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Pattern forming systems

NaCl crystal
Magnetic domains in iron bar

Polymer phase separation in poor
solvent Actin cytosceleton

Understand these patterns by minimization principle?
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Formation of magnetic domains in magnetic materials

Hubert & Schäfer, Magnetic Domains

Magnetization direction given unit vector |M| = 1.
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Complex transition layers in ferrromagnetic films

Néel wall Cross tie wall Zigzag wall

Ansatz based optimization of 1–d charged domain walls Hubert ’79

Néel wall Garcia-Cervera ’04, Melcher ’03, ’04, DeSimone, HK, Otto ’06, Ignat, Otto ’08

Cross–tie wall Alouges, Riviere, Serfaty ’02, ’03

Zigzag domain walls in bulk materials (different effect) Ignat, Moser ’12

Asymmetric Bloch/Néel wall is asymptotically 1d. Döring, Ignat, Otto ’14
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- 4 -



Continuum micromagnetic model

The micromagnetic energy of a ferromagnetic sample Ω ⊂ R3 with magnetization M : R3 → R3,
|M| = χΩ is given by (Landau, Lifshitz ’35)

E[M] = d2
∫
Ω

|∇M|2 dx + Q

∫
Ω

(M2
1 + M2

2 ) dx +

∫
R3

|∇φ|2 dx

Stray field energy and stray field ∇φ determined by

−∆φ = − divM

In analogy to electrostatics divM are called magnetic charges

Exchange energy prefers uniform magnetization

Anisotropy energy prefers orientation M ≈ ±e3.

Stray field energy prefers charge free configurations

DeSimone, Müller, Kohn, Otto, Melcher, Serfaty, Riviere, Ignat, Muratov, . . .

Nonconvex, nonlocal, vectorial, multiscale problem
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Geometry

e1

e2

easy axis

Geometry.

Consider thin–film of form Ω = R × Tℓ︸ ︷︷ ︸
=:Qℓ

×[0, t].

thin film regime t ≪ d

ℓ periodicity in x2 with torus Tℓ := R/[0, ℓ).
Enforce charged transition layer by boundary conditions

m = ±e1 for ±x1 > 1.

−

−

−

+

+

+

∫
Ω

divm︸ ︷︷ ︸
mag.charge

= 0

uncharged
domain wall

∫
Ω
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charged
domain wall
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Reduced two–dimensional energy
Thin film geometry and approximation.

Consider thin ferromagnetic film t ≪ d with

Ω = Qℓ × [0, t] = (R × Tℓ) × [0, t],

With this geometry the energy can be simplified.

m3 = 0, m ̸= m(x3).

Stray field approximation∫
R3

|∇φ|2 =

∫
R3

||∇|−1 divm|2 ≈
∫
R2

||∇|−
1
2 divm|2

+
+

+
+

+
+

+

+
+

+
+

+
+

+

Introduce background magnetization M ∈ C 1(Qℓ; S1) to ensure net charge zero, i.e.∫
Qℓ

div(m − M) dx = 0.

Reduced non–dimensionalized two-dim energy

Eε[m] =
1

2

∫
Qℓ

ε|∇m|2 dx +
1

2

∫
Qℓ

1

ε
|m · e2|2 dx +

πλ

2| ln ε|

∫
Qℓ

∣∣|∇|−
1
2 div(m−M)

∣∣2 dx

for m ∈ A and E = ∞ else, where

A = {m = H1
loc(Qℓ; S1) : m = ±e1 for ±x1 > 1}.
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Classical phase transformation theory of Ginzburg–Landau
For prescribed volume

∫
Ω
u = λ consider

EGL
ε [u] = ε

∫
Ω

|∇u(x)|2 dx +
1

ε

∫
Ω

(1 − u2(x))2 dx.

Do minimizers converge to minimizers of a limit problem?

