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Experiments and applications of EP

C. Poignard, Inria Bordeaux

M. Leguèbe 2|6

Electroporation as ablation energy

● High intensity electric �elds, very short duration. No thermal e�ects.
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A.Silve

Postpulse PI uptake after EP pulse  
From Escoffre et al. , BBA, 2011
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(microbial inactivation)
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Heuristics of Cell EP

C. Poignard, Inria Bordeaux

100pulses

100µs, 1500V/cm
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Electroquasistatics in a cell

C. Poignard, Inria Bordeaux

Electrical potential in cell

Electrical modeling of a single cell 
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Figure: Electric properties of cell

Cells are highly contrasted domains

with thin layer. The quasistatic potential

satisfies:

@tr·("ru)+r·(�ru) = 0, +BC+IC.

To avoid meshing the thin layer, we per-

form an asymptotic analysis in the regime
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Electric potential in biological cell.

In the limit regime we obtain transmission condi-

tions across the 2D surface.

�u = 0, in Oc [ Oe, (1a)

�e@nu|�+ = �c@nu|�� , (1b)

Cm@t [u ]� + Sm [u ]� = �c@nu|�� , (1c)

u(t , ·)|@⌦ = uimp(t), U(0, ·) = g. (1d)

The above equation can be equivalently written on

� thanks to DtN maps:

Cm@t vm + Smvm + L�(vm) = L0g, on �.

Note that L� is m-accretive and generates a semi-

group of contraction.
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With the assumptions:

Then the problem is approached by 

Electrical model of the cell



6 17/05/2024

Dirichlet-to-Neumann maps

C. Poignard, Inria Bordeaux

Dirichlet-to-Neumann operators. Denote by ⇤c, ⇤e and ⇤o the three following Dirichlet-to-Neumann
operators

⇤c : H
1/2(�) ! H

�1/2(�)

f 7! ~nc · �crvc|��

, where vc is the solution to

(
r · �crvc = 0, in Oc,

vc|� = f, vc|@Oc\� = 0,
(10a)

⇤e : H
1/2(�) ! H

�1/2(�)

f 7! ~ne · �erve|�+
,
, where ve is the solution to

8
><

>:

r · �erve = 0, in Oe,

ve|� = f,

ve|@Oe\�
= 0,

(10b)

⇤o : H
1/2(@⌦) ! H

�1/2(�)

g 7! ~ne · �erv|�+

, where vb is the solution to

8
><

>:

r · �ervb = 0, in Oe,

v|� = 0,

v|@⌦ = g.

(10c)

Following [14], it is equivalent to solve the volume equation (9) for U or the following nonlocal
equation on the surface � for the transmembrane voltage (TMV), v = [U ]�,

Cm(�)@tv + (Sm(�) + ⇤)v = G, (11a)
v(t = 0, ·) = v⇧(·), (11b)

where

⇤ = ⇤c(⇤e + ⇤c)
�1⇤e (11c)

G = ⇤c(⇤e + ⇤c)
�1⇤og. (11d)

3.1.1 Well-posedness of the transmembrane potential

The following result extends the well-posedness results of Kavian et al. [14] to time-varying and
space dependent capacitance.

Lemma 8. Let T > 0, s � 3, �0, �1 2 (0, 1], G 2 C
�0([0, T [, Hs(@⌦)) and � 2 C

1,�1([0, T ], Hs(�)).
Then for every initial condition v⇧ 2 L

2(�) there exists a unique classical solution

v 2 C
1([0, T ], L2(�)) \ C((0, T ], D(⇤))

to

Cm(�)@tv + (Sm(�) + ⇤)v = G

v(t = 0) = v0.

Proof. This result is a direct application of Theorem 6.1 and Theorem 7.1 from Pazy book [22,
Chapter 5]). In order to apply these results, let us first define

v :=
p

Cm(�)v,

which satisfies

@tv +

✓
Sm(�) �

1
2C

0

m(�)@t�

Cm(�)

◆

| {z }
=:M(t)

v +
1p

Cm(�)
⇤

1p
Cm(�)

| {z }
=:⇤̃(t)

v =
Gp

Cm(�)
| {z }

=:f(t)

.
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Formulation on the membrane

C. Poignard, Inria Bordeaux

Thanks to the 3 DtN maps, one defines
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Then the transmembrane voltage satisfies

Note the operator       is m-accretive with dense 
domain in                (Kavian, Leguèbe, CP, Weynans, JMB 2014)
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H
1(�)

Cm@tvm + (Sm + L�) vm = L0g
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Cm@tv +

✓
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2�e + �c

◆
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3�e�c

2�e + �c
E cos'
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In a spherical cell of radius     in a unidirectional uniform EF Erc
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Charging time: ⌧m =
2�e + �c

2�e�c

rcCm

1 + 2�e+�c
2�e�c

rcSm
⇠ 0.1µs
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Free-energy of the membrane

C. Poignard, Inria Bordeaux

Since we aim at linking the quantity of water within the membrane, it is more convenient to
introduce the double-well potential Wm as a function of the volume fraction � 2 (0, 1):

Wm(�) := W (2�� 1) = 16a1�
2(1� �)2 + 8a2(�+ 1/2)(�� 1)2, 8� 2 [0, 1]. (8)

Let
Cm : � ! Cm(�),

be the membrane capacitance depending on the water volume fraction in the membrane, and Vm

the transmembrane voltage, then the free energy of the membrane is given as

E(�, Vm) =


2

Z

�
|r�|

2
ds+

Z

�
Wm (�) ds�

1

2

Z

�
Cm(�)V 2

m ds. (9)

Roughly speaking, the effect of the electrostatic energy 1
2Cm(�)V 2

m is to tilt the energy to favor
the phase � = 1 leading to the entry of water within the membrane (see Figure 3).

