Γ–limit for zigzag walls

Hans Knüpfer

University of Heidelberg

joint work with W. Shi (Aachen)

Abu Dhabi, Feb 2024

NYUAD

Pattern forming systems

NaCl crystal

Magnetic domains in iron bar

Polymer phase separation in poor solvent

Actin cytosceleton

Understand these patterns by minimization principle?

Pattern forming systems

NaCl crystal

Magnetic domains in iron bar

Polymer phase separation in poor solvent

Actin cytosceleton

Understand these patterns by minimization principle?

Pattern forming systems

NaCl crystal

Magnetic domains in iron bar

Polymer phase separation in poor solvent

Actin cytosceleton

Understand these patterns by minimization principle?

Formation of magnetic domains in magnetic materials

Hubert & Schäfer, Magnetic Domains

Magnetization direction given unit vector |M| = 1.

Formation of magnetic domains in magnetic materials

Hubert & Schäfer, Magnetic Domains

Magnetization direction given unit vector |M| = 1.

Complex transition layers in ferrromagnetic films

Cross tie wall

Zigzag wall

Complex transition layers in ferrromagnetic films

Cross tie wall

Zigzag wall

- Ansatz based optimization of 1-d charged domain walls Hubert '79
- Néel wall Garcia-Cervera '04, Melcher '03, '04, DeSimone, HK, Otto '06, Ignat, Otto '08
- Cross-tie wall Alouges, Riviere, Serfaty '02, '03
- Zigzag domain walls in bulk materials (different effect) Ignat, Moser '12
- Asymmetric Bloch/Néel wall is asymptotically 1d. Döring, Ignat, Otto '14

Complex transition layers in ferrromagnetic films

Cross tie wall

Zigzag wall

- Ansatz based optimization of 1-d charged domain walls Hubert '79
- Néel wall Garcia-Cervera '04, Melcher '03, '04, DeSimone, HK, Otto '06, Ignat, Otto '08
- Cross-tie wall Alouges, Riviere, Serfaty '02, '03
- Zigzag domain walls in bulk materials (different effect) Ignat, Moser '12
- Asymmetric Bloch/Néel wall is asymptotically 1d. Döring, Ignat, Otto '14

The micromagnetic energy of a ferromagnetic sample $\Omega \subset \mathbb{R}^3$ with magnetization $M : \mathbb{R}^3 \to \mathbb{R}^3$, $|M| = \chi_\Omega$ is given by (Landau, Lifshitz '35)

$$\mathcal{E}[M] = d^2 \int_{\Omega} |\nabla M|^2 dx + Q \int_{\Omega} (M_1^2 + M_2^2) dx + \int_{\mathbb{R}^3} |\nabla \varphi|^2 dx$$

Stray field energy and stray field $\nabla \varphi$ determined by

 $-\Delta \varphi = -\operatorname{div} M$

In analogy to electrostatics div M are called magnetic charges

- Exchange energy prefers uniform magnetization
- Anisotropy energy prefers orientation $M \approx \pm e_3$.
- Stray field energy prefers charge free configurations

DeSimone, Müller, Kohn, Otto, Melcher, Serfaty, Riviere, Ignat, Muratov, ...

The micromagnetic energy of a ferromagnetic sample $\Omega \subset \mathbb{R}^3$ with magnetization $M : \mathbb{R}^3 \to \mathbb{R}^3$, $|M| = \chi_{\Omega}$ is given by (Landau, Lifshitz '35)

$$\mathcal{E}[M] = d^2 \int_{\Omega} |\nabla M|^2 dx + Q \int_{\Omega} (M_1^2 + M_2^2) dx + \int_{\mathbb{R}^3} |\nabla \varphi|^2 dx$$

Stray field energy and stray field $\nabla \varphi$ determined by

$$-\Delta \varphi = -\operatorname{div} M$$

In analogy to electrostatics div M are called magnetic charges

- Exchange energy prefers uniform magnetization
- Anisotropy energy prefers orientation $M \approx \pm e_3$.
- Stray field energy prefers charge free configurations

DeSimone, Müller, Kohn, Otto, Melcher, Serfaty, Riviere, Ignat, Muratov, ...