Γ–limit (DeGiorgi): X metric space, Ek : X → R. Then Ek
Γ−→ E0 if

(1) For any u ∈ X there is a sequence uε with uε → u and

lim sup
ε→0

Eε[uε] ≤ E0[u] limsup inequality

(2) For any sequence uε with uε → u, we have

lim inf
ε→0

Eε[uε] ≥ E0[u] liminf inequality

For ε → 0 we have Γ–convergence in L1 from the diffuse to a sharp interface
functional (Modica, Mortola ’87)

EGL
ε

Γ−→ EGL
0 ,

EGL
0 [u] := cw

∫
Ω

|∇u| dx with |u| = 1

u

W
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Main result

Initial model: We recall our energy

Eε[m] =
1

2

∫
Qℓ

ε|∇m|2 dx +
1

2

∫
Qℓ

1

ε
|m · e2|2 dx +

πλ

2| ln ε|

∫
Qℓ

∣∣|∇|−
1
2 div(m−M)

∣∣2 dx

Compactness: Every sequence with bounded energy is L1–compact with limits in

A0 = {m = (u, 0) ∈ BVloc(Qℓ; {±e1}) : m = ±e1 for ±x1 > 1}.

For m ∈ A0, the jump set is denoted by Sm and its outer normal by n.

Theorem 1 (Γ–convergence)

Let λ ≥ 0. Then Eε
Γ−→ E0 in the L1-topology, where

E0[m] = 2

∫
Sm

(
1 + (

√
λ|e1 · n|)2

)
χ{|e1·n|≤

1√
λ

} + 2
√
λ|e1 · n|χ{|e1·n|>

1√
λ

} dH1

if m ∈ A0 and E0[m] = +∞ otherwise.

Perimeter and nonlocal term have same scaling since |∇m| ∼ |∇
1
2 m|2 noting that m ∼ 1

All terms are nonnegative, but nonlinear term is destabilizing
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A look at the limit model

We note that the limit energy is local

E0[m] = 2

∫
Sm

(
1 + (

√
λ|e1 · n|)2

)
χ{|e1·n|≤

1√
λ

} + 2
√
λ|e1 · n|χ{|e1·n|>

1√
λ

} dH1

Global minimizers are those (non-unique) con-
figurations, where the jump set is a graph with

|n · e1| ≥ min{1, λ− 1
2 }.

m

Sm x1

x2

The minimal energy for m ∈ A0 is

min
m∈A0

E0[m] = 2ℓ

{
(1 + λ) ifλ ≤ 1,

2
√
λ if λ > 1.

Anisotropic penalization of jump singularities in the limit, allows for zigzags

- 10 -



A look at the limit model

We note that the limit energy is local

E0[m] = 2

∫
Sm

(
1 + (

√
λ|e1 · n|)2

)
χ{|e1·n|≤

1√
λ

} + 2
√
λ|e1 · n|χ{|e1·n|>

1√
λ

} dH1

Global minimizers are those (non-unique) con-
figurations, where the jump set is a graph with

|n · e1| ≥ min{1, λ− 1
2 }.

m

Sm x1

x2

The minimal energy for m ∈ A0 is

min
m∈A0

E0[m] = 2ℓ

{
(1 + λ) ifλ ≤ 1,

2
√
λ if λ > 1.

Anisotropic penalization of jump singularities in the limit, allows for zigzags

- 10 -



A look at the limit model

We note that the limit energy is local

E0[m] = 2

∫
Sm

(
1 + (

√
λ|e1 · n|)2

)
χ{|e1·n|≤

1√
λ

} + 2
√
λ|e1 · n|χ{|e1·n|>

1√
λ

} dH1

Global minimizers are those (non-unique) con-
figurations, where the jump set is a graph with

|n · e1| ≥ min{1, λ− 1
2 }.

m

Sm x1

x2

The minimal energy for m ∈ A0 is

min
m∈A0

E0[m] = 2ℓ

{
(1 + λ) ifλ ≤ 1,

2
√
λ if λ > 1.

Anisotropic penalization of jump singularities in the limit, allows for zigzags

- 10 -