Figure 3: Assuming that the TMV is constant throughout the membrane, then we can just consider
the electrostatic term as a part of the membrane potential. Using physically relevant values (see
Table ??) and a suitable model for � 7! Cm(�) (see section 3.), we get the above graphs for different
values of TMV. It is clear that as the TMV increases, the shape of the potential changes to eventually
only support one stable state where the state of the membrane is mainly water.

As the water volume fraction is not conserved (defects can be created and disappear from
the membrane), we consider the non-conserved dynamics associated to this energy functional (also
called the model-A dynamics, see [4]). The evolution of � will be determined by the L2-gradient flux
associated with the energy functional above. In other words, it corresponds to the Euler-Lagrange
equation for the energy � ! E(�, Vm), considering the TMV Vm given:

@t� = �↵
�E

��
, (10)

8
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��
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8

Cm(�) = Clipid �+ Cwater(1� �)
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E(�, Vm) =


2

Z

�
|r�|2 ds+

Z

�
Wm (�) ds� 1

2

Z

�
Cm(�)V 2

m ds.
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The coupling the PDEs

C. Poignard, Inria Bordeaux

Property [Jaramillo, Collin, CP.  JoMB2023]

for some ↵ > 0, which is a kinetic coefficient with units [m2J�1s�1] also known as the phase-field
mobility. The resulting evolution equation for � takes the form of the following Allen-Cahn equation
on the membrane surface � [3, 4, 7]:

@t��D0�� = ↵W
0

m(�) +
↵

2
C

0

m(�)V 2
m, 8t > 0, (11a)

�(0, ·) = �0(·), (11b)

where D0 := ↵ is a diffusion coefficient with units [m2s�1].

2.2 Determination of the coefficients of Wm using Chizmadzhev’s energy model

The energy functional (9) (when Vm = 0) can be thought of as a generalization of the standard
energy model for hydrophillic pores (12) . Therefore, it is instructive to consider the physical units
of each term in the energy functional (9) (with (8)) when comparing this energy with the pore
energy proposed by Chizmadzhev.

As � is dimensionless then the unit for  is the energy unit [J] and the coefficients a1 and a2

have surface tension units [Jm�2]. We thus compare these terms with the linear and surface tension
terms from the hydrophilic pore energy of Chizmadzhev given for any radius r > r

? by (see [16, 24]):

w(r) = 2⇡�r � ⇡�r
2 +

C

r4
, 8r > 0 (hydrophillic pore energy) (12)

where � is the linear tension of the edge of a pore and � the surface tension of the membrane.
The last term represents the steric repulsion of the lipid heads in the edge of a pore. In practice it
prevents pores from being too small as that would be too energetically costly.

(a) Ideal smooth circular pore �p of radius r0 > 0 in a flat

membrane � centered at the origin. The rotational symme-

try of the setting allows us to describe the pore as a function

r 7! �p(r) where r is the distance to the origin. The inter-

face is of size � > 0 such that � ⌧ r0.

(b) Visual representation of half the cross

section of the pore �p. The thickness of the

lipid bilayer is denoted by h > 0.

In order to make the link with our energy functional more concrete we are going to consider the
case of an ideal smooth pore. This will allow us to compare each term in (12) with the terms in our

9

Cm(�)@tVm + (Sm(�) + L�)Vm = L0g

<latexit sha1_base64="XZtYH7OLAD3msPW7OoxCH0pDmbE="></latexit>

Vm|t=0 = V 0
m
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• Transition interface of order
• Time for pore creation of order
• After the pulse, the pore shape 

is driven by mean- curvature

O
�
r

D0

64↵a1

�

<latexit sha1_base64="2ID14URdgDAyfDCHboaKhNATdCo="></latexit>

t0 = O
� 1

64↵a1
log

� D0

64↵a1L2

��
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⇠ 1nm
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a pore, we consider the following sigmoid function

Sm( ) =
�m( )

h
, where �m( ) =

1 + tanh(k0( � �th))

2
(�w � �l) + �l, 8 2 R,

where �l and �w are the lipid and water conductivities respectively. The factor k > 0 determines
the steepness of the transition between these two conductivities and the value of �th 2 [0, 1] is the
water content threshold of the transition. The effect of electroporation on the cell membrane tends
to suddenly and dramatically increases its conductivity. As � evolves continuously in time and we
dot not expect a gradual change in membrane conductivity during its evolution, this translates into
a steep transition for Sm. In other words k0 cannot be too small if we wish to model this effect
correctly. As for an appropriate value for �th, this will depend on the value of k0 to some extent,
although it is intuitive to impose �th ⇠ 1/2 as it is an instability mid point between the two stable
states of the double well energy potential Wm. In the following we set k0 = 100.

