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Structure-preserving schemes

Conservative hyperbolic PDE

∂U(x)

∂t
+∇ · F (U) = 0, x = (t, x1, x2, ...) ∈ Ω.

Structure-preserving schemes

I Accuracy, Stability, Conservation

I Maximal-principle-preserving schemes/Entropy-preserving schemes
(Hyperbolic equations)

I Positivity-preserving schemes (Compressible fulid dynamic equations)

I Well-balanced schemes (Shallow water wave equations)

I Divergence-free schemes (MHD, Navier-Stokes equations)

I Asymptotic-preserving schemes (Kinetic equations, e.g. transport equations,
Boltzmann-BGK equations)
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Radiative transfer equations(RTEs)

Gray radiative transfer equations(GRTEs) are a kind of kinetic model coupled with
nonlinear material thermal energy equation. Omitting the scattering terms and the
internal source, the scaled form is

ϵ2

c

∂I

∂t
+ ϵΩ · ∇rI = σ

(
1

4π
acT 4 − I

)
, (t, r,Ω) ∈ τ ×D × S2, (1a)

ϵ2Cv
∂T

∂t
= σ

(∫
S2

IdΩ− acT 4

)
, (t, r) ∈ τ ×D, (1b)

BouI = IΓ(t, r,Ω), (t, r,Ω) ∈ Γ, (1c)

IinI = I0(r,Ω), (t, r,Ω) ∈ {0} ×D × S2, (1d)

IinT = T0(r), (t, r) ∈ {0} ×D, (1e)

where I(t, r,Ω) denotes the radiation intensity, T (t, r) the material temperature,
r = (x, y, z) the spatial position variable, t the time variable, Ω = (ξ, η, µ) the angular
direction on the unit sphere S2 along which the photons propagate , Cv the heat
capacity, σ(r, T ) the opacity, ϵ > 0 the scale parameter, a the radiation constant, c the
speed of light, Bou the boundary operator, Iin the initial operator and IΓ, I0, T0 are
given functions.

Liwei Xu (UESTC) Radiative Transfer Equations 2024.3.20 6 / 48



. . . . . .

Radiative transfer equations

When the material temperature T is the same as the radiation temperature Tr(∫
S2 IdΩ = acT 4

r

)
, the gray radiative transfer equation becomes the scaled

linear radiative transfer equation

ϵ2

c

∂I

∂t
+ ϵΩ · ∇rI = σ

(
1

4π

∫
S2

IdΩ− I

)
. (2)

Application fields: weapon physics, astrophysics, inertial/magnetic
confinement fusion, high-temperature flow systems,...

Challenges of numerical simulation for RTEs
I High dimensionality
I Multi-scale characteristics

ϵ = O(1): transport regime → ϵ ≪ 1: diffusion regime
I Strongly coupled nonlinearity for GRTEs

Liwei Xu (UESTC) Radiative Transfer Equations 2024.3.20 7 / 48



. . . . . .

Radiative transfer equations

Classical numerical methods for radiative transfer equations

Stochastic methods (No ray effect but suffers from statistical noise, deal with
high-dimensionality) (e.g. Implicit Monte Carlo(IMC) Method) Fleck Jr et al.
1971, Gentile 2001, McClarren et al. 2009, Densmore 2011, Shi et al. 2018, 2020.

Deterministic methods(e.g. FDM/FEM/FVM/DG) with the
asymptotic-preserving(AP) technique (deal with multiscale features)
I Diffusive relaxation schemes for multiscale transport equations Jin et al. 2000,
AP schemes for multiscale kinetic and hyperbolic equations Jin et al. 1999, 2012,
AP scheme based on micro-macro formulation for linear kinetic equations Lemou
et al. 2008, On the diffusive limits of radiative heat transfer system Ghattassi et al.
2022, Diffusive limits of the steady state radiative heat transfer system Ghattassi et
al. 2023, ...

I Asymptotic-preserving(AP) schemes for GRTEs
AP UGKS for GRTEs Sun et al. 2015, AP angular finite element based UGKS for GRTEs
Xu et al. 2020, AP filtered PN method for GRTEs Xu et al. 2021, AP discontinuous Galerkin
method for GRTEs Xiong et al. 2022, AP IMEX method for GRTEs Fu et al. 2022.
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Radiative transfer equations

Deep learning methods for radiative transfer equations

I PINNs for steady and time-dependent LRTEs Lu et al. 2022, Mishra et al. 2021, Chen et
al. 2022, Liu et al. arXiv:2102.12048.
I Model-operator-data network(MOD-Net) for RTEs and nonlinear PDEs Zhang et al.
2022, Physics-informed DeepONets(PIDONs) Wang et al. 2021.
I Asymptotic-preserving neural networks for multiscale kinetic equations Jin et al. 2023,
Jin et al. arXiv:2306.15381, Asymptotic-preserving convolutional deep operator
networks(APCONs) for LRTEs Wu et al. arXiv:2306.15891.
I Machine learning moment closure models for radiative transfer Huang et al. 2022, 2023.
I Element learning to radiative transfer: a systematic approach of accelerating finite
element-type methods via machine learning Du et al. arXiv:2308.02467.
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The framework of deep neural networks