The micromagnetic energy of a ferromagnetic sample $\Omega \subset \mathbb{R}^3$ with magnetization $M : \mathbb{R}^3 \to \mathbb{R}^3$, $|M| = \chi_{\Omega}$ is given by (Landau, Lifshitz '35)

$$\mathcal{E}[M] = d^2 \int_{\Omega} |\nabla M|^2 dx + Q \int_{\Omega} (M_1^2 + M_2^2) dx + \int_{\mathbb{R}^3} |\nabla \varphi|^2 dx$$

Stray field energy and stray field $\nabla \varphi$ determined by

 $-\Delta \varphi = -\operatorname{div} M$

In analogy to electrostatics div M are called magnetic charges

- Exchange energy prefers uniform magnetization
- Anisotropy energy prefers orientation $M \approx \pm e_3$.
- Stray field energy prefers charge free configurations

DeSimone, Müller, Kohn, Otto, Melcher, Serfaty, Riviere, Ignat, Muratov, ...

The micromagnetic energy of a ferromagnetic sample $\Omega \subset \mathbb{R}^3$ with magnetization $M : \mathbb{R}^3 \to \mathbb{R}^3$, $|M| = \chi_{\Omega}$ is given by (Landau, Lifshitz '35)

$$\mathcal{E}[M] = d^2 \int_{\Omega} |\nabla M|^2 dx + Q \int_{\Omega} (M_1^2 + M_2^2) dx + \int_{\mathbb{R}^3} |\nabla \varphi|^2 dx$$

Stray field energy and stray field $\nabla \varphi$ determined by

 $-\Delta \varphi = -\operatorname{div} M$

In analogy to electrostatics div M are called magnetic charges

- Exchange energy prefers uniform magnetization
- Anisotropy energy prefers orientation $M \approx \pm e_3$.
- Stray field energy prefers charge free configurations

DeSimone, Müller, Kohn, Otto, Melcher, Serfaty, Riviere, Ignat, Muratov, ...

The micromagnetic energy of a ferromagnetic sample $\Omega \subset \mathbb{R}^3$ with magnetization $M : \mathbb{R}^3 \to \mathbb{R}^3$, $|M| = \chi_{\Omega}$ is given by (Landau, Lifshitz '35)

$$\mathcal{E}[M] = d^2 \int_{\Omega} |\nabla M|^2 dx + Q \int_{\Omega} (M_1^2 + M_2^2) dx + \int_{\mathbb{R}^3} |\nabla \varphi|^2 dx$$

Stray field energy and stray field $\nabla \varphi$ determined by

 $-\Delta \varphi = -\operatorname{div} M$

In analogy to electrostatics div M are called magnetic charges

- Exchange energy prefers uniform magnetization
- Anisotropy energy prefers orientation $M \approx \pm e_3$.
- Stray field energy prefers charge free configurations

DeSimone, Müller, Kohn, Otto, Melcher, Serfaty, Riviere, Ignat, Muratov, ...

The micromagnetic energy of a ferromagnetic sample $\Omega \subset \mathbb{R}^3$ with magnetization $M : \mathbb{R}^3 \to \mathbb{R}^3$, $|M| = \chi_{\Omega}$ is given by (Landau, Lifshitz '35)

$$\mathcal{E}[M] = d^2 \int_{\Omega} |\nabla M|^2 dx + Q \int_{\Omega} (M_1^2 + M_2^2) dx + \int_{\mathbb{R}^3} |\nabla \varphi|^2 dx$$

Stray field energy and stray field $\nabla \varphi$ determined by

 $-\Delta \varphi = -\operatorname{div} M$

In analogy to electrostatics div M are called magnetic charges

- Exchange energy prefers uniform magnetization
- Anisotropy energy prefers orientation $M \approx \pm e_3$.
- Stray field energy prefers charge free configurations

DeSimone, Müller, Kohn, Otto, Melcher, Serfaty, Riviere, Ignat, Muratov, ...