5.5 Capacitance model

In contrast to Sm, Cm directly affects the order parameter � as it is directly responsible (along
with the TMV) for pore formation, which is why we must also consider the membrane dynamics
in this analysis. We first consider the transmembrane voltage dynamics. We know that Cm mainly
affects the time of charge of the membrane but does not affect the stationary final state. For the
typical lipid membrane, we expect the characteristic time of charge to be less than 1 µs, however
electroporation pulses tend to be in the order of 100 µs and small in magnitude (see [5]). As a
result, we can see that the modeling of Cm does not affect the transmembrane voltage v for these
types of low intensity electric pulses.
Looking at the effect of Cm on the order parameter equation, we can quickly see that to promote
water entering the membrane, we need C

0

m(x) > 0 (at least for x 2 [0, 1/2]). Furthermore, we do
not expect that the membrane order parameter � uniformly increases as the TMV increases. We
thus search a sufficient condition on Cm so that constant solutions to the joint problem (16) are
(linearly) unstable.

The model of Cm comes from Looyenga [20]

Cm :  7!
✏0

h

✓
✏
1/3
l

+  (✏1/3w � ✏
1/3
l

)

�3
#1( ) + ✏w#2( )#3( )

◆
, (21)

where

#i( ) =
1 + tanh(ki( � �

th
i

))

2
, i = 1, 2, 3,

are smooth cutoff functions. In the following, we set k1 = �30, k2 = 20, k3 = 30 , �th1 = �
th
2 = 1

and �th3 = 0.9.

6 Numerical simulations on a patch membrane

We present in this section the numerical simulations in the case of a flat toroidal membrane.

6.1 Numerical scheme

In this section, we present the numerical schemes used to solve the coupled problem.
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correctly. As for an appropriate value for �th, this will depend on the value of k0 to some extent,

although it is intuitive to impose �th ⇠ 1/2 as it is an instability mid point between the two stable

states of the double well energy potential Wm. In the following we set k0 = 100.

5.5 Capacitance model

In contrast to Sm, Cm directly affects the order parameter � as it is directly responsible (along

with the TMV) for pore formation, which is why we must also consider the membrane dynamics

in this analysis. We first consider the transmembrane voltage dynamics. We know that Cm mainly

affects the time of charge of the membrane but does not affect the stationary final state. For the

typical lipid membrane, we expect the characteristic time of charge to be less than 1 µs, however

electroporation pulses tend to be in the order of 100 µs and small in magnitude (see [5]). As a
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thus search a sufficient condition on Cm so that constant solutions to the joint problem (16) are
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Cm :  7!
✏0

h

✓
✏
1/3
l

+  (✏1/3w
� ✏

1/3
l

)

�3
#1( ) + ✏w#2( )#3( )

◆
, (21)

where

#i( ) =
1 + tanh(ki( � �

th
i

))

2
, i = 1, 2, 3,

are smooth cutoff functions. In the following, we set k1 = �30, k2 = 20, k3 = 30 , �th1 = �
th
2 = 1

and �th3 = 0.9.

6 Numerical simulations on a patch membrane

We present in this section the numerical simulations in the case of a flat toroidal membrane.

6.1 Numerical scheme

In this section, we present the numerical schemes used to solve the coupled problem.

20
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Instabilities for spherical or flat membranes 

For spherical and flat membranes the operators are 
diagonalisable in the same basis and we have the following 
sufficient condition to get instabilities:

C′￼′￼m(ϕ) > c(ϕ2 + (6 −
3a2

2a1
ϕ + (1 −

3a2

4a1
+

D0

64a1
λn)

Linear model of capacitance are stable for the Allen-Cahn model.

a pore, we consider the following sigmoid function

Sm( ) =
�m( )

h
, where �m( ) =

1 + tanh(k0( � �th))

2
(�w � �l) + �l, 8 2 R,

where �l and �w are the lipid and water conductivities respectively. The factor k > 0 determines
the steepness of the transition between these two conductivities and the value of �th 2 [0, 1] is the
water content threshold of the transition. The effect of electroporation on the cell membrane tends
to suddenly and dramatically increases its conductivity. As � evolves continuously in time and we
dot not expect a gradual change in membrane conductivity during its evolution, this translates into
a steep transition for Sm. In other words k0 cannot be too small if we wish to model this effect
correctly. As for an appropriate value for �th, this will depend on the value of k0 to some extent,
although it is intuitive to impose �th ⇠ 1/2 as it is an instability mid point between the two stable
states of the double well energy potential Wm. In the following we set k0 = 100.

5.5 Capacitance model

In contrast to Sm, Cm directly affects the order parameter � as it is directly responsible (along
with the TMV) for pore formation, which is why we must also consider the membrane dynamics
in this analysis. We first consider the transmembrane voltage dynamics. We know that Cm mainly
affects the time of charge of the membrane but does not affect the stationary final state. For the
typical lipid membrane, we expect the characteristic time of charge to be less than 1 µs, however
electroporation pulses tend to be in the order of 100 µs and small in magnitude (see [5]). As a
result, we can see that the modeling of Cm does not affect the transmembrane voltage v for these
types of low intensity electric pulses.
Looking at the effect of Cm on the order parameter equation, we can quickly see that to promote
water entering the membrane, we need C

0

m(x) > 0 (at least for x 2 [0, 1/2]). Furthermore, we do
not expect that the membrane order parameter � uniformly increases as the TMV increases. We
thus search a sufficient condition on Cm so that constant solutions to the joint problem (16) are
(linearly) unstable.

