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Turbulence and layer separation

Incompressible fluid at high Reynolds number may exhibit
turbulence and layer separation, which differs from ideal fluids.

Figure 1: Euler vs Navier–Stokes: airfoil

The (limit) difference between uν and ū: boundary layer separation

Goal of today’s talk: estimate the energy of layer separation for NSE
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The inviscid limit problem



Introduction

Consider the incompressible Euler equation and Navier–Stokes
equation during time [0, T] in a smooth bounded domain Ω ⊂ R3:

∂tū+ ū · ∇ū+∇P̄ = f̄
div ū = 0
ū
∣∣
∂Ω

· n = 0
ū
∣∣
t=0 = ū0


∂tuν + uν · ∇uν +∇Pν = ν∆uν + f ν

div uν = 0
uν
∣∣
∂Ω

= 0
uν
∣∣
t=0 = uν0

(∗)

We are interested in the inviscid limit ν → 0 under the condition that
uν0 converges to ū0 in L2(Ω) and f ν converges to f̄ in L1(0, T; L2(Ω)).

0 1

1

x1, x2

z
Ae1

Ω Example: plug flow ū ≡ Ae1, f̄ ≡ 0
in periodic channel Ω = T2 × (0, 1)
or in periodic tube Ω = T× B1
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Leray–Hopf Weak Solution

For the Navier–Stokes equation, even though the existence of a
global classical solution is open, Leray and Hopf established the
global existence of weak solutions: for divergence-free uν0 ∈ L2(Ω)
with f ν ∈ L1(0, T; L2(Ω)), there exists a weak solution in

uν ∈ Cw(0, T; L2(Ω)) ∩ L2(0, T; Ḣ10(Ω))

with energy inequality: for a.e. t ∈ [0, T], it holds

1
2
‖uν‖2L2(Ω)(t) + ν

ˆ t

0
‖∇uν‖2L2(Ω)(s)ds ≤

1
2
‖uν0‖

2
L2(Ω).

We want to investigate how stable the weak solutions are in this
natural energy space.
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Asymptotic Limit

• It is a major open problem to know whether the limit of uν

converges to ū, even in dimension 2.
• For the example of plug flow, if uν0 = Ae1, then uν corresponds to
the poiseuille flow in periodic pipes or Prandtl layer in periodic
channels.

• Conditional results exist: the Kato’s criterion (1984) states that if,
when ν → 0, uν0 → ū0 in L2(Ω) and f ν → f̄ in L1(0, T; L2(Ω)):

ˆ T

0

ˆ
Uδ(∂Ω,Ω)

ν|∇uν |2 dx dt → 0,

where Uδ(∂Ω,Ω) = {x ∈ Ω : dist(x, ∂Ω) < δ} is a thin region near
the boundary with width δ = cν , then

uν → ū, in L∞(0, T; L2(Ω)).
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Asymptotic Limit

Conditional results

1. Sharpening of Kato’s result: Temam–Wang (1997), Wang (2001),
Kelliher (2008, 2017)

2. Other conditional results: Bardos–Titi–Wiedemann (2012),
Constantin–Kukavica–Vicol (2015), Constantin–Vicol (2018)

Unconditional results

1. Analyticity/near boundary: Sammartino–Caflisch (1998),
Maekawa (2014), Fei–Tao–Zhang (2018), Kukavica–Vicol–Wang
(2018, 2022), Wang (2020)

2. Symmetry: Mazzucato–Taylor (2008), Lopes Filho–Mazzucato–
Nussenzveig Lopes–Taylor (2008)

3. Anisotropic dissipation: Masmoudi (1998)
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Turbulence and Layer Separation

Spatially developing turbulent boundary layer on a flat plate
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https://www.youtube.com/watch?v=e1TbkLIDWys


A Simple Computation

The growth rate of the boundary layer is controlled by (no force)

d
dt
1
2
‖uν − ū‖2L2(Ω) +

ν

2

ˆ
Ω

|∇uν |2 − |∇ū|2 dx

≤ ‖uν − ū‖2L2(Ω)‖Dū‖L∞(Ω) − ν

ˆ
∂Ω

∂uν

∂n
· ūdS.
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A Simple Computation