The micromagnetic energy of a ferromagnetic sample $\Omega \subset \mathbb{R}^3$ with magnetization $M : \mathbb{R}^3 \to \mathbb{R}^3$, $|M| = \chi_{\Omega}$ is given by (Landau, Lifshitz '35)

$$\mathcal{E}[M] = d^2 \int_{\Omega} |\nabla M|^2 dx + Q \int_{\Omega} (M_1^2 + M_2^2) dx + \int_{\mathbb{R}^3} |\nabla \varphi|^2 dx$$

Stray field energy and stray field $\nabla \varphi$ determined by

 $-\Delta \varphi = -\operatorname{div} M$

In analogy to electrostatics div M are called magnetic charges

- Exchange energy prefers uniform magnetization
- Anisotropy energy prefers orientation $M \approx \pm e_3$.
- Stray field energy prefers charge free configurations

DeSimone, Müller, Kohn, Otto, Melcher, Serfaty, Riviere, Ignat, Muratov, ...

The micromagnetic energy of a ferromagnetic sample $\Omega \subset \mathbb{R}^3$ with magnetization $M : \mathbb{R}^3 \to \mathbb{R}^3$, $|M| = \chi_{\Omega}$ is given by (Landau, Lifshitz '35)

$$\mathcal{E}[M] = d^2 \int_{\Omega} |\nabla M|^2 dx + Q \int_{\Omega} (M_1^2 + M_2^2) dx + \int_{\mathbb{R}^3} |\nabla \varphi|^2 dx$$

Stray field energy and stray field $\nabla \varphi$ determined by

 $-\Delta \varphi = -\operatorname{div} M$

In analogy to electrostatics div M are called magnetic charges

- Exchange energy prefers uniform magnetization
- Anisotropy energy prefers orientation $M \approx \pm e_3$.
- Stray field energy prefers charge free configurations

DeSimone, Müller, Kohn, Otto, Melcher, Serfaty, Riviere, Ignat, Muratov, ...

Geometry.

- Consider thin–film of form $\Omega = \underbrace{\mathbb{R} \times \mathbb{T}_{\ell}}_{=:Q_{\ell}} \times [0, t].$
- thin film regime $t \ll d$
- ℓ periodicity in x_2 with torus $\mathbb{T}_{\ell} := \mathbb{R}/[0, \ell)$.
- Enforce charged transition layer by boundary conditions

 $m = \pm e_1$ for $\pm x_1 > 1$.

$$\int_{\Omega} \underbrace{\operatorname{div} m}_{mag\,\cdot\,charge} = 0$$

uncharged domain wall

$$\int_{\Omega} \underbrace{\operatorname{div} m}_{mag.charge} = 0$$

Geometry.

- $\blacksquare \text{ Consider thin-film of form } \Omega = \underbrace{\mathbb{R} \times \mathbb{T}_{\ell}}_{=:Q_{\ell}} \times [0, t].$
- thin film regime $t \ll d$
- ℓ periodicity in x_2 with torus $\mathbb{T}_{\ell} := \mathbb{R}/[0, \ell)$.
- Enforce charged transition layer by boundary conditions

$$m = \pm e_1 \qquad \text{for } \pm x_1 > 1.$$

$$\int_{\Omega} \underbrace{\operatorname{div} \boldsymbol{m}}_{mag.charge} = 0$$

uncharged domain wall

Geometry.

<u>| •/</u> .

0/.

0/.

- $\blacksquare \text{ Consider thin-film of form } \Omega = \underbrace{\mathbb{R} \times \mathbb{T}_{\ell}}_{=:Q_{\ell}} \times [0, t].$
- thin film regime $t \ll d$
- ℓ periodicity in x_2 with torus $\mathbb{T}_{\ell} := \mathbb{R}/[0, \ell)$.
- Enforce charged transition layer by boundary conditions

$$m = \pm e_1 \qquad \text{for } \pm x_1 > 1.$$

$$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & &$$

 $\underbrace{\operatorname{div} m}_{mag.charge} = 0$

uncharged domain wall

Geometry.

- Consider thin–film of form $\Omega = \underbrace{\mathbb{R} \times \mathbb{T}_{\ell}}_{=:Q_{\ell}} \times [0, t].$
- thin film regime $t \ll d$
- ℓ periodicity in x_2 with torus $\mathbb{T}_{\ell} := \mathbb{R}/[0, \ell)$.
- Enforce charged transition layer by boundary conditions

$$m = \pm e_1 \qquad \text{for } \pm x_1 > 1.$$

uncharged domain wall

Thin film geometry and approximation.