The model of Cm comes from Looyenga [20]

Cm :  7!
✏0

h

✓
✏
1/3
l

+  (✏1/3w � ✏
1/3
l

)

�3
#1( ) + ✏w#2( )#3( )

◆
, (21)

where

#i( ) =
1 + tanh(ki( � �

th
i

))

2
, i = 1, 2, 3,

are smooth cutoff functions. In the following, we set k1 = �30, k2 = 20, k3 = 30 , �th1 = �
th
2 = 1

and �th3 = 0.9.

6 Numerical simulations on a patch membrane

We present in this section the numerical simulations in the case of a flat toroidal membrane.

6.1 Numerical scheme

In this section, we present the numerical schemes used to solve the coupled problem.

20



11 17/05/2024

Numerical scheme based on FFT

C. Poignard, Inria Bordeaux

where

Main idea: symmetrize the problem
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Water content of the membrane

Pulse of 6kV/cm during 4mus

Pulse of 6kV/cm during 2mus



Liver ablation by EP
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A centripetal energy deposit

C. Poignard, Inria Bordeaux

… et si la ? était comment + qu’avec quoi ?

Centrifugal deposit 
(monopolar RF, MW)

Centripetal deposit 
(IRE, ECT, Multipolar RF)
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Hepatocellular carcinoma (HCC)

C. Poignard, Inria Bordeaux

Causes of liver cancer (hepatocellular carcinoma) 
Credit: Johns Hopkins Kimmel Cancer Center

• No surgery for advanced disease. No chemotherapy. 
Only TKI with a poor efficacy (~+3mo of OS).

• Percutaneous ablation (especially RF ablation) is used 
for nodules limited in number (<3) and diameter 
(3cm) but RFA is however prohibited for some 
tumors near vital structures.

Irreversible EP is a 
promising alternative 
since it is minimally 
thermal.
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Heuristics of liver tumor ablation by EP

C. Poignard, Inria Bordeaux

90 pulses 
100 mus 
1.5kV/cm Microthrombosis

vascularitis

Necrosis

Ischemia

Apoptosis

Courtesy O. Seror

Limit of reversible 
electroporation

Limit of the 
irreversible 
electroporation
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Static tissue model of EP 

C. Poignard, Inria Bordeaux

⌦
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Figure 1. The typical geometrical configuration consists of the tissue domain ⌦ in gray,
deprived of the two needles E

±, in white. The outer boundary �out is represented in bold.

amplitude of the electric field �ru. The model reads then

� r · (�(kruk)ru) = 0, in⌦, (1a)

@nu|�out = 0, u|E± = g
±
, (1b)

The tissue conductivity consists of a 4 parameters sigmoid function. Typically

8� � 0, �(�) = �0 +
�1 � �0

2
(1 + erf(kep(� � Eth))) , (2)

where �0 is the conductivity of the non electroporated tissue, �1 is the tissue conductivity of the fully porated
tissue, Eth is the threshold amplitude for electroporation, and kep is the slope of the nonlinearity. Here, erf
is the Gauss error function. The qualitative behaviour of � is depicted in Figure 2.

Eth

�1

�0

�

�
(�
)

Figure 2. The shape of the conductivity �

Remark 1. It should be noted that this choice of � is largely phenomenological, and as shown in [12], the

available experimental data does not seem su�cient to characterize the dependence of the conductivity on

the electric field.

2.2. The electric circuit approach of Voyer et al.

In [20], Voyer et al. proposed a biphasic dynamical model based on the description of an individual cell
and surrounding matrix as an electric circuit. The ODEs at the cell level are formally generalized to PDEs
at the tissue level. It describes the electric potential outside cells �e and the electric field inside cells Jc.
The parameters are the extracellular and intracellular electric conductivities, respectively �e and �c. The
conductivity of the cell membrane �m depends on time in a way which mimics the e↵ects of poration, i.e. the
appearance of holes on the membrane, and permeabilisation, that is the degradation of membrane molecules.

3

ℰ

ℰ

�r · (⌃eq(|r�|)r�) = 0,

�|E± = g±

where ⌃eq(|r�|) = |⌦e|�e +
|⌦c|�c

1 + |⌦c|
|�m|

�c
Sm(|r�|)
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The problem is equivalent to minimise

which is strictly convex on H
1(⌦)
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G. Jankowiak et al. Comparison and calibration of different 
electroporation models. Application to rabbit livers experiments. 
ESAIM: Proceedings and Surveys, 67, 242-260. 2020.

For a comparison of 
existing EP models see:
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IRE in real life: very tricky procedure!