Given an input x = (t, r,Ω) ∈ τ ×D × S2, the L-layer deep feedforward
neural network fθ is

f
[0]
θ (x) = x,

f
[l]
θ (x) = h ◦

(
W [l−1]f

[l−1]
θ (x) + b[l−1]

)
, 1 ≤ l ≤ L− 1,

fθ(x) = f
[L]
θ (x) = W [L−1]f

[L−1]
θ (x) + b[L−1],

(3)

θ =
(
W [l], b[l]

)
, W [l] ∈ Rml+1×ml : weight matrix, b[l] ∈ Rml+1 : bias term,

′′◦′′: entry-wise operation, h: nonlinear activation function of the hidden
layers.

Solving PDE model with DNN methods
I Neural network parameterization of solutions(e.g. fθ(x) → I(x))
I Construction of the loss functions(e.g. L = ∥fθ(xi)− I(xi)∥2L2 )
I Optimization of the loss functions(e.g. Adam, LBFGS,...)
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Asymptotic-preserving neural networks(APNNs)

Definition of APNNs [Jin et al. 2023]

Figure 1. Illustration of APNNs.

Fϵ: the microscopic equation that depends on ϵ

F0: the macroscopic limit as ϵ → 0 which is independent of ϵ

R(Fϵ): the measure(e.g. loss) of Fϵ whose solution is approximated by neural
network
R(F0): the asymptotic limit of R(Fϵ) as ϵ → 0

I If R(F0) is a good measure of F0, the measure(e.g. loss) R(Fϵ) is called
asymptotic-preserving(AP).
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Importance of the AP property in APNNs
Multiscale one dimensional linear radiative transfer equation(c = 1)

Fϵ :

 ϵ2∂tI + ϵµ∂xI = σ

(
1

2

∫ 1

−1
Idµ− I

)
, (t, x, µ) ∈ [0, T ]× [0, 1]× [−1, 1],

IL(µ > 0) = 1, IR(µ < 0) = 0, I0 = 0.

̇When the scale parameter is tiny(ϵ → 0), the correct limit equation is

F0 : ∂tρ−
1

3
∂x

(
1

σ
∂xρ

)
= 0, ρ =

1

2

∫ 1

−1
Idµ

NNs without AP property(e.g. PINNs) tend to learn the wrong limit
R(F0) : σ(ρ− I) = 0,

Figure 2. (Left) T = 2, σ = 1, ϵ = 10−8. The density ρ at times t = 0.04, 0.1, 0.3, 2.0. (Right)
T = 1, σ = 1 + (10x)2, ϵ = 10−3. The density ρ at times t = 0.2, 0.4, 0.6, 0.8, 1.0.
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Gray radiative transfer equations(GRTEs)

Consider GRTEs Eq.(1a)(1b),
ϵ2

c

∂I

∂t
+ ϵΩ · ∇rI = σ

(
1

4π
acT 4 − I

)
, (t, r,Ω) ∈ τ ×D × S2,

ϵ2Cv
∂T

∂t
= σ

(∫
S2

IdΩ− acT 4

)
, (t, r) ∈ τ ×D.

As the parameter ϵ → 0, away from boundaries and initial times, the radiation
intensity I(t, r,Ω) approaches to a Planck function at the local temperature, i.e.,

I =
1

4π
acT 4,

and the local temperature T satisfies the nonlinear diffusion equation

∂

∂t
(CvT ) + a

∂

∂t
(T )4 = ∇ · ac

3σ
∇ (T )4 . (4)
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PINNs fail to resolve GRTEs with small scales
Approximate radiation intensity I(t, r,Ω) and material temperature T (t, r) by the neural
networks Innθ1

(t, r,Ω) and Tnn
θ2

(t, r), respectively.
The PINNs loss function of the original GRTEs Eq.(1) is constructed as the least square
of the residuals.

Lϵ
PINNs,ge =

∥∥∥∥ ϵ2c ∂tI
nn
θ1 + ϵΩ · ∇rI

nn
θ1 − σ

(
1

4π
ac(Tnn

θ2 )4 − Inn
θ1

)∥∥∥∥2
L2(K)

+

∥∥∥∥ϵ2Cv∂tT
nn
θ2 − σ

(∫
S2

Inn
θ1 dΩ− ac(Tnn

θ2 )4
)∥∥∥∥2

L2(τ×D)

.

