
1 Deem-Zabusky 1978, Saffman-Szeto 1980 : Numerical evidence of a curve of

concentrated rotating symmetric pairs of patches connected to the pairs of the
point vortex system (simulations below from Luzzatto-Fegiz and Williamson(2010).

,

Stability of elliptical vortices from “Imperfect–Velocity–Impulse” diagrams 187

Two vortices
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Fig. 5 Overall view of the resulting IVI diagram, showing the first three branches bifurcating from the elliptical states

locations of the changes of stability from our methodology match Love’s prediction to at least seven significant
figures. Indeed, since the changes of stability in our study are found by determining the intersection between
the bifurcated and the basic solution branches, the precision in the stability boundaries is limited only by the
numerical accuracy with which the steady states are computed.

Love’s analysis formed the basis of part of the work of Kamm [7], who computed the beginning of the
bifurcated branches presented here; the m = 4 branch was later explored in its entirety by Cerretelli and
Williamson [2], who approached the problem by initially considering two co-rotating vortices with lower
�. Due to the large computational cost associated with previous numerical methods [7], it appears that the
m = 3, 5 families (including the limiting shapes) had not been computed before.

It should be pointed out that the stability of all of these bifurcated branches was previously unknown. Fur-
thermore, while attempting to apply the approach of Saffman and Szeto, involving a (J, E) plot, to determine
stability, Kamm found that all of the new equilibria had the same energy and impulse as a member of the
elliptical family (to numerical accuracy). The bifurcated branches were therefore indistinguishable from the
elliptical family in a plot of E versus J , preventing Kamm from reaching any conclusions regarding stability.
This appears to be a further problem that can be associated with the use of an impulse–energy plot, which
should be considered in addition to the theoretical objections previously posed by Dritschel [4]. In contrast,
the use of a velocity-impulse diagram does not appear to suffer from the same issues.

In spite of presenting a significant amount of fine-scale details in the velocity–impulse plot, we must note
that the bifurcations were easily detected with the imperfection approach presented here. As noted in Sect. 2,
the step change in the control parameter was automatically adjusted to preserve accuracy; we did not need to
pose further restrictions to ensure that bifurcations were detected. Therefore an IVI diagram (coupled with a
suitable numerical method) is found to be reliable in revealing bifurcations. Once a new branch is detected,
the turning points can be carefully mapped by employing progressively smaller step sizes.

Finally, we should remark that, as a part of a separate work, the authors examine the m = 4 branch through
a linear stability analysis [14], finding accurate agreement with the results presented here.

4 Conclusions

In this paper, we successfully employ the “Imperfect–Velocity–Impulse” (IVI) diagram methodology to deter-
mine the stability of elliptical vortices, providing a detailed example of the application of this approach to a
classical flow. The imperfection used to reveal bifurcations is constructed by placing either point vortices, or
sources and sinks, at the stagnation points of the co-rotating flow; the steady states are then computed using a
novel numerical approach capable of accurately resolving vortex shapes of lesser symmetry.

The first three bifurcations for the family of Kirchhoff elliptical vortices (corresponding to instabilities
with azimuthal wavenumber m = 3, 4 and 5) are revealed; their detection appears to be insensitive to the
numerical parameters employed. Inspection of the IVI diagram gives the stability properties for the elliptical

2 Turkington 1985 : Existence of co-rotating pairs (lack of information on its
topology and geometry).

3 H.-Mateu (2017) : We gave an analytical proof using the contour dynamics
equation and implicit function theorem (for Euler and gSQG)

4 H.-Hassainia(2020) : similar result with asymmetric patches.
5 Garcia-Haziot(2022) : Global bifurcation results.

I Variational approach-Gluing methods : Gravejat-Smets 2019, Godard-Cadillac 2020,
Cao-Lai-Zhan 2020, Davilla-del Pino-Musso-Wei 2020,...
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Leapfrogging of two symmetric dipoles

Aref, Eckhardt, Pomphrey( 1980-1988) :
– The system of 4 point vortices is not integrable and Chaos may emerge.
– The system is integrable when γ1 + γ2 + γ3 + γ4 = 0.
Symmetric case (pairs of vortex dipoles). Love(1893) : If 0 < d1

d2
<
√
2 then the

4-points leapfrog (non-rigid time periodic motion in the translating frame)

