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Cultural transmission, socialization and the population 
dynamics of multiple-trait distributions 

Alberto Bisin,∗ Giorgio Topa† and Thierry Verdier‡ 

This paper studies the population dynamics of multiple preference traits in a model 
of intergenerational cultural transmission. Parents socialize and transmit their pref-
erences to their children with endogenous intensities. Populations concentrated on 
a single cultural group are in general not stable. There is a unique stable station-
ary distribution, and it supports two or more cultural groups, in particular those 
with greater intolerance with respect to others’ traits. The larger the heterogeneity 
of intolerance levels across cultural groups, the smaller the number of traits that are 
supported in the stable stationary distribution. 
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1 Introduction 

The view that preferences, norms, and, more generally, cultural attitudes should be consid-
ered as endogenous with respect to socioeconomic systems has been extensively motivated 
in the social sciences.1 In the present paper we consider a specifc model of preference for-
mation, based on intergenerational cultural transmission, introduced by Bisin and Verdier 
(2000, 2001a). The model builds on analysis of transmission and adoption of cultural 
traits developed by Cavalli-Sforza and Feldman (1981) and Boyd and Richerson (1985). 
The model in the present paper adds a parental choice of effort to affect their children’s 
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socialization to their (the parents’) preferred cultural trait. More specifcally, the population 
dynamics of the distribution of preferences or cultural traits are determined in the model 
by a process of parental socialization: traits of children are acquired through an adaptation 
and imitation process which depends on their parents’ socialization actions, and on the 
cultural and social environment in which children live. Socialization effort is chosen opti-
mally by parents and depends on the cultural environment of the parents and the children. 
In particular, parental effort depends on the distribution of the population with respect 
to the relevant trait, which affects the socialization of children through teachers and role 
models.2 

The objective of the present paper is to extend the formal analysis of Bisin and Verdier 
(2000, 2001a), which is limited to binary traits, to the case of multiple traits. Studying binary 
traits is suffcient for identifying conditions under which a unique stationary distribution 
of the population exists, is stable, and is heterogeneous. However, studying multiple traits 
is necessary to better understand the determinants of the dynamics of the distribution of 
the population and, in particular: (i) which cultural groups will eventually be supported at 
the stationary distribution (i.e. which groups will not eventually face extinction); (ii) how 
the distribution of group characteristics and the fragmentation of a cultural trait affect the 
dynamics of the distribution.3 

We show that, in our model with multiple-trait populations, there is always a unique 
locally stable stationary distribution of the population over the states. Also, not necessarily 
all cultural groups are supported at the stable stationary distribution. The distribution of 
the population might converge to one in which only a subset of the states of the trait is 
sustained. 

However, populations concentrated by a single cultural group are in general not stable. 
The intuition for this result is as follows. In our cultural transmission environment, when 
one cultural group comes to dominate the population the incentives for this group to 
socialize tend to zero, as parents essentially free-ride on the rest of society to provide 
the desired socialization of their children. Minority groups instead heavily socialize their 
children directly as society provides little help. As a consequence, the fraction of large 
majority groups in the population tends to decrease, that of minority groups to increase, 
and at least two cultural groups tend to be supported in a stationary state of the population 
dynamics. 

When we identify the characteristics of different cultural groups with their intolerance 
level with respect to the other groups, we fnd that the groups that are supported at the 
stationary distribution are always the ones that are more intolerant of others. The intuition 
for this result is straightforward: intolerant groups have relatively larger incentives to 
socialize their children to their own cultural trait. As a consequence, intolerant groups will 
tend to dominate the population dynamics of cultural traits. 

2 The model has been applied, for example, to the study of preferences for social status (Bisin and Verdier, 1998) 
corruption (Hauk and Sáez Marti, 2002), ethnic and religious traits (Bisin, Topa, and Verdier 2004a), devel-
opment and social capital (Francois, 2002), intergenerational altruism (Jellal and Wolf, 2002), globalization 
and cultural identities (Olivier, Thoenig, and Verdier, 2005), preferences for cooperation (Bisin, Topa, and 
Verdier 2004b, Tabellini 2007a,b). 

3 The dynamics of multiple religious traits in the USA has been studied empirically by Bisin, Topa, and Verdier 
(2004a). 
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Furthermore, for any 1 < k ≤ N we derive conditions that guarantee that the unique 
stable stationary distribution of the population is concentrated on k traits. We show that k 
is inversely related to a measure of the heterogeneity of the intolerance levels across traits. 
In the limit, for N → ∞, the distribution with full support over traits is sustained if and 
only if all traits have symmetric intolerance levels. 