Take ϵ → 0

Lϵ
PINNs,ge →

∥∥∥∥σ( 1

4π
ac(Tnn

θ2 )4 − Inn
θ1

)∥∥∥∥2
L2(K)

+

∥∥∥∥σ(∫
S2

Inn
θ1 dΩ− ac(Tnn

θ2 )4
)∥∥∥∥2

L2(τ×D)

.

The limit is not the loss function of the desired diffusion limit equation (4), PINNs will
fail when ϵ is sufficiently small.
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Micro-macro decomposition

Denote by ⟨I⟩ = 1
4π

∫
S2 I(t, r,Ω)dΩ the integral average of I over the angular

variable Ω, and make decomposition of the radiation intensity[Xiong et al. 2022]

I(t, r,Ω) = ρ(t, r) +
ϵ

√
σ0

g(t, r,Ω),

where the macroscopic quantity ρ = ⟨I⟩, the microscopic perturbation g satisfies
⟨g⟩ = 0 and σ0 > 0 is a constant defined as a referred opacity.

Integrate Eq.(1a) over the angular direction Ω and subtract it from Eq.(1a), together
with Eq.(1b), we get the micro-macro coupled system

1

c
∂tρ+

1
√
σ0

⟨Ω · ∇rg⟩ = − 1

4π
Cv∂tT, (5a)

ϵ2

c
∂tg + ϵΩ · ∇rg − ϵ ⟨Ω · ∇rg⟩+

√
σ0Ω · ∇rρ+ σg = 0, (5b)

ϵ2Cv∂tT = σ
(
4πρ− acT 4

)
. (5c)
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The micro-macro decomposition based APNNs method

Apply PINNs to solve the micro-macro decomposition system Eq.(5).
Perform the neural network approximation

gnnθ1 (t, r,Ω) ≈ g(t, r,Ω),

ρTnn
θ2 (t, r) = (ρnnθ21(t, r), T

nn
θ22(t, r)) ≈ (ρ(t, r), T (t, r))

Choose the appropriate activation function ho(X) at the output layer of ρTnn
θ2

to
guarantee the nonnegativity of ρ and T .

Design the APNNs loss Lϵ
APNNs

Lϵ
APNNs = Lϵ

APNNs,ge + Lϵ
APNNs,i + Lϵ

APNNs,b + Lϵ
APNNs,c. (6)

The loss for the conservative laws

Lϵ
APNNs,c = λ3∥

⟨
gnnθ1

⟩
∥2L2(τ×D).
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The micro-macro decomposition based APNNs method
The loss for the micro-macro governing equation

Lϵ
APNNs,ge =

∥∥∥∥ ϵ2c ∂tg
nn
θ1 + ϵΩ · ∇rg

nn
θ1 − ϵ ⟨Ω · ∇rg

nn
θ1 ⟩+

√
σ0Ω · ∇rρ

nn
θ21 + σgnn

θ1

∥∥∥∥2
L2(K)

+

∥∥∥∥1c ∂tρ
nn
θ21 +

1√
σ0

⟨Ω · ∇rg
nn
θ1 ⟩+ 1

4π
Cv∂tT

nn
θ22

∥∥∥∥2
L2(τ×D)

+
∥∥ϵ2Cv∂tT

nn
θ22 − σ

(
4πρnn

θ21 − ac(Tnn
θ22)

4)∥∥2
L2(τ×D)

.

The loss for the boundary conditions

Lϵ
APNNs,b = λ1

∥∥∥∥Bou

(
ρnn
θ21 +

ϵ√
σ0

gnn
θ1

)
− IΓ

∥∥∥∥2
L2(Γ)

.

The loss for the initial values

Lϵ
APNNs,i = λ2

(∥∥∥∥Iin(ρnn
θ21 +

ϵ√
σ0

gnn
θ1

)
− I0

∥∥∥∥2
L2(D×S2)

+ ∥IinTnn
θ22 − T0∥2L2(D)

)
.
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Analyse the asymptotic-preserving(AP) property
As ϵ → 0,

Lϵ
APNNs,ge →∥

√
σ0Ω · ∇rρ

nn
θ21 + σgnn

θ1 ∥2
L2(K)

+

∥∥∥∥1c ∂tρ
nn
θ21 +

1√
σ0

⟨Ω · ∇rg
nn
θ1 ⟩+ 1

4π
Cv∂tT

nn
θ22

∥∥∥∥2
L2(τ×D)

+
∥∥σ (4πρnn

θ21 − ac(Tnn
θ22)

4)∥∥2
L2(τ×D)

≡ LAPNNs,ge,

which can be regarded as the PINN loss of the following system
√
σ0Ω · ∇rρ+ σg = 0, (7a)

1

c
∂tρ+

1√
σ0

⟨Ω · ∇rg⟩+
1

4π
Cv∂tT = 0, (7b)

σ
(
4πρ− acT 4) = 0. (7c)

Applying Eqs.(7a) and (7c) into Eq.(7b), the desired diffusion limit equation
Eq.(4) is obtained. That means the loss function Lϵ

APNNs is asymptotic-preserving.
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The stationary nonlinear GRTEs

We compare the performance between PINNs and APNNs for the 1D steady
nonlinear radiative transfer equation with a = c = σ = 1.