The growth rate of the boundary layer is controlled by

d
dt
1
2
‖uν − ū‖2L2(Ω) +

ν

2

ˆ
Ω

|∇uν |2 − |∇ū|2 dx

≤ ‖uν − ū‖2L2(Ω)‖Dū‖L∞(Ω)︸ ︷︷ ︸
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− ν
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· ūdS.
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A Simple Computation

The growth rate of the boundary layer is controlled by

d
dt
1
2
‖uν − ū‖2L2(Ω) +

ν

2

ˆ
Ω

|∇uν |2 − |∇ū|2 dx

≤ ‖uν − ū‖2L2(Ω)‖Dū‖L∞(Ω) − ν

ˆ
∂Ω

∂uν

∂n
· ūdS.

• ‖uν − ū‖2L2 : boundary layer separation

• ν‖∇uν‖2L2 : energy dissipation
•
´
∂Ω

τn · ū: power of boundary stress (friction) exerted on ū
τ = −p Id+ ν∇uν is the stress tensor

8



A Simple Computation

The growth rate of the boundary layer is controlled by

d
dt
1
2
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· ūdS.
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Airfoil

layer separation

energy dissipation

boundary friction
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Layer Separation, Anomalous Dissipation, Work of Friction

For a regular Euler solution ū, define

• Layer separation:

LS(ū) := lim sup
ν→0

{
‖uν − ū‖2L2(Ω)(T) :

uν0 → ū0 in L2x
f ν → f̄ in L1tL2x

}
.

• Anomalous dissipation:

AD(ū) := lim sup
ν→0

{ˆ T

0
ν‖∇uν‖2L2(Ω)(t)dt :

uν0 → ū0 in L2x
f ν → f̄ in L1tL2x

}
.

• Total work of friction:

Wfric(ū) := lim sup
ν→0

{∣∣∣∣∣
ˆ T

0

ˆ
∂Ω

ν∂nuν · ūdx′ dt

∣∣∣∣∣ : uν0 → ū0 in L2x
f ν → f̄ in L1tL2x

}
.
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The Result

Theorem (Vasseur–Y., 2024, Comm. PDE)

LS(ū) + AD(ū) +Wfric(ū) ≤ CA3T|∂Ω| exp
(
2
ˆ T

0
‖Dū(t)‖L∞(Ω) dt

)
.

• A = ‖ū‖L∞((0,T)×∂Ω) is the maximum boundary velocity
• Dū = 1

2 (∇ū+∇ū>) is the symmetric velocity gradient
• L∞(Ω) measures the largest absolute eigenvalue
• constant C is a universal constant independent of Ω
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Relation with Nonuniqueness Results

Euler nonuniqueness:

• The method of convex integration shows that in Ω ∈ T2 × [0, 1],
the constant shear solution ū(t, x) = Ae1 of (∗) is not unique (see
Székelyhidi, 2011). For every constant C < 2, there exists a
spurious Euler weak solution u with layer separation for T < 1/A:

‖u(T)− Ae1‖2L2(Ω) = CA3T.

Navier–Stokes nonuniqueness:

• Nonuniqueness of weak solutions in T3: via convex integration,
Buckmaster–Vicol (2019)

• Nonuniqueness for forced Leray–Hopf solution in R3, T3 or in Ω:
using self-semilar solution, Albritton–Brué–Colombo (2022)
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Non-uniqueness and Pattern Predictability

• In general, non-uniqueness result by convex integration raised
the question of predictability: Why can we observe patterns?

• If the amplitude of the Euler solution is |ū(t, x)| ∼ A, then the
kinetic energy of ū is

1
2

ˆ
Ω

|ū|2 dx ∼ A2|Ω|.

• We prove that the layer separation has an energy of at most
CA3T|∂Ω| at time T (leading term)

• Therefore, the perturbation stays negligible on a time span
T �Ω 1/A. This is a large time for A small (small pattern)

• It predicts the lapse of time where the pattern stays predictable
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Wake

Figure 2: Wake and von Kármán vortex street
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Relation with Anomalous Dissipation

Brué and De Lellis (2022) constructed forced classical solutions uν

with uν0 and f ν uniformly bounded and

lim
ν→0

ν‖∇uν‖2L2((0,T)×T3) > 0.