C. Poignard, Inria Bordeaux

Pretreatment image Needle positionning using fusion imaging
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Numerical workflow

C. Poignard, Inria Bordeaux

6

O Gallinato et al

3.2. Patient-specific study
We illustrate the feasibility and the relevance of our numerical workflow on the case report presented in 
section 2.2.

3.2.1. Segmentation of the ROIs and the needles reconstruction
In the patient study, the main constituents visible on the preoperative CT-Scan of figure 2(a) are the hepatic 
capsule and the scar tissue due to a previous RF ablation. The tumor is not visible but the operator has delimited 
a sphere where the relapse is suspected. The segmentation of the hepatic capsule and the scar tissue have been 
performed with the segmentation tool ITK-SNAP (Yushkevich et al 2006) and given by figure 4(a). The position 
of the needles are extracted from the CBCT of figure 2(b) as shown in figure 4(b). The red part of the needles 
stand for the active part where the voltage is applied, the blue parts are considered as electrically insulated.

3.2.2. Registration of the pretreatment ROIs on the CBCT
In order to obtain the geometrical framework of the procedure, we performed the registration of the preoperative 
image on the CBCT using the EVolution algorithm (Denis de Senneville et al 2016). This non rigid registration 
algorithm has been validated on clinical data and the clinical relevance of the registration has been verified by 
radiologists of the University Hospital J Verdier. The deformation map of the registration is given in figure 5(a), 
while a registered image is given in figure 5(b). The EVolution algorithm provides the ROIs and the needles in the 
same computational domain as shown by figure 5(c).

3.2.3. Model calibration
The strategy of the model calibration lies in the fact that the model parameters impact the value of the intensities 
given by equation (3). Indeed, by definition, the electric potential U given by equation (2) depends on the 
parameters. Since the recording intensities are the only electrical data of tissue, our calibration strategy consists 
in fitting the numerical intensity on the recorded intensity. Using the preliminary test-pulses, we perform the 
calibration by a trial error method—starting from conductivity values available in the literature and changing 
them handly step by step to obtain the fitting—, to fit the numerical intensities with the intensities recorded by 
Nanoknife®. The tolerance criterium of the fitting procedure is set such that during the first pulse of each pair 
combination, the relative error between the maximal value of the recorded intensity and the simulated intensity 
is less than 10%. It is worse noting that the calibration is performed once, with the initial needle location, and not 
modified afterwards.

More precisely, during the procedure the Nanoknife® records the voltage and the current for each pulse. We 
use these data to impose the voltage between each needle pair as given by the device, and the recorded currents are 
used to obtain the conductivities.

For each region of interest (liver tissue and scar tissue), we obtain the non porated tissue conductivity σ0 and 
the coefficient aep. Since the tumor is not visible on the imaging, we assume that it has the same electrical property 
as the tissue. The scar tissue is mainly made of fibrosis, we consider that its conductivity is higher than the liver 
conductivity and that it is not influenced by the EF. The results are given by table 1.

Figure 3. Our numerical workflow (bottom), which mimics the clinical workflow of Sutter et al (2018) (top).

Phys. Med. Biol. 64 (2019) 055016 (12pp)

Gallinato, Denis de Senneville, Séror,C.P, PMB 2019
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Non rigid multimodal image registration

C. Poignard, Inria Bordeaux

Comparison rigid/nonrigid registration

7380

the edges are aligned have already been proposed in the literature. The methods were dedi-
cated to registering either video sequences acquired with different sensors or medical images 
acquired through different modalities (Pluim et al 2000, Sun et al 2004, Sutour et al 2015). 
In this approach, the underlaying assumption that needs to be full!lled is that the boundaries 
and details of physiologic structures show image contrast to the surrounding tissue with both 
image modalities. However, the studies have only gone so far as to estimate rigid/af!ne or 
coarsely deformable transformations (using splines). In the current paper, by using the prin-
ciple behind the edge alignment methods, we propose EVolution: an edge-based Variational 
algorithm for multi-modal image registration. Our contribution is four-fold:

 • By construction, the algorithm is designed to increase the robustness of the registration 
process against structural information variations from one image to the other.

 • A patch-based approach is designed to leverage limitations arising from the above men-
tioned scalar representation, especially for highly challenging multi-modal scans.

 • Since a variational approach is employed, the method requires a reduced number of input 
parameters that need to be calibrated. Moreover, the cost function we propose also renders 
itself compatible with fast numerical schemes, while providing a dense voxel-by-voxel 
deformation !eld.

 • The bene!t of using multi-CPU and GPU (graphics processing unit) architectures is 
evaluated.

2. Method description

2.1. Proposed EVolution method

The equations provided in the current paper refer to the 3D implementation of the algorithm. 
An image J is registered to the reference position given by I using a variational image registra-
tion method as follows.

2.1.1. Proposed data !delity term. Let I
→
∇ and J

→
∇  be the gradient of the reference image I and 

the image to register J, respectively. We de!ned the following patch-based criterion (a patch 
consists in a cubic subset of the image domain, denoted by Γ, centered on one single voxel):

C T
T r r r
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Γ
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with T u v w, ,( )=  the spatial transformation from I to J, u, v and w the displacement vector 
components, and r→ the spatial location.