ϵv∂xI(x, v) = σ
(
acT 4(x)− I(x, v)

)
x ∈ [0, 1], v ∈ [−1, 1],

ϵ2∂xxT (x) = σ
(
acT 4(x)− ⟨I(x, v)⟩

)
x ∈ [0, 1], v ∈ [−1, 1],

I(0, v > 0) = 1, I(1, v < 0) = 0,

T (0) = 1, T (1) = 0.

Figure 3. Diffusion regime with ϵ = 10−3. (Left) I of APNNs. (Right) T and ρ: Ref v.s. PINNs
v.s. APNNs. PINNs do badly while APNNs perform well.
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Time-dependent linear transport equations
Diffusion regime with a variable scattering frequency
x ∈ [0, 1], t ∈ [0, 1], µ ∈ [−1, 1], σ = 1 + (10x)2, c = 1,
ϵ = 10−3, IL(µ > 0) = 1, IR(µ < 0) = 0, I0 = 0.

Figure 4. Diffusion regime with ϵ = 10−3. The density ρ at times t = 0.2, 0.4, 0.6, 0.8, 1.0.
(Left) Ref v.s. PINNs. (Right) Ref v.s. APNNs.

L2
error(ρ) t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

PINNs 9.25e-01 8.99e-01 8.75e-01 8.51e-01 8.27e-01
APNNs 3.44e-02 2.76e-02 2.59e-02 2.56e-02 2.33e-02

Table 1. Diffusion regime with ϵ = 10−3. The errors of PINNs and APNNs.
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The time-dependent nonlinear GRTEs

Problem I
Consider the 1D time-dependent GRTEs with temperature-independent opacity
σ = 10cm−1 and heat capacity Cv = 0.01GJ/cm3KeV on a slab of length 0.25cm
which is initially at equilibrium at 1keV, that means initial conditions are given by

T (0, x) = 1, I(0, x, µ) =
1

2
acT (0, x)4,

and the reflection condition and incident Planckian source condition on the left
and right boundaries are

I(t, 0, µ > 0) = I(t, 0,−µ), I(t, 0.25, µ < 0) =
1

2
ac(0.1)4,

where the light speed c = 29.98cm/ns and the radiation constant a = 0.01372

GJ/cm3 − KeV4.
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The time-dependent nonlinear GRTEs
Results of APNNs

Figure 5. ϵ = 1. (Left) Ref v.s. APNNs of the material temperature T (denote T as Te in all
pictures) at x = 0.0025. (Right) Ref v.s. APNNs of the radiation temperature Tr at times
t = 0.2, 0.4, 0.6, 0.8.

Figure 6. ϵ = 10−6. (Left) Ref v.s. APNNs of the material temperature T at x = 0.0025.
(Right) Ref v.s. APNNs of the radiation temperature Tr at times t = 0.2, 0.4, 0.6.
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Model-data asymptotic-preserving neural
networks(MD-APNNs)

Add a data regularization term 1 to the APNN loss function for solving the
strongly coupled nonlinearity

Lϵ,nn
MD-APNNs,l = λ0

1

N0

N0∑
i=1

(∣∣Tnn
θ22(ti, ri)− T ∗(ti, ri)

∣∣2) .

where {T ∗(ti, ri)}N0
i=1 are some label data via UGKS on coarse grids and

(ti, ri) are low-discrepancy Sobol sequence points [Mishra et al. 2021].

1L. Zhang, T. Lou, Y. zhang, W.E, Z.-Q.J. Xu, Z. Ma, Mod-Net: A machine learning approach via model-operato-data
network for solving pdes, Communications in Computational Physics, 32(2)(2022) 299-335.
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The time-dependent nonlinear GRTEs
Results of MD-APNNs

Figure 7. ϵ = 1. (Left) Ref v.s. MD-APNNs of the material temperature T at x = 0.0025.
(Right) Ref v.s. MD-APNNs of the radiation temperature Tr at times t = 0.2, 0.4, 0.6, 0.8.