• Consider thin ferromagnetic film $t \ll d$ with

 $\Omega = Q_{\ell} \times [0, t] = (\mathbb{R} \times \mathbb{T}_{\ell}) \times [0, t],$

With this geometry the energy can be simplified.

$$m_3 = 0, \quad m \neq m(x_3).$$

Stray field approximation

$$\int_{\mathbb{R}^3} \left| \nabla \varphi \right|^2 = \int_{\mathbb{R}^3} \left| \left| \nabla \right|^{-1} \operatorname{div} m \right|^2 \approx \int_{\mathbb{R}^2} \left| \left| \nabla \right|^{-\frac{1}{2}} \operatorname{div} m \right|^2$$

Introduce background magnetization $M \in C^1(Q_\ell; \mathbb{S}^1)$ to ensure net charge zero, i.e.

$$\int_{Q_{\ell}} \operatorname{div}(m-M) \, dx = 0.$$

Reduced non-dimensionalized two-dim energy

$$E_{\varepsilon}[m] = \frac{1}{2} \int_{Q_{\ell}} \varepsilon |\nabla m|^2 dx + \frac{1}{2} \int_{Q_{\ell}} \frac{1}{\varepsilon} |m \cdot e_2|^2 dx + \frac{\pi \lambda}{2|\ln \varepsilon|} \int_{Q_{\ell}} \left| |\nabla|^{-\frac{1}{2}} \operatorname{div}(m-M) \right|^2 dx$$

for $m \in \mathcal{A}$ and $E = \infty$ else, where

$$\mathcal{A} = \{ m = H^1_{\text{loc}}(Q_\ell; \mathbb{S}^1) : m = \pm e_1 \text{ for } \pm x_1 > 1 \}.$$

Thin film geometry and approximation.

• Consider thin ferromagnetic film $t \ll d$ with

 $\Omega = Q_{\ell} \times [0, t] = (\mathbb{R} \times \mathbb{T}_{\ell}) \times [0, t],$

• With this geometry the energy can be simplified.

$$m_3 = 0, \quad m \neq m(x_3).$$

Stray field approximation

$$\int_{\mathbb{R}^3} \left| \nabla \varphi \right|^2 = \int_{\mathbb{R}^3} \left| \left| \nabla \right|^{-1} \operatorname{div} m \right|^2 \approx \int_{\mathbb{R}^2} \left| \left| \nabla \right|^{-\frac{1}{2}} \operatorname{div} m \right|^2$$

Introduce background magnetization $M \in C^1(Q_\ell; \mathbb{S}^1)$ to ensure net charge zero, i.e.

$$\int_{Q_{\ell}} \operatorname{div}(m-M) \, dx = 0.$$

Reduced non-dimensionalized two-dim energy

$$E_{\varepsilon}[m] = \frac{1}{2} \int_{Q_{\ell}} \varepsilon |\nabla m|^2 dx + \frac{1}{2} \int_{Q_{\ell}} \frac{1}{\varepsilon} |m \cdot e_2|^2 dx + \frac{\pi \lambda}{2|\ln \varepsilon|} \int_{Q_{\ell}} \left| |\nabla|^{-\frac{1}{2}} \operatorname{div}(m-M) \right|^2 dx$$

for $m \in \mathcal{A}$ and $E = \infty$ else, where

$$\mathcal{A} = \{ m = H^1_{\text{loc}}(Q_{\ell}; \mathbb{S}^1) : m = \pm e_1 \text{ for } \pm x_1 > 1 \}.$$

Thin film geometry and approximation.