Note that neither anomalous dissipation nor layer separation can
exist near a regular Euler solution if without boundary, so [ABC2022]
and [BDL2022] are due to a different mechanism.

d
dt
1
2
‖uν − ū‖2L2(Ω) +

ν

2

ˆ
Ω

|∇uν |2 − |∇ū|2 dx

≤ ‖uν − ū‖2L2(Ω)‖Dū‖L∞(Ω) − ν

ˆ
∂Ω

∂uν

∂n
· ūdS.

Long-time average of energy dissipation: Foias and Doering (2002)
ε`

U3
≤ C1 + C2Re−1

The bound is sharp (Cheskidov, 2023)
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Drag, Lift, and Work of Boundary Stress

By dimensional analysis, the drag and
lift experienced by an aircraft depend
on the surface area, airspeed, shape
of the airfoil, angle of attack, density
and viscosity of the fluid, by following
empirical formulae:

Fdrag =
1
2
ρ cD(Re)U2S

Flift =
1
2
ρ cL(Re)U2S

• ρ = 1 is the density
• U ≈ A is the airspeed
• S = |∂Ω| is the surface area
• cD and cL are dimensionless

Figure 3: Drag and Lift
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Drag, Lift, and Work of Boundary Stress
By dimensional analysis, the drag and
lift experienced by an aircraft depend
on the surface area, airspeed, shape
of the airfoil, angle of attack, density
and viscosity of the fluid, by following
empirical formulae:

Fdrag =
1
2
ρ cD(Re)U2S

Flift =
1
2
ρ cL(Re)U2S

The work of drag force on object
Wbody = FdragUT ≤ CU3T|∂Ω|

When the wing is a thin plate:
Wfric = Wbody, cD(Re) < C is bounded
in the inviscid limit Re→ ∞

Figure 3: Drag and Lift
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Boundary vorticity



Idea of the Proof

Recall the estimate
d
dt
1
2
‖uν − ū‖2L2(Ω) +

ν

2

ˆ
Ω

|∇uν |2 − |∇ū|2 dx

≤ ‖uν − ū‖2L2(Ω)‖Dū‖L∞(Ω) − ν

ˆ
∂Ω

∂uν

∂n
· ūdS.

Integrate between 0 and T , then send ν → 0:

LS(ū) + AD(ū) ≤ Wfric(ū) exp
(
2
ˆ T

0
‖Dū(t)‖L∞(Ω) dt

)
.

So the key is to bound the work of friction:

ν

ˆ
∂Ω

∂uν

∂n
· ūdS = ν

ˆ
∂Ω

ων · (n× ū)dS

• ων = curluν is the vorticity of uν

• Need to control (some weak norm of) νων
∣∣
∂Ω

uniform in ν
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Boundary Vorticity Estimate for Navier–Stokes (Intuition)

If we treat (∗) as a linear Stokes system, then for ν = 1, we have the
estimate ∥∥∇2u

∥∥
L
4
3
t L

6
5
x
. ‖u · ∇u‖

L
4
3
t L

6
5
x
. ‖u‖

1
2
L∞t L2x

‖∇u‖
3
2
L2t,x

.

By Trace theorem and fractional Sobolev embedding,∥∥∇u∣∣
∂Ω

∥∥
L
4
3
t,x′

. ‖u‖
1
2
L∞t L2x

‖∇u‖
3
2
L2t,x

( + l.o.t.).

Now for any ν > 0, we obtain via scalingˆ
(0,T)×∂Ω

|ν∇uν |
4
3 dx′ dt . ν−1‖uν‖

2
3
L∞t L2x

ˆ
(0,T)×Ω

ν|∇uν |2 dx dt ( + l.o.t.)

This bad estimate is not uniform in the inviscid limit ν → 0.

Wfric ≤ ‖ū‖L4((0,T)×∂Ω)‖ν∂nu
ν‖

L
4
3 ((0,T)×∂Ω)

≤ 1
2

ˆ
(0,T)×Ω

ν|∇uν |2 dx dt + Cν−3‖uν0‖
2
L2(Ω)A

4T|∂Ω|.
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Boundary Vorticity Estimate for Navier–Stokes (Intuition)

Where is the problem? The inviscid scaling of the equation
uν(t, x) = νu(νt, x) determines the physical unit.