The expression C(T) can also be rewritten under the following form:
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where w rT( )→  and rT( )→θ∆  are calculated from the magnitude M and the orientation θ of the 
image gradient (computed using a Sobel !lter) at location r→ as follows:

( ) ( ( )) ( )
( ) ( ( )) ( )
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→ → →θ θ θ
=

∆ = −
w r M T r M r

r T r r
T I J

T I J
 (3)

B D de Senneville et alPhys. Med. Biol. 61 (2016) 7377
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Intuitively, the term rcos T( ( ))→θ∆  in equation (2) favors the transformations that align the 
edges, regardless any possible contrast reversals: due to the absolute value of the cosine, 
both parallel and anti-parallel edges are considered to coincide irrespective of the gradient 
direction. In addition, when dealing with multi-modal images, some discontinuities may only 
appear in one of the two modalities, so the weight w rT( )→  favors strong edges that occur in 
both modalities. The denominator of equation (2) performs a weighted average of the score 
obtained for each edge.

Since, for image registration using variational methods, a minimization of the functional is 
mandatory, we de"ned the following patch-based similarity criterion D(T ):

D T e C T( ) ( )= − (4)

D(T ), which is computed individually at each spatial location r→, is a strictly positive num-
ber, which decreases as long as the alignment of I and J is improved within the local neigh-
borhood Γ. In this manner, D(T ) can be employed as a data "delity term for the proposed 
variational registration method.

2.1.2. Optimized variational functional. We propose minimizing the energy E given by:

∫ α= + ∇ + ∇ + ∇
Ω

E T D T u v w r
2

d2
2

2
2

2
2( ) ( ) (∥ ∥ ∥ ∥ ∥ ∥ )→ → → →

 (5)

where Ω is the image coordinates domain, α a weighting factors designed to link both the data 
"delity term D(T ) and the motion "eld regularity (right part of equation (5)).

At this point, it is important to underline that two user-de"ned parameters may impact the 
performance of the registration process:

 • The parameter α which infers the regularity of the estimated motion "eld.
 • The patch size p (noted p) which may infer the robustness against different structural 

information from the image to register to the reference (for example, on an area that 
is smooth on one image and textured on the other). Simultaneously, p also infers the 
regularity of the estimated motion "eld.

Throughout the rest of the manuscript, a special attention will be paid to the impact of these 
two parameters on the overall registration results.

2.1.3. Implemented optimization scheme. By applying the Euler–Lagrange equations on a 
voxel-by-voxel basis, one can derive the following system of equations for each r→∈Ω:
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where ∆ denotes the Laplacian operator.
From here, we have a set of 3× Ω  non-linear equations with common unknowns u, v and w.  

The latter can be found iteratively through the following explicit "xed-point scheme:
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Minimization of E, (De Senneville et al  2016))



21 17/05/2024

Recovering the local conductivity 
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electrodes are required to achieve a good resolution (16 to 32 electrodes in a conventional EIT sensor) and the device cannot be 
used to investigate an area deep inside the patient’s body [19]. 

In this article, we propose to accurately estimate the DC electrical conductivity of biological tissues specific to the patient being 
treated with IRE, in order to calibrate electroporation models. We investigate a technique that combines imaging performed during 
the workflow of electroporation-based therapy with impedance measurements that can be performed using the needles inserted 
near the deep-seated tumor. Imaging provides a realistic geometric model with the different tissues and their real shape, while 
impedance measurements are exploited to estimate the electrical properties of these tissues. This technique can be considered as a 
degraded EIT where only a few electrodes are available; but this drawback is compensated by the information provided by imaging. 
In section II, the theoretical formulation of the problem is presented based on well-known concepts in EIT; the propagation of 
measurement uncertainty is also analyzed to quantify the error on the estimated conductivities. In section III, we demonstrate the 
feasibility of the method with 3D numerical simulations, first in a canonical case and then in a clinical case with real data. 

II. THEORY 

A. Formulation of the forward problem 
We consider the case where six electrodes are inserted in the vicinity of a deep-seated tumor in order to apply electroporation 

voltage pulses (see Figure 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Impedance measurement can be performed using the same electrodes in order to characterize the conductivity of tissues in the 
tumor vicinity. To do this, electrode pairs need to be defined in a similar way as in EIT: there are different ways of selecting 
electrode combinations [20, 21]. Here, we assign an index between 1 and 6 for the six electrode pairs defined with the neighboring 
method (see Table 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Then, a set of impedance measurements is carried out. For a given electrode pair, denoted j, a DC current Ij is injected in the first 
electrode and collected in the second. Next, a potential difference Vij is measured between the electrodes of another electrode 
pair, denoted i, and the impedance Zij is computed as follows: 
 

Zij=∆Vij/Ij (1) 
 
 

TABLE I 
SELECTION OF ELECTRODE PAIRS WITH THE NEIGHBORING METHOD. 

 

Pair index First electrode Second electrode

1 A B 
2 B C 
3 C D 
4 D E 
5 E F 
6 F A 

 

 
 

Fig. 1. 3D model of six electrodes that surround a tumor. 
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where  is the difference between real and modelled conductivity distributions. 
 

Main idea: Minimize measured and numerical impedance.

