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Continuum micromagnetic model
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Nonconvex, nonlocal, vectorial, multiscale problem
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m Introduce background magnetization M € C'(Qq;S') to ensure net charge zero, i.e.
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Reduced non—-dimensionalized two-dim energy

A 1
il / [1V]72 div(m—M)|? dx
Ins\ Qp

1 1 1
E.[m] = E/ e|Vm|? dx + E/ g|m-e2|2 dx + 3]
Qp Qp

for m € A and E = o else, where

A={m=H. (Q:S"):m = +e for +x > 1}.
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For e — 0 we have '—convergence in L! from the diffuse to a sharp interface
functional (Modica, Mortola '87)

GL r GL
I — &,

€

EOGL[U] = CWA|VU\ dx with |u| =1




Main result
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For m € Ay, the jump set is denoted by S, and its outer normal by n.
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1 .
m Perimeter and nonlocal term have same scaling since [Vm| ~ |V 2 m|2 noting that m ~ 1

m All terms are nonnegative, but nonlinear term is destabilizing



A look at the limit model

We note that the limit energy is local
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Anisotropic penalization of jump singularities in the limit, allows for zigzags
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