Figure 8. ϵ = 10−6. (Left) Ref v.s. MD-APNNs of the material temperature T at
x = 0.0025. (Right) Ref v.s. MD-APNNs of the radiation temperature Tr at times
t = 0.2, 0.4, 0.6.
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The time-dependent nonlinear GRTEs

L2 error T Tr(t = 0.2) Tr(t = 0.4) Tr(t = 0.6) Tr(t = 0.8)

APNNs 5.05e-02 1.94e-02 1.30e-02 5.75e-02 1.21e-01

MD-APNNs 4.95e-03 3.21e-03 2.84e-03 2.48e-03 3.80e-03

Table 2. Kinetic regime with ϵ = 1: the errors of T and Tr (at t = 0.2, 0.4, 0.6, 0.8) for
APNNs and MD-APNNs.

L2 error T Tr(t = 0.2) Tr(t = 0.4) Tr(t = 0.6)

APNNs 2.38e-01 2.51e-01 2.40e-01 3.31e-01

MD-APNNs 2.62e-02 3.80e-03 7.35e-03 4.87e-03

Table 3. Diffusion regime with ϵ = 10−6: the errors of T and Tr (at t = 0.2, 0.4, 0.6) for
APNNs and MD-APNNs.
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The time-dependent nonlinear GRTEs

Problem II
We solve the 1D example with smooth initial data at the equilibrium

T (0, x) =
3 + sin(πx)

4
, I(0, x, µ) =

1

2
acT (0, x)4,

and periodic boundary condition. The spatial domian is [0, 2], time interval is [0, 0.5],
angular direction is [−1, 1] and the parameters are set as a = c = 1,
Cv = 0.1, σ = 10.
Results under diffusion regime

Figure 9. Diffusion regime with ϵ = 10−3. From left to right, Ref v.s. APNNs, Ref v.s. Data-driven
and Ref v.s. MD-APNNs of T at x = 0.0025.
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The time-dependent nonlinear GRTEs

Figure 10. Diffusion regime with ϵ = 10−3. From left to right, Ref v.s. APNNs, Ref v.s.
Data-driven and Ref v.s. MD-APNNs of Tr at times t = 0.2, 0.4, 0.6, 0.8, 1.0.

L2 error T Tr(t = 0.2) Tr(t = 0.4) Tr(t = 0.6) Tr(t = 0.8) Tr(t = 1.0)

Data-driven 6.37e-04 6.28e-01 6.02e-01 5.81e-01 5.64e-01 5.50e-01

APNNs 2.82e-02 7.10e-03 1.16e-02 1.54e-02 1.89e-02 2.23e-02

MD-APNNs 4.18e-03 3.37e-03 3.12e-03 3.11e-03 3.97e-03 5.67e-03

Table 4. Diffusion regime with ϵ = 10−3: the errors of T and Tr (at t = 0.2, 0.4, 0.6, 0.8, 1.0)
for APNNs, Data-driven and MD-APNNs.
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The time-dependent nonlinear GRTEs

2D time-dependent nonlinear radiative transfer equation

We consider smooth initial conditions at the equilibrium

ρ(0, x, y) =
ac

4π
((a1 + b1 sinx)(a2 + b2 sin y))4 ,

g(0, x, y) = −Ω · ∇ρ(0, x, y)

σ
,

T (0, x, y) = (a1 + b1 sinx)(a2 + b2 sin y).

Here, σ = 1, a = c = Cv = 1, a1 = a2 = 0.8, b1 = b2 = 0.1.
The periodic boundary conditions are used in both space directions.
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The time-dependent nonlinear GRTEs

Results under transport regime

Figure 11. Transport regime with ϵ = 1. Contuor plots of the material temperature T at times
t = 0.2, 0.4, 0.6. From left to right in each line, Ref, APNNs, Absolute errors between Ref
and APNNs, MD-APNNs and Absolute errors between Ref and MD-APNNs.
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The time-dependent nonlinear GRTEs

Results under diffusion regime

Figure 12. Diffusion regime with ϵ = 10−6. Contuor plots of the material temperature T at
times t = 0.0, 0.6, 1.0. From left to right in each line, Ref, APNNs, Absolute errors between
Ref and APNNs, MD-APNNs and Absolute errors between Ref and MD-APNNs.

Liwei Xu (UESTC) Radiative Transfer Equations 2024.3.20 32 / 48



. . . . . .

Outline

Structure-preserving schemes

Radiative transfer equations(RTEs)

Asymptotic-preserving neural networks(APNNs)

Model-data asymptotic-preserving neural networks(MD-APNNs) for gray
radiative transfer equations(GRTEs)

Macroscopic auxiliary asymptotic-preserving neural networks
(MA-APNNs) for linear radiative transfer equations(LRTEs)

Summary and future work
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Linear radiative transfer equations

Consider the LRTEs Eq.(2) over the bounded domain with additional absorption and
source term and let c = 1.