Tools: combine Medical Imaging and standard EIT assuming 
piecewise constant conductivities to stabilize the inverse problem

Results of calibration

Serie 1
intensities measured

during the procedure

simulated intensities

Serie 2
intensities measured

during the procedure

simulated intensities

Acceptable conductance (static model: error ≥ 20%)

Cosine, May 25, 2016 IRE e�ciency in clinical procedure
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ClinicalIRE: a software dedicated to 
dose map computing
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Coverage of the tumour by EF
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Figure 7. &DV�UHSUpVHQWDWLI�G¶XQ�SDWLHQW�DYHF�UpFLGLYH�ORFDOH��&+&�GH���PP�HQ�SpULSKpULH�GX�VHJPHQW�
V au contact de la vésicule biliaire (A). Superposition des cartographies de champ électrique simulées 
sur le CBCT initial (B). Couverture tumorale mesurée à 55% pour la cartographie 500 V/cm (bleue) 
et 25% pour la cartographie 750 V/cm (rouge). On constate une insuffisance de couverture sur le 
versant gauche de la tumeur (étoile) au contact de la vésicule biliaire. IRM de contrôle à 7 mois de 
O¶DEODWLRQ��MXJpH�FRPPH�Fomplète à un mois) au temps artériel soustrait (C) montrant une récidive 
locale au niveau du bord gauche péri-vésiculaire de la tumeur (flèche), région où se situait 
O¶LQVXIILVDQFH�GH�FRXYHUWXUH VXU�O¶LPDJH�%. 
 

 
 
Figure 8. 6LPXODWLRQ�GX�WUDLWHPHQW�G¶XQH�YROXPLQHXVH�WXPHXU�GH���PP�DYHF���DLJXLOOHV��
Cartographies isodoses à 300 V/cm (vert), 500 V/cm (bleu) et 750 V/cm (rouge) superposées au CBCT 
initial recalé dans les plans axial (A), sagittal (B) et coronal (C). Couverture satisfaisante de la 
tumeur (100% à 300 V/cm, 85% à 500 V/cm et 40% à 750 V/cm). Ablation complète sans récidive 
ORFDOH�DX�FRXUV�GX�VXLYL��&H�SDWLHQW�D�pWp�WUDQVSODQWp�j����PRLV�GH�O¶,5(�DYHF�XQ�DVSHFW�GH�QpFURVH�
WXPRUDOH�FRPSOqWH�VXU�O¶DQDO\VH�GH�O¶H[SODQW�  
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Typical profile of treatment failure.
The tumor is only partially covered by the EF

Typical profile of treatment success.
The tumor is well covered by the EF

The software PrimetimeIRE is in the test phase in the operating 
room of Avicenne hospital.



24 17/05/2024

Comparing with clinical follow-up
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Retrospective study with patient follow-up
Patient number RECIST (mm) % coverage 350V/m % coverage 700V/m Follow-up

P4 27 100 90 Transplanted

P14_1 21 100 85 Relapse at 18mo

P14_2 18 60 40

P18 22 40 10 New IRE at 27mo

P24 43 90 75 No relapse at 51mo

P26 12 100 80 No relapse at 28mo

P28 18 100 75 No relapse at 5mo

P29 50 100 85 Transplanted

P30 31 55 30 Rapid disease prog.

P32 30 35 15 New IRE at 18mo

P37 34 90 60 No relapse at 4mo

P43 38 75 55 Relapse at 7mo

Master thesis of O. Sutter, MD
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New interpretations of MRI at D+3
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(a) (b)

(c)

Figure 8. Superimposition of simulation results on the registered postoperative MRI and

3D numerical simulations. (a): Simulated isolines 500 V.cm�1 after each step on T2 weighted

image. (b): From Left to Right: Cross section of the isolines 300, 500 and 650 V.cm�1 at

the end of the procedure on T2, unenhanced and enhanced at delayed phase of intravenous

injection of gadolinium of T1 weighted images. (b): 3D comparison between the simulation

(isosurface 500 V.cm�1) and the registered ROI of the treatment area (delineation in light

color).

the maximum electric field is beyond 500 V.cm�1, and inside the observed area, which gives a

rather favorable tendency to the success of the procedure chosen for the proof of concept.

4. Discussion

4.1. Sensitivity to conductivities and geometry. Our sensistivity analysis suggests that the

electric field distribution strongly depends on the geometry, especially on the needle position. On

the contrary, large changes in the conductivity have a moderate impact, which is distributed along

the contour of the treatment zone. However, significant local changes in the conductivity, which

may be induced by an error on the tumor position, can strongly influence the distribution around

the targeted tumor. The influence of the Glisson’s capsule on the electric field distribution depends

on whether or not the needles are nearby. Hence, the geometry including the needle positions, the

tumor position and possibly the hepatic capsule, have to be accurately reconstructed, while rougher

approximates of the conductivity parameters seems su�cient.

4.2. Workflow. The numerical workflow proposed in this proof of concept is a necessary step

towards the numerical assistance to the immediate evaluation of clinical IRE procedures. However,

the simulations obviously show quantifiable discrepancies with the observations. Errors may come
13

Irreversible zone for 
each of the 3 
pullbacks

Necrosis (blue), irreversibly (orange) and reversibly 
permeabilised regions at the end of the procedure 

T2 w T2 w T1w T1 injection
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Conclusions and perspectives

C. Poignard, Inria Bordeaux

EP: a promising ablation technique, especially for liver 
and pancreatic cancers, but the threshold to generate 
cell death have to be determined precisely.