⑪

·

-

I
⑨
in

I
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Motion equation

Take 4 vortices (z1, π), (z2, π), (z1,−π), (z2,−π) and denote z1− z2 = η+ iξ. Then{
η̇ = ∂ξH(η, ξ),
ξ̇ = −∂ηH(η, ξ), H(η, ξ) = − 1

2 log
( 1

y 2
0 − ξ2 −

1
y 2

0 + η2

)
.

with y0 = Im(z1 + z2), which is a constant of the motion.
The orbits are contained in the algebraic set{

(η, ξ) ∈ R2,
(
η2 + y4

0
ξ2

0

)(
ξ2 + y4

0
ξ2

0
− 2y 2

0
)

= y 4
0
( y2

0
ξ2

0
− 1
)2
}
,

The orbit is periodic iff 0 < ξ0
y0
<
√

2
2 . The period takes the form

T (ξ0) = 8ξ2
0(1−α0)

(1−2α0)

[
(1−α0)2

α2
0

E
(

α0
1−α0

)
− 1−2α0

α2
0

K
(

α0
1−α0

)]
, α0 = ξ0

y0

The period is strictly increasing.
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We desingularize the 4 points by concentrated symmetric patches

ω(t) = 1
ε2 1Dεt,1 + 1

ε2 1Dεt,2 −
1
ε2 1Dεt,1

− 1
ε2 1Dεt,2

,

Dε
t,k , εOε

t,k + zk (t), |Oε
t,k | = π, k = 1, 2,

with Oε
t,k being simply connected domains localized around the unit disc. By a

symmetry reduction we find out that a particular solution is given by

∀t ∈ R, Oε
t,2 = Oε

t+ T (ξ0)
2 ,1

.

Theorem (Hassainia-H.-Masmoudi 2023)
Let y0 > 0 and 0 < a < b < y0√

2 , there exists ε0 > 0 such that for all ε ∈ (0, ε0) there
exists a Cantor type set Cε ⊂ [a, b] with

lim
ε→0
|Cε| = b − a

and for any ξ0 ∈ Cε, Euler equation admits a solution satisfying

∀t ∈ R, Oε
t+T (ξ0),1 = Oε

t,1.

Here T (ξ0) is the period of the four points vortices.
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Some Remarks

1 This the first derivation of the long time leapfrogging motion.
2 These structures are captured far away the equilibria.
3 The domain Oε

t,1 is time periodic, but not rigidly rotating.
4 In 3d case, Davila, del Pino, Musso and Wei (2023) established a weak form of

short time leapfrogging of multi rings.
5 Jerrard-Smets (2018) : Leapfrogging for 3D Gross-Pitaevskii equation (weak form).

Taoufik Hmidi 16 / 25



Contour dynamics equation in the symmetric case

Symmetry reduction : from the ansatz

ω(t) = 1
ε2 1Dεt,1 + 1

ε2 1Dεt,2 −
1
ε2 1Dεt,1

− 1
ε2 1Dεt,2

,

Dε
t,k , εOε

t,k + zk (t), k = 1, 2, Oε
t+T (ξ0),1 = Oε

t,1

we reduce the 4 equations to just one equation on the boundary of Dε
t,1.

First z1(t)− z2(t) =
√

q(ω0t)eiΘ(ω0t), with ω0 the frequency of the 4-point system.
We parametrize the domain Oε

t,1 as

θ ∈ T 7→ eiΘ(ω0t)
√

1 + 2εr(ω0t, θ) eiθ

with r : (ϕ, θ) ∈ T2 7→ r(ϕ, θ) ∈ R. Then the contour dynamics equation writes

G(r)(ϕ, θ) , ε2ω0∂ϕr − ε2ω0Θ̇(ϕ)∂θr + ∂θ
[
F (ε, q, r)

]
= 0.
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Linearization

First, G(0) = O(ε).
By linearization at any small state r , we get

∂r G(r)[h] = ε2ω0∂ϕh + ∂θ

[(
1
2 −

ε
2 r − ε2g + ε3V ε(r)

)
h
]

− 1
2H[h]− ε2Q0[h] + ε3Rε(r)[h],

with H the Hilbert transform in the toroidal case and Q0 is given by

Q0[h](ϕ, θ) , 1
q(ϕ)∂θ

[ ˆ
T

h(ϕ, η) cos(η + θ)dη
]
,

g(ϕ, θ) = Re
{(

1
q(ϕ) + ei2Θ(ϕ)(√

q(ϕ) sin(Θ(ϕ))+y0

)2 − ei2Θ(ϕ)(√
q(ϕ) cos(Θ(ϕ))+iy0

)2

)
ei2θ
}
.