• Consider thin ferromagnetic film $t \ll d$ with

 $\Omega = Q_{\ell} \times [0, t] = (\mathbb{R} \times \mathbb{T}_{\ell}) \times [0, t],$

• With this geometry the energy can be simplified.

$$m_3 = 0, \quad m \neq m(x_3).$$

Stray field approximation

$$\int_{\mathbb{R}^3} \left| \nabla \varphi \right|^2 = \int_{\mathbb{R}^3} \left| |\nabla|^{-1} \operatorname{div} m \right|^2 \approx \int_{\mathbb{R}^2} \left| |\nabla|^{-\frac{1}{2}} \operatorname{div} m \right|^2$$

Introduce background magnetization $M \in C^1(Q_\ell; \mathbb{S}^1)$ to ensure net charge zero, i.e.

$$\int_{Q_{\ell}} \operatorname{div}(m-M) \, dx = 0.$$

Reduced non-dimensionalized two-dim energy

$$E_{\varepsilon}[m] = \frac{1}{2} \int_{Q_{\ell}} \varepsilon |\nabla m|^2 \, dx + \frac{1}{2} \int_{Q_{\ell}} \frac{1}{\varepsilon} |m \cdot \mathbf{e}_2|^2 \, dx + \frac{\pi \lambda}{2|\ln \varepsilon|} \int_{Q_{\ell}} ||\nabla|^{-\frac{1}{2}} \operatorname{div}(m-M)|^2 \, dx$$

for $m \in \mathcal{A}$ and $E = \infty$ else, where

 $\mathcal{A} = \{ m = H^1_{\text{loc}}(Q_\ell; \mathbb{S}^1) : m = \pm e_1 \text{ for } \pm x_1 > 1 \}.$

Thin film geometry and approximation.

• Consider thin ferromagnetic film $t \ll d$ with

 $\Omega = Q_{\ell} \times [0, t] = (\mathbb{R} \times \mathbb{T}_{\ell}) \times [0, t],$

• With this geometry the energy can be simplified.

$$m_3 = 0, \quad m \neq m(x_3).$$

Stray field approximation

$$\int_{\mathbb{R}^3} \left| \nabla \varphi \right|^2 = \int_{\mathbb{R}^3} \left| |\nabla|^{-1} \operatorname{div} m \right|^2 \approx \int_{\mathbb{R}^2} \left| |\nabla|^{-\frac{1}{2}} \operatorname{div} m \right|^2$$

Introduce background magnetization $M \in C^1(Q_\ell; \mathbb{S}^1)$ to ensure net charge zero, i.e.

$$\int_{Q_{\ell}} \operatorname{div}(m-M) \ dx = 0.$$

Reduced non-dimensionalized two-dim energy

$$E_{\varepsilon}[m] = \frac{1}{2} \int_{Q_{\ell}} \varepsilon |\nabla m|^2 \, dx + \frac{1}{2} \int_{Q_{\ell}} \frac{1}{\varepsilon} |m \cdot e_2|^2 \, dx + \frac{\pi \lambda}{2|\ln \varepsilon|} \int_{Q_{\ell}} ||\nabla|^{-\frac{1}{2}} \operatorname{div}(m-M)|^2 \, dx$$

for $m \in \mathcal{A}$ and $E = \infty$ else, where

$$\mathcal{A} = \{ m = H^1_{loc}(Q_\ell; \mathbb{S}^1) : m = \pm e_1 \text{ for } \pm x_1 > 1 \}.$$

Classical phase transformation theory of Ginzburg-Landau

For prescribed volume $\int_{\Omega} u = \lambda$ consider

$$\mathcal{E}^{GL}_{\varepsilon}[u] = \varepsilon \int_{\Omega} |\nabla u(x)|^2 dx + \frac{1}{\varepsilon} \int_{\Omega} (1 - u^2(x))^2 dx.$$

Do minimizers converge to minimizers of a limit problem?

For $\varepsilon \to 0$ we have Γ -convergence in L^1 from the diffuse to a sharp interfact functional (Modica, Mortola '87)

$$\begin{array}{lll} \mathcal{E}_{\varepsilon}^{GL} & \stackrel{\Gamma}{\longrightarrow} & \mathcal{E}_{0}^{GL}, \\ \\ \mathcal{E}_{0}^{GL}[u] & := & c_{w} \int_{\Omega} |\nabla u| \; dx \qquad \text{with } |u| = 1 \end{array}$$

Classical phase transformation theory of Ginzburg-Landau

For prescribed volume $\int_{\Omega} u = \lambda$ consider

$$\mathcal{E}^{GL}_{\varepsilon}[u] = \varepsilon \int_{\Omega} |\nabla u(x)|^2 dx + \frac{1}{\varepsilon} \int_{\Omega} (1 - u^2(x))^2 dx.$$

Do minimizers converge to minimizers of a limit problem?