ϵ2
∂I

∂t
+ ϵΩ · ∇rI = σ

(
1

4π

∫
S2

IdΩ− I

)
− ϵ2αI + ϵ2G, (8a)

(t, r,Ω) ∈ τ ×D × S2,

BouI = IΓ, (t, r,Ω) ∈ Γ, (8b)
IinI = I0, (t, r,Ω) ∈ {0} ×D × S2. (8c)

I(t, r,Ω): radiation intensity, r = (x, y, z) ∈ R3: spatial variable, t: time variable,
Ω = (ξ, η, µ) ∈ S2(i.e.ξ2 + η2 + µ2 = 1): angular variable, σ(r): scattering
coefficient, α(r): absorption coefficient, G(r): internal source.
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Linear radiative transfer equations

Diffusion limit equation
As the parameter ϵ → 0, the radiation intensity I(t, r,Ω) tends to its own
average density ρ := ⟨I⟩ = 1

4π

∫
S2 IdΩ, which is a solution of the asymptotic

diffusion limit

∂tρ−
⟨
Ω2

⟩
∇r

(
1

σ
∇rρ

)
+ αρ−G = 0. (9)

When the angle is one-dimensional,
⟨
Ω2

⟩
= 1/3 and the angles are distributed

on the unit circle,
⟨
Ω2

⟩
= 1/2.

For the LRTEs Eq.(8a), perform angle integration on both sides of it, the
macroscopic auxiliary equation is obtained,

ϵ2∂tρ+ ϵ ⟨Ω · ∇rI⟩ = σ

(
1

4π

∫
S2

IdΩ− ρ

)
− ϵ2αρ+ ϵ2G.

which is usually used in UGKS to combine with the original radiative transfer
equation.
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The MA-APNN method for LRTEs

Macroscopic Auxiliary Asymptotic-Preserving Neural Networks
Rewriting the linear radiative transfer equation Eq.(8a) 2

I = ⟨I⟩ − ϵ2

σ
∂tI − ϵ

σ
Ω · ∇rI − ϵ2

σ
αI +

ϵ2

σ
G. (10)

Replacing I with the right handside of Eq.(10)

I = ⟨I⟩ − ϵ
1

σ
Ω · ∇r ⟨I⟩ − ϵ2

(
1

σ
∂t ⟨I⟩ −

1

σ
Ω · ∇r(

1

σ
Ω · ∇rI) +

1

σ
αI − 1

σ
G

)
+ ϵ3

(
1

σ
∂t(

1

σ
Ω · ∇rI) +

1

σ
Ω · ∇r

( 1
σ
∂tI +

1

σ
αI − 1

σ
G
))

+ ϵ4
(
1

σ
∂t

( 1
σ
∂tI +

1

σ
αI − 1

σ
G)

)
.

2M. Ghattassi, X. Huo, N. Masmoudi, On the diffusive limits of radiative heat transfer system i: well-prepared initial and
boundary conditions, SIAM Journal on Mathematical Analysis 54 (5) (2022) 5335–5387.
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The MA-APNN method for LRTEs

Replacing I with the right handside of Eq.(10)

I = ⟨I⟩ −
ϵ

σ
Ω · ∇r⟨I⟩ −

ϵ2

σ

(
∂t⟨I⟩ − Ω · ∇r(

1

σ
Ω · ∇r⟨I⟩) + αI −G

)
+ ϵ3A(I,G) + ϵ4B(I,G),

(11)

where
A(I,G) =

1

σ
∂t
( 1
σ
Ω · ∇rI

)
+

1

σ
Ω · ∇r

(
1

σ

(
∂tI + αI −G− Ω · ∇r(

1

σ
Ω · ∇rI)

))
,

B(I,G) =
1

σ2
∂t
(
∂tI + αI −G

)
−

1

σ
Ω · ∇r

(
1

σ
Ω · ∇r

( 1

σ

(
∂tI + αI −G

)))
.

Performing angle integration on both sides of Eq.(11)

∂tρ− ⟨Ω2⟩∇r

(
1

σ
∇rρ

)
+ αρ−G− ϵ⟨σA(I,G)⟩ − ϵ2⟨σB(I,G)⟩ = 0. (12)

Remark
(1) Eq.(12) is the equivalent macroscopic auxiliary equation obtained by continuous
substitution. It contains diffusion limit equation explicitly. Add it to the model as additional
constraint information.

(2) MA-APNNs need a high requirement for the smoothness of the solutions of LRTEs.
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The MA-APNN method for LRTEs

Eq.(8a) and Eq.(12) constitute the multiscale coupled formulation
ϵ2∂tI + ϵΩ · ∇rI = σ

(
1

4π

∫
S2

IdΩ− I

)
− ϵ2αI + ϵ2G,

∂tρ−
⟨
Ω2⟩∇r

(
1

σ
∇rρ

)
+ αρ−G− ϵ ⟨σA(I,G)⟩ − ϵ2 ⟨σB(I,G)⟩ = 0.