Time t ∼ T, space x ∼ L, u ∼ LT−1, viscosity constant ν ∼ L2T−1.

The energy has unit (treating density as unitless)

‖u‖2L∞t L2x
,

ˆ
(0,T)×Ω

ν|∇u|2 dx dt ∼ L5T−2

The bad estimate has unitˆ
(0,T)×∂Ω

|ν∇uν |
4
3 dx′ dt . ν−1‖u‖

2
3
L∞t L2x

ˆ
(0,T)×Ω

ν|∇u|2 dx dt

L2T(L2T−2) 43 (L2T−1)−1(L5T−2) 43 .

To get rid of ν , the correct boundary norm should be L 3
2 instead of L 4

3 .

L2T
(
L2T−2

) 3
2 ∼ (L2T−1)0(L5T−2)1.
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Boundary Vorticity Estimate for Navier–Stokes (Intuition)

If we take the curl of (∗), we have the vorticity equation,

∂tω + u · ∇ω = ν∆ω + ω · ∇u.

Suppose we can ignore the transport term and the boundary effect,
then the regularity we could expect for ω is at best

ν2
∥∥∇2ω

∥∥
L1((0,T)×Ω)

. ν‖ω · ∇u‖L1((0,T)×Ω) ≤ ν‖∇uν‖2L2((0,T)×Ω).

(although parabolic regularization is false in L1) By interpolation with
ν‖ω‖2L2((0,T)×Ω) ≤ ν‖∇u‖2L2((0,T)×Ω),

ν
3
2

∥∥∥∇ 2
3ω
∥∥∥ 3

2

L
3
2 ((0,T)×Ω)

. ν‖∇u‖2L2((0,T)×Ω).

Finally the (critical) trace theorem suggests that (cheating again)ˆ
(0,T)×∂Ω

|ν∇uν |
3
2 dx′ dt .

ˆ
(0,T)×Ω

ν|∇u|2 dx dt.
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Boundary Vorticity Estimate for Navier–Stokes

Theorem (Boundary Regularity)

For any Leray-Hopf solution uν to (∗) in (0, T)× Ω, δ sufficiently
small, there exists a partition (0, T)× ∂Ω =

⋃
i Q̄i, such that the

following is true. Define the piecewise average on boundary by

ω̃ν(t, x) =
 
Q̄i
ων dx dt, for (t, x) ∈ Q̄i

Then we have∥∥∥∥νω̃ν1{|νω̃ν |>max
{

ν
t ,

ν2
δ2

}}∥∥∥∥ 3
2

L
3
2 ,∞((0,T)×∂Ω)

.
ˆ
(0,T)×Uδ(∂Ω,Ω)

ν|∇uν |2 dx dt.

We will be choosing δ = cν , so Kato’s condition will imply RHS = 0 in
the inviscid limit.
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From Boundary Vorticity to Layer Separation

• Recall the growth rate of the layer separation is controlled by
d
dt
1
2
‖uν − ū‖2L2(Ω) +

ν

2

ˆ
Ω

|∇uν |2 − |∇ū|2 dx

≤ ‖uν − ū‖2L2(Ω)‖Dū‖L∞(Ω) −
ˆ
∂Ω

νων · (n× ū)dS.

• Integrate in timeˆ T

0

ˆ
∂Ω

νων · (n× ū)dSdt

≤
∥∥∥∥νω̃ν1{|νω̃ν |>max

{
ν
t ,

ν2
δ2

}}∥∥∥∥
L
3
2 ,∞((0,T)×∂Ω)

‖ū‖L3,1((0,T)×∂Ω) + l.o.t.

≤ ν

4
‖∇uν‖2L2t,x + CA3T|∂Ω|+ l.o.t.

• ⇒ Wfric(ū) ≤ 1
2 ADδ(ū) + CA3T|∂Ω|.