 $\begin{array}{ll} \Gamma-\text{limit} \ (\text{DeGiorgi}): \ X \ \text{metric space}, \ \mathcal{E}_k : X \to \mathbb{R}. \ \text{Then} \ \mathcal{E}_k \xrightarrow{\Gamma} \mathcal{E}_0 \ \text{if} \\ (1) \ \text{For any} \ u \in X \ \text{there is a sequence} \ u_{\varepsilon} \ \text{with} \ u_{\varepsilon} \to u \ \text{and} \\ & \lim_{\varepsilon \to 0} \mathcal{E}_{\varepsilon}[u_{\varepsilon}] \leq \mathcal{E}_0[u] & \text{limsup inequality} \\ (2) \ \text{For any sequence} \ u_{\varepsilon} \ \text{with} \ u_{\varepsilon} \to u, \ \text{we have} \\ & \lim_{\varepsilon \to 0} \mathcal{E}_{\varepsilon}[u_{\varepsilon}] \geq \mathcal{E}_0[u] & \text{liminf inequality} \end{array}$

For $\varepsilon \to 0$ we have Γ -convergence in L^1 from the diffuse to a sharp interfact functional (Modica, Mortola '87)

$$\begin{array}{lll} \mathcal{E}_{\varepsilon}^{GL} & \stackrel{\Gamma}{\longrightarrow} & \mathcal{E}_{0}^{GL}, \\ \\ \mathcal{E}_{0}^{GL}[u] & := & c_{w} \int_{\Omega} |\nabla u| \; dx \qquad \text{with } |u| = 1 \end{array}$$

Classical phase transformation theory of Ginzburg-Landau

For prescribed volume $\int_{\Omega} u = \lambda$ consider

$$\mathcal{E}^{GL}_{\varepsilon}[u] = \varepsilon \int_{\Omega} |\nabla u(x)|^2 dx + \frac{1}{\varepsilon} \int_{\Omega} (1 - u^2(x))^2 dx.$$

Do minimizers converge to minimizers of a limit problem?

Γ-limit (DeGiorgi): X metric space, E_k : X → ℝ. Then E_k → E₀ if
(1) For any u ∈ X there is a sequence u_ε with u_ε → u and
lim sup E_ε[u_ε] ≤ E₀[u] limsup inequality
(2) For any sequence u_ε with u_ε → u, we have
lim inf E_ε[u_ε] ≥ E₀[u] liminf inequality

For $\varepsilon\to 0$ we have $\Gamma-$ convergence in L^1 from the diffuse to a sharp interface functional (Modica, Mortola '87)

$$\begin{array}{lll} \mathcal{E}_{\varepsilon}^{GL} & \stackrel{\Gamma}{\longrightarrow} & \mathcal{E}_{0}^{GL}, \\ \\ \mathcal{E}_{0}^{GL}[u] & := & c_{w} \int_{\Omega} |\nabla u| \, dx \qquad \text{with } |u| = 1 \end{array}$$

Main result

Initial model: We recall our energy

$$E_{\varepsilon}[m] = \frac{1}{2} \int_{Q_{\ell}} \varepsilon |\nabla m|^2 \, dx + \frac{1}{2} \int_{Q_{\ell}} \frac{1}{\varepsilon} |m \cdot e_2|^2 \, dx + \frac{\pi \lambda}{2|\ln \varepsilon|} \int_{Q_{\ell}} ||\nabla|^{-\frac{1}{2}} \operatorname{div}(m-M)|^2 \, dx$$

Compactness: Every sequence with bounded energy is L^1 -compact with limits in

$$\mathcal{A}_0 = \{m = (u, 0) \in BV_{loc}(Q_\ell; \{\pm e_1\}) : m = \pm e_1 \text{ for } \pm x_1 > 1\}.$$

For $m \in \mathcal{A}_0$, the jump set is denoted by \mathcal{S}_m and its outer normal by n.