(13)

When ϵ → 0, the above system Eq.(13) is simplified as
σ (ρ− I) = 0,

∂tρ−
⟨
Ω2⟩∇r

(
1

σ
∇rρ

)
+ αρ−G = 0,

(14)

which is the expected diffusion limit equation.
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The exponentially weighted MA-APNN loss function

Using a nonnegative Innθ to approximate I

Inn
θ (t, r,Ω) := exp(−Ĩnn

θ (t, r,Ω)) ≈ I(t, r,Ω), ⟨Inn
θ (t, r,Ω)⟩ ≈ ρ(t, r).

The asymptotic-preserving MA-APNN loss function for the governing equations

Lϵ
MA-APNNs,ge =

∥∥∥λ 1
2
ν,β

(
ϵ2∂tI

nn
θ + ϵΩ · ∇rI

nn
θ − σ (⟨Inn

θ ⟩ − Inn
θ ) + ϵ2αInn

θ − ϵ2G
)∥∥∥2

L2(τ×D×S2)

+
∥∥∥(1− λν,β)

1
2

(
∂t ⟨Inn

θ ⟩ −
⟨
Ω2

⟩
∇r

( 1
σ
∇r ⟨Inn

θ ⟩
)
+ α ⟨Inn

θ ⟩ −G

− ϵ ⟨σA(Inn
θ , G)⟩ − ϵ2 ⟨σB(Inn

θ , G)⟩
)∥∥∥2

L2(τ×D)
,

where λν,β(r) := e−ν(r)β1 + β2 with ν(r) = σ(r)

ϵ2
+ α(r). Here, β = (β1, β2) > 0 is the

tunable parameter satisfying 1− max
r

λν,β(r) > 0.

Feature: with the designed exponential weight, the loss function adaptively learns the
state of photon evolution according to the change of model parameters.
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The exponentially weighted MA-APNN loss function

The loss for boundary conditions

Lϵ
MA-APNNs,b = λb

(
∥BouI

nn
θ − IΓ∥2L2(τ×∂D×S2) + ∥Bou ⟨Inn

θ ⟩ − ⟨IΓ⟩∥2L2(τ×∂D)

)
.

The loss for initial conditions

Lϵ
MA-APNNs,i = λi

(
∥IinInnθ − I0∥2L2(D×S2) + ∥Iin ⟨Innθ ⟩ − ⟨I0⟩∥2L2(D)

)
.

Under specific conditions (e.g. periodic boundary), the loss for the mass conservation
laws

Lϵ
MA-APNNs,c = λc

∥∥∥ϵ∂t

∫
D

⟨Inn
θ ⟩ dr +

∫
∂D

⟨Ω · nrI
nn
θ ⟩dr + ϵ

∫
D

α ⟨Inn
θ ⟩ dr − ϵ

∫
D

Gdr
∥∥∥2
L2(τ)

.
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The exponentially weighted MA-APNN loss function

Analyze the AP property

As σ(r), β1, β2 > 0, ϵ → 0,

λν,β(r) → β2,

Lϵ
MA-APNNs,ge → β2 ∥−σ (⟨Innθ ⟩ − Innθ )∥2L2(τ×D×S2)

+ (1− β2)

∥∥∥∥∂t ⟨Innθ ⟩ −
⟨
Ω2

⟩
∇r

(
1

σ
∇r ⟨Innθ ⟩

)
+ α ⟨Innθ ⟩ −G

∥∥∥∥2
L2(τ×D)

,

(15)

which is the PINN loss of the diffusion limit system (14).
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Diffusion regime with a constant scattering frequency

x ∈ [0, 1], t ∈ [0, 2], µ ∈ [−1, 1], IL(µ > 0) = 1, IR(µ < 0) = 0,

I0 = 0, σ = 1, α = 0, G = 0, ϵ = 10−8.

Figure 13. Diffusion regime with ϵ = 10−8. The density ρ at times t = 0.01, 0.05, 0.15, 2.00. (Left)
Ref v.s. PINNs. (Middle) Ref v.s. APNNs. (Right) Ref v.s. MA-APNNs.

L2
error(ρ) t = 0.01 t = 0.05 t = 0.15 t = 2.00 Training time

PINNs 9.75e-01 9.71e-01 9.65e-01 8.96e-01 17min 34s

APNNs 3.81e-01 8.18e-02 2.37e-02 8.95e-03 2h 45min

MA-APNNs 3.16e-02 5.79e-03 5.30e-03 1.35e-02 1h 24min

Table 5. Diffusion regime with ϵ = 10−8. The errors and training time of PINNs, APNNs and
MA-APNNs.
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Intermediate regime with a variable scattering
frequency and source term
x ∈ [0, 1], t ∈ [0, 1], µ ∈ [−1, 1], IL(µ > 0) = 0, IR(µ < 0) = 0,

I0 = 0, σ = 1 + (10x)2, α = 0, G = 1, ϵ = 10−2.