• ⇒ LS(ū) + AD(ū) ≤ CA3T|∂Ω| exp(2‖Dū‖L1tL∞x ).
• ⇒ LS(ū) = AD(ū) = Wfric(ū) = 0 with Kato’s condition.
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Blow-up on boundary



The Problems: Transport Term and Boundary

• We cannot control the transport term u · ∇ω: u ∈ L 10
3 and

∇ω ∈ L 4
3 ,q, q > 4

3 (Vasseur–Y. 2021). u · ∇ω is less than L1!
• Therefore we work on u and use a blow-up method introduced
in Vasseur (2010) [see also Choi–Vasseur (2014)] to control higher
derivatives, following the flow at the scale of the blow-up.

• Problem of boundary: without control on the pressure, the local
Stokes regularity does not hold at the boundary.

• But it holds AFTER taking local mean value ω̃.
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Blow-up Method

Fix ν = 1 from now on. To control the boundary vorticity, we use a
blow-up argument based on the canonical scaling of the
Navier–Stokes:

ũ(t, x) = εu(ε2t, εx).

We will make a Calderón–Zygmund style partition on (0, T)× ∂Ω.
Since ∂Ω is non-flat, we need a triangularization to make sense of
dyadic decomposition.

x1
x2

z
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Blow-up Method

Fix ν = 1 from now on. To control the boundary vorticity, we use a
blow-up argument based on the canonical scaling of the
Navier–Stokes:

ũ(t, x) = εu(ε2t, εx).

The goal is to control the boundary vorticity. Note the scaling

x ∼ ε t ∼ ε2 u ∼ ε−1

ω,∇u ∼ ε−2 ∇2u ∼ ε−3 ∇P ∼ ε−3ˆ
Q̄
|ω| 32 dx dt ∼ ε

ˆ
Q
|∇u|2 dx dt ∼ ε

ˆ
Q
|u| 103 dx dt ∼ ε

5
3

Boundary vorticity and the interior energy dissipation have the same
scaling!
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Local Boundary Estimate

Proposition (linear Stokes boundary estimate)
Suppose u ∈ L2(−4, 0;H1(C2)) is a solution to the following Stokes
system with forcing term f ∈ L1(−4, 0; L 6

5 (C2)):
∂tu+∇P = ∆u+ f in Q2
div u = 0 in Q2
u = 0 on Q̄2

.

Then the average vorticity on the boundary is bounded by
ˆ
T1

∣∣∣∣∣
ˆ 0

−1
ω(t, x′, 0)dt

∣∣∣∣∣dx′ ≤ C
(
‖∇u‖L2t L2x(Q2) + ‖f‖L1tL6/5x (Q2)

)
.

T2 ⊂ ∂Ω : curved triangle C2 ≈ T2 × [0, 2] ⊂ Ω : curved cylinder
Q̄2 = (−4, 0)× T2 Q2 = (−4, 0)× C2
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Local Boundary Estimate

• We prove a local theorem: if Q has radius 2−k, and in 2Q 
2Q

|∇u|2 dx dt ≤ c0(2−k)−4

• then the average boundary vorticity on Q̄ = Q ∩ ∂Ω is

ω̃ =

 
Q̄
ω dx′ dt ≤ c1(2−k)−2

• This links the interior gradient and the boundary mean vorticity
at a local level.

(0, T)× ∂Ω

2Q

Q

Q̄
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Calderón–Zygmund Decomposition

√
t

x1

0 11
2

1

1
2

A parabolic cube Q of size 4−k × (2−k)d is said to be suitable if it
touches the boundary ∂Ω but not {t = 0}, and satisfies 

2Q
|∇u|2 dx dt ≤ c0(2−k)−4

for some c0. For each cube that is not suitable, we dyadically dissect
it into smaller cubes till suitable. We prove the boundary vorticity
estimate using the maximal function.
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Open questions



Open Questions

• Can we construct a regular Euler solution ū and find Leray–Hopf
solutions {uν}ν→0 with LS(ū) > 0 or AD(ū) > 0 orWbody(ū) > 0?

• LS(ū) > 0: invalidity of the inviscid limit

• AD(ū) > 0: zeroth law of turbulence

• Wbody(ū) > 0: D’Alembert’s paradox
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Thank you for your listening!

https://arxiv.org/abs/2303.05236
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