Theorem 1 (Γ–convergence)

Let $\lambda \geq 0$. Then $E_{\varepsilon} \stackrel{i}{\longrightarrow} E_0$ in the L^1 -topology, where

$$E_0[m] = 2 \int_{\mathcal{S}_m} \left(1 + (\sqrt{\lambda} |e_1 \cdot n|)^2 \right) \chi_{\{|e_1 \cdot n| \le \frac{1}{\sqrt{\lambda}}\}} + 2\sqrt{\lambda} |e_1 \cdot n| \chi_{\{|e_1 \cdot n| > \frac{1}{\sqrt{\lambda}}\}} \ d\mathcal{H}^1$$

if $m \in A_0$ and $E_0[m] = +\infty$ otherwise.

- Perimeter and nonlocal term have same scaling since $|
 abla m| \sim |
 abla^{rac{1}{2}}m|^2$ noting that $m \sim 1$
- All terms are nonnegative, but nonlinear term is destabilizing

Main result

Initial model: We recall our energy

$$E_{\varepsilon}[m] = \frac{1}{2} \int_{Q_{\ell}} \varepsilon |\nabla m|^2 \, dx + \frac{1}{2} \int_{Q_{\ell}} \frac{1}{\varepsilon} |m \cdot e_2|^2 \, dx + \frac{\pi \lambda}{2|\ln \varepsilon|} \int_{Q_{\ell}} ||\nabla|^{-\frac{1}{2}} \operatorname{div}(m-M)|^2 \, dx$$

Compactness: Every sequence with bounded energy is L^1 -compact with limits in

$$\mathcal{A}_0 = \{m = (u, 0) \in BV_{loc}(Q_\ell; \{\pm e_1\}) : m = \pm e_1 \text{ for } \pm x_1 > 1\}.$$

For $m \in \mathcal{A}_0$, the jump set is denoted by \mathcal{S}_m and its outer normal by n.

Theorem 1 (Γ -convergence)

Let $\lambda \geq 0$. Then $E_{\varepsilon} \xrightarrow{\Gamma} E_0$ in the L^1 -topology, where

$$E_0[m] = 2 \int_{\mathcal{S}_m} \left(1 + (\sqrt{\lambda} | e_1 \cdot n|)^2 \right) \chi_{\{|e_1 \cdot n| \le \frac{1}{\sqrt{\lambda}}\}} + 2\sqrt{\lambda} | e_1 \cdot n| \chi_{\{|e_1 \cdot n| > \frac{1}{\sqrt{\lambda}}\}} \ d\mathcal{H}^1$$

if $m \in A_0$ and $E_0[m] = +\infty$ otherwise.

- Perimeter and nonlocal term have same scaling since $|
 abla m| \sim |
 abla^{rac{1}{2}} m|^2$ noting that $m \sim 1$
- All terms are nonnegative, but nonlinear term is destabilizing

Main result

Initial model: We recall our energy

$$E_{\varepsilon}[m] = \frac{1}{2} \int_{Q_{\ell}} \varepsilon |\nabla m|^2 \, dx + \frac{1}{2} \int_{Q_{\ell}} \frac{1}{\varepsilon} |m \cdot e_2|^2 \, dx + \frac{\pi \lambda}{2|\ln \varepsilon|} \int_{Q_{\ell}} ||\nabla|^{-\frac{1}{2}} \operatorname{div}(m-M)|^2 \, dx$$

Compactness: Every sequence with bounded energy is L^1 -compact with limits in

$$\mathcal{A}_0 = \{m = (u, 0) \in BV_{loc}(Q_\ell; \{\pm e_1\}) : m = \pm e_1 \text{ for } \pm x_1 > 1\}.$$

For $m \in \mathcal{A}_0$, the jump set is denoted by \mathcal{S}_m and its outer normal by n.