For ε = 0, the operator is degenerating ( in time),

∂r G(r)[h] = 1
2

(
∂θ −H

)
h

The spatial modes ±1 are trivial resonances !
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Formal Nash-Moser scheme

Newton scheme : To construct a solution to F (r) = 0 we use the scheme :

r0 is given such that F (r0) is small enough, rn+1 = rn + hn, hn := −F ′(rn)−1F (rn)

To do that, it is enough that F : X → Y is C1 and F ′(r0) : X → Y is an
isomorphism.
In our context, F ′(r0) is not an isomorphism !
Nash-Moser scheme is a regularization of Newton scheme where we require that
F ′(rn) admits a right inverse (with a loss of regularity+ suitable tame estimates)
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A toy model (Resonance and loss of regularity)

Consider the operator : L0h = ε2ω0(ξ0)∂ϕh + ∂θh
To solve L0h = f , we use Fourier expansion

h(ϕ, θ) =
∑

k,n∈Z

hk,ne i(kϕ+nθ), hk,n = −i fk,n

ε2ω0(ξ0)k + n

In the Cantor set

C0 =
{
ξ0 ∈ [a, b],∀(k, n) 6= (0, 0), |ε2ω0(ξ0)k + n| > ε2+δ

(1+|n|)τ
}
,

we get
‖L−1

0 f ‖Hs 6 ε−2−δ‖f ‖Hs+τ

We know that ξ0 7→ ω0(ξ) does not degenerate,

inf
ξ0∈[ξ∗,ξ∗]

|ω′(ξ0)| > 0.

Hence for τ > 1
|C0| > b − a − Cεδ

Taoufik Hmidi 20 / 25



Good approximation and new scaling

We cannot start from r0 = 0 because

G(0) = O(ε), (∂r G)−1(0) = O(ε−2−δ), (∂r G)−1(0)G(0) = O(ε−1−δ)

We have to find a good approximation. Actually we obtain the following result :
there exists rε such that

rε = O(ε) and G(rε) = O(ε4)

The functional that we will use is ( µ ∈ (0, 1))

F(ρ) = 1
ε1+µG(rε + ε1+µρ), F(0) = O(ε3−µ)

We show that in a suitable Cantor set

(∂ρF)−1(0) = O(ε−2−δ), (∂ρF)−1(0)F(0) = O(ε1−δ−µ)
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Invertibility of the linearized operator and strategy

The linear operator is given by

∂ρF(ρ)[h] = ε2ω0∂ϕh + ∂θ
[
Vε(ρ)h

]
− 1

2H[h]− ε2

q(ϕ) Q0[h] + ε3∂θRε0(ρ)[h],

where

Vε(ρ)(ϕ, θ) , 1
2 − ε

2ω0Θ̇− ε2g(ϕ, θ)− ε2+µ

2 ρ(ϕ, θ) + ε3V ε(ρ)(ϕ, θ)

Is it possible to invert the operator ∂ρF(ρ), for ρ and ε small enough ?
• Difficulties :

1 The operator is quasi-linear ( variable coefficients at the main order).
2 Small divisor problems.
3 Trivial resonance of the spatial modes ±1.
4 Degeneracy in ε in the time direction
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• Tools :
1 KAM techniques in the spirit of the works of Berti-Montalto and

Feola-Giuliani-Procesi, to conjugate the linear operator into a Fourier multiplier.
2 Monodromy matrix to handle the modes ±1.
3 Nash Moser scheme to construct solutions to the nonlinear problem.
4 Measure of the Cantor set.
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Thank you for your attention !
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Reduction of the transport part

There exists a change of coordinates transform B such that on the Cantor set

C(ρ) =
⋂

(k,n)∈Z2
|n|>1

{
ξ0 ∈ (a, b);

∣∣ε2ω(ξ0)k + n c(ε, ξ0)
∣∣ > ε2+δ

|n|τ

}

we have

B−1∂ρF(ρ)B = ε2ω0∂ϕ + c(ε, ξ0)∂θ − 1
2H− ε

2Q1 + ε2+µR1

with

Q1[h](ϕ, θ) , 1
q(ϕ)∂θ

[ ˆ
T

h(ϕ, η) cos
(
η + θ − 2

[
Θ(ϕ)− ϕ

])
dη
]

It remains to analyze the mode 1 based on the study of the monodromy matrix.
The invertibility is achieved by a perturbative argument.
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