Figure 14. Intermediate regime with ϵ = 10−2. The density ρ at times t = 0.2, 0.4. (Left) Ref v.s.
PINNs. (Middle) Ref v.s. APNNs. (Right) Ref v.s. MA-APNNs.

L2
error(ρ) t = 0.2 t = 0.4 Training time

PINNs 9.98e-01 9.99e-01 30min 9s

APNNs 2.87e-02 3.24e-02 4h 37min

MA-APNNs 2.70e-02 3.44e-02 2h 25min

Table 6. Intermediate regime with ϵ = 10−2. The errors and training time of PINNs, APNNs and
MA-APNNs.
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two-dimensional case(diffusion regime)

D ∈ [0, 1]× [0, 1], t ∈ [0, 1], IB(t,x,v) = 0, nx · v < 0, x ∈ ∂D,

I0(x,v) = 0, σ = 1, α = 0, G = 1, ϵ = 10−8.

(a) ρRef, t = 0.1 (b) ρnn
θ , t = 0.1 (c) |ρRef − ρnn

θ |, t = 0.1

(d) ρRef, t = 0.8 (e) ρnn
θ , t = 0.8 (f) |ρRef − ρnn

θ |, t = 0.8

Figure 15. The 2D LRTEs in the diffusion regime (ϵ = 10−8). The L2 relative errors at times
t = 0.1, 0.8 are 3.98e− 02 and 4.79e− 02, respectively.
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Uncertainty quantification (UQ) problems

Considering the linear transport equation with cosine scattering coefficient
σ(z).
x ∈ [0, 1], t ∈ [0, 1], µ ∈ [−1, 1], I(t, 0, µ,z) = 0, I(t, 1, µ,z) = 0,

I(0, x, µ, z) = 0, σ(z) = 1 + 0.1
10∑
i=1

cos(πzi), α = 0, ϵ = 1,

G = x(1−x)
22

(
µ+ 11 +

10∑
i=1

zi

)
+ µt

22ϵ
(1−2x)

(
µ+ 11 +

10∑
i=1

zi

)
+ 1

ϵ2
σ(z)tx(1−x)µ,

z = (z1, z2, z3, z4, z5, z6, z7, z8, z9, z10) ∼ U([−1, 1]10).

At this time, the exact solution is

I(t, x, µ, z) =
tx(1− x)

22

(
µ+ 11 +

10∑
i=1

zi

)
, ρ(t, x,z) =

tx(1− x)

22

(
11 +

10∑
i=1

zi

)
,

and the expectation of ρ with respect to random variable z is
E(ρ) = 1

2 tx(1− x).

Liwei Xu (UESTC) Radiative Transfer Equations 2024.3.20 45 / 48



. . . . . .

Uncertainty quantification (UQ) problems

Figure 16. The expectation E(ρ) at t = 0.2, 0.4, 0.6.

L2
error t = 0.2 t = 0.4 t = 0.6

MA-APNNs 4.49e-02 3.63e-02 2.12e-02

Table 7. High dimensional transport regime. The errors of MA-APNNs.
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Outline

Structure-preserving schemes

Radiative transfer equations(RTEs)

Asymptotic-preserving neural networks(APNNs)

Model-data asymptotic-preserving neural networks(MD-APNNs) for gray
radiative transfer equations(GRTEs)

Macroscopic auxiliary asymptotic-preserving neural networks
(MA-APNNs) for linear radiative transfer equations(LRTEs)

Summary and future work
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Summary and future work

Summary
I Design a MD-APNNs method based on micro-macro decomposition to solve multiscale
nonlinear gray transfer radiative model. 3

I Design a exponentially weighted MA-APNN method to solve multiscale linear radiative transfer
model. 4

Feature
I MD-APNNs and MA-APNNs mainly establish the AP loss through the direct transformation
construction of the original model, which is the pre-processing part in the whole learning
optimization process of the neural network.

Future work
I Develop asymptotic-preserving neural operator methods to solve a class of GRTEs.
I Develop MA-APNNs to solve the Boltzmann-BGK equations.

3H. Li, S. Jiang, W. Sun, L. Xu, G. Zhou, A model-data asymptotic-preserving neural network method based on micro-macro
decomposition for gray radiative transfer equations, Communications in Computational Phisics (2023) (Accepted).

4H. Li, S. Jiang, W. Sun, L. Xu, G. Zhou, Macroscopic auxiliary asymptotic-preserving neural networks for the linear
radiative transfer equations, arXiv preprint arXiv:2403.01820 (2024).
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Thanks for your attention!
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