Theorem 1 (Γ -convergence)

Let $\lambda \geq 0$. Then $E_{\varepsilon} \xrightarrow{\Gamma} E_0$ in the L^1 -topology, where

$$E_0[m] = 2 \int_{\mathcal{S}_m} \left(1 + (\sqrt{\lambda} |e_1 \cdot n|)^2 \right) \chi_{\{|e_1 \cdot n| \le \frac{1}{\sqrt{\lambda}}\}} + 2\sqrt{\lambda} |e_1 \cdot n| \chi_{\{|e_1 \cdot n| > \frac{1}{\sqrt{\lambda}}\}} \ d\mathcal{H}^1$$

if $m \in A_0$ and $E_0[m] = +\infty$ otherwise.

- Perimeter and nonlocal term have same scaling since $|\nabla m| \sim |\nabla^{\frac{1}{2}} m|^2$ noting that $m \sim 1$
- All terms are nonnegative, but nonlinear term is destabilizing

A look at the limit model

We note that the limit energy is local

$$E_0[m] = 2 \int_{\mathcal{S}_m} \left(1 + \left(\sqrt{\lambda} |e_1 \cdot n|\right)^2 \right) \chi_{\{|e_1 \cdot n| \le \frac{1}{\sqrt{\lambda}}\}} + 2\sqrt{\lambda} |e_1 \cdot n| \chi_{\{|e_1 \cdot n| > \frac{1}{\sqrt{\lambda}}\}} \ d\mathcal{H}^1$$

Global minimizers are those (non-unique) configurations, where the jump set is a graph with

 $|n \cdot e_1| \geq \min\{1, \lambda^{-\frac{1}{2}}\}.$

The minimal energy for $m \in \mathcal{A}_0$ is

$$\min_{m \in \mathcal{A}_0} E_0[m] = 2\ell \begin{cases} (1+\lambda) & \text{if } \lambda \leq 1, \\ 2\sqrt{\lambda} & \text{if } \lambda > 1. \end{cases}$$

Anisotropic penalization of jump singularities in the limit, allows for zigzags

A look at the limit model

We note that the limit energy is local

$$E_0[m] = 2 \int_{\mathcal{S}_m} \left(1 + \left(\sqrt{\lambda} |e_1 \cdot n|\right)^2 \right) \chi_{\{|e_1 \cdot n| \le \frac{1}{\sqrt{\lambda}}\}} + 2\sqrt{\lambda} |e_1 \cdot n| \chi_{\{|e_1 \cdot n| > \frac{1}{\sqrt{\lambda}}\}} \ d\mathcal{H}^1$$

Global minimizers are those (non-unique) configurations, where the jump set is a graph with

$$|n \cdot e_1| \ge \min\{1, \lambda^{-\frac{1}{2}}\}.$$

The minimal energy for $m \in A_0$ is

$$\min_{m \in \mathcal{A}_0} E_0[m] = 2\ell \begin{cases} (1+\lambda) & \text{if } \lambda \leq 1, \\ 2\sqrt{\lambda} & \text{if } \lambda > 1 \end{cases}$$

Anisotropic penalization of jump singularities in the limit, allows for zigzags

A look at the limit model

We note that the limit energy is local

$$E_0[m] = 2 \int_{\mathcal{S}_m} \left(1 + \left(\sqrt{\lambda} | \boldsymbol{e}_1 \cdot \boldsymbol{n} | \right)^2 \right) \chi_{\{|\boldsymbol{e}_1 \cdot \boldsymbol{n}| \le \frac{1}{\sqrt{\lambda}}\}} + 2\sqrt{\lambda} | \boldsymbol{e}_1 \cdot \boldsymbol{n} | \chi_{\{|\boldsymbol{e}_1 \cdot \boldsymbol{n}| > \frac{1}{\sqrt{\lambda}}\}} \ d\mathcal{H}^1$$

Global minimizers are those (non-unique) configurations, where the jump set is a graph with

$$|n \cdot e_1| \geq \min\{1, \lambda^{-\frac{1}{2}}\}.$$

The minimal energy for $m \in A_0$ is

$$\min_{m \in \mathcal{A}_0} E_0[m] = 2\ell \begin{cases} (1+\lambda) & \text{if } \lambda \leq 1, \\ 2\sqrt{\lambda} & \text{if } \lambda > 1. \end{cases}$$

Anisotropic penalization of jump singularities in the limit, allows for zigzags

4