There is a need for more numerical investigations.
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Immunogenicity of EP therapies

C. Poignard, Inria Bordeaux

ATP release: autophagy
« find me » signal for DCs : IL-1β production  

 activation of IL-17+ γδ T cells and CD8+ T cells
Favors DC differentiation and maturation


Exposure of Calreticuline (CRT): 

Endoplasmic reticulum stress
« eat-me » signal for DCs

HMGB1 release: 

membrane disruption
Pro-inflammatory cytokine 
Favors cross-presentation of tumor antigens by DCs
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Immunogenicity of EP therapies

C. Poignard, Inria Bordeaux
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EXPERIMENTAL STUDIES: Local and Systemic Effects of IRE versus those of RF Ablation in a Small-Animal Model Bulvik et al

compared with that in untreated mice 
tripled for RF ablation, it was 10 times 
higher for IRE (59 pmol/mL 6 38 and 
190 pmol/mL 6 100; P , .05 between 
the two ablation modalities). By 24 
hours, no significant difference or el-
evation was noted (21 pmol/mL 6 3 
for RF and 25 pmol/mL 6 2 for IRE, 
compared with a baseline of 20 pmol/
mL 6 1).

For both ablation methods, global 
HGF levels were elevated significantly 
above baseline and reached a peak be-
tween 3 and 7 days (Fig 5) (nanograms 
of HGF per milligram of protein, 2.0 
6 0.4, 2.2 6 0.6, and 0.7 6 0.1 for 
the IRE, RF ablation, and untreated 
groups, respectively; P , .001). How-
ever, no difference in HGF levels was 
seen between the two methods of abla-
tion (P = .55). As reported in Table 1, 
the periablation border zone produced 
the highest levels of HGF per amount 
of protein concentration. However, 
the HGF level in the ablated area was 
found to be 4.9 ng/mL of tissue ho-
mogenate 6 2.7 in RF versus 12.4 ng/
mL of tissue homogenate 6 6.8 in IRE 
(reaching borderline significance at P = 
.125). The HGF level remained higher 

IRE Preserves Patency of Vessels within 
the Ablation Zone
For both RF and IRE ablation, Evans 
Blue–stained vessels penetrating the 
ablation zone at 4 hours were identi-
fied, with greater staining denoting 
capillary leakage seen for IRE alone 
(Fig 4a). Patent vessels were markedly 
reduced for RF ablation by 24 hours, 
with persistent patent vessels only seen 
for IRE ablation at 72 hours. Thus, 
greater change over time was seen in 
the ablated vessels after RF ablation 
than after IRE ablation.

For bead injection studies, no pen-
etration into the extracellular intersti-
tium was noted for RF ablation at 24 
hours. However, for IRE, there was 
ample penetration of beads of all sizes 
(20–500 nm) into the tissue at 24 hours 
after ablation, indicating that these ves-
sels were not coagulated or damaged 
sufficiently to prevent the delivery of 
nanodrug-sized particles (Fig 4b) (32).

IL-6 and HGF Secretion after Liver 
Ablation
Rapid IL-6 elevation was noted, reach-
ing a peak 6 hours after ablation 
(Fig 5). However, although the value 

ablation for days 7 and 14, respectively; 
P , .05 for both time points). However, 
for IRE ablation, additional macro-
phages were seen in the extensions of 
the infiltrative process along the patent 
vessels within the ablation zone (Fig 3)  
(average cell number per frame, 14.9 
6 8.1 in IRE ablation vs 1.3 6 1 in RF 
ablation, P , .05).

Activated myofibroblasts.—Cells 
positive at a-SMA staining (activated 
myofibroblasts) accumulated in the 
ablated liver border zone, reaching a 
peak between day 3 and day 7. These 
again were higher in this region for RF 
ablation than for IRE ablation (Fig 2) 
(average cell number per frame, 85.1 
6 30.7 and 113.6 6 6.8 for RF ablation 
vs 18.8 6 2.5 and 27.7 6 2.5 for IRE 
ablation for days 3 and 7, respectively; 
P , .05 for day 3 and P , .000 for 
day 7). Nevertheless, large numbers 
of activated myofibroblasts penetrated 
the ablated area for IRE but were 
scarce within the RF-induced necrotic 
area (Fig 3) (average cell number per 
frame, 11.2 6 9.2 for IRE vs 1.7 6 2.8 
for RF ablation; P , .05). Here too, a-
SMA–positive cells concentrated near 
patent vessels.

Figure 1

Figure 1: Photomicrographs of hematoxylin-eosin–stained tissue slices show histopathologic correlation between liver ablated with 
RF and that ablated with IRE at day 7 in 12-month-old C57BL/6 mice. The yellow and green boxes in A and D are enlarged to 320 in 
B and E and C and F, respectively, and reveal that, unlike the RF ablation border, the IRE border has multiple peninsulas and islandlike 
penetrations of stained cells (arrows) into the ablation zone.
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