2 Model 

Consider a population consisting of a large number of individuals whose total mass is 
normalized to 1. Each individual has exactly one of N possible cultural traits; traits are 
indexed by i ∈ {1 ,  . . . N}. The  N-dimensional vector q = [q i ]i∈{1 ,  ... , N} represents the 

N idistribution of the cultural traits in the population, and satisfes 1 q = 1. Let S N 
i= 

denote the N-dimensional simplex. We have then q ∈ S N . 
Individuals die with hazard rate equal to 1 (this effectively normalizes 1 unit of time 

to the expected lifetime of a generation). Families are composed of one parent and a child, 
and, hence, reproduction is asexual.4 All children are born without defned preferences 
or cultural traits, and are frst exposed to their parent’s trait. Vertical socialization to the 
parent’s trait, say i, occurs with probability  di . If a child from a family  with  trait  i is not 
vertically socialized, which occurs with probability 1 − di , he or she picks the trait of a role 
model chosen randomly from his or her parent’s population (i.e. the child picks trait i with 
probability q i and trait j = i with probability q j ). In other words, oblique transmission 
operates by random matching within society at large, with intensity measured by q i . 

Let P i j  denote the probability that a child from a family with trait i is socialized to trait 
j . P i j  also denotes the fraction of children with type i parents who acquire preferences of 
type j. The socialization mechanism just introduced is then characterized by the following 
transition probabilities, for all i, j: 

P ii  i= di + (1 − di )q (1) 

P i j  j= (1 − di )q . (2) 

For vertical socialization choices di , i ∈ {1 ,  . . . , N}, the dynamical system for the 
distribution of traits in the population is, in continuous time:5 

i iq̇ = q q j (di − d j ) , ∀i ∈ {1, . . . , N}. (3) 
j=i 

4 In Bisin and Verdier (2000) we study a related cultural transmission model with sexual reproduction and 
endogenous marriage, but binary traits. 

5 Although in this paper we study the continuous time limit of the population dynamics of cultural transmission, 
the reader should bear in mind that the discrete time model could in general display complex dynamics not 
present in continuous time. 
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N NiThe system satisfes q̇ = 0 and, hence, i (t) = 1, for all t , if and only if i=1 i=1 q 
N i = 1. As a consequence, we can restrict ourselves to the dynamical system thati=1 q0 

consists of: 

i iq̇ = q q j (di − d j ) , for  i = 1, . . . , N − 1  (4)  
j=i 

N−1 

q N = 1 − q i (5) 
i=1 

i iand the initial conditions q 0, i ∈ {1 ,  . . . , N}, such that  i∈{1, ..., N} q0 = 1. 
We now study a cultural transmission mechanism in which parents take costly actions 

to socialize their children and, hence, endogenously determine vertical socialization, di , for  
all i. 

Let V i j  denote the utility to a type i parent of a type j child, i , j ∈ {1 ,  . . . , N}. The  
expected lifetime utility (abstracting from socialization costs) of a family of type i is then: 

P ii V ii  P i j V i j+ , 
j=i 

where P ii  and P i j  are the transition probability defned in (1)–(2). 
We assume that for all i , j ∈ {1 ,  . . . , N}, with  i = j , V ii  > V i j . This assumption can be 

rationalized as a form of myopic or paternalistic altruism: parents, while altruistic, prefer 
children to adopt their own cultural trait and, hence, try to socialize them to this trait.6 The 
intensity of the parents of type i’s preferences for having children with their own cultural 

1 V i j  V i jtrait is measured by V i j , where  = V ii  − V i j . We refer  to  as to theN−1 j=i 
intolerance of agents of cultural group i towards j. 

We also assume that socialization is costly. Let H(di ) denote socialization costs: for any 
i ∈ {1 ,  . . . , N}: the  map  H : [0, 1] →� + is C2, strictly increasing and strictly convex; 

∂ H(0)moreover, H(0) = 0, 
∂di = 0. 

Parents of type i choose di ∈ [0, 1] to maximize: 

−H(di ) + P ii V ii  P i j V i j+ subject to (1)−(2). (6) 
j=i 

Under our assumptions, the socialization choice problem satisfes the following neces-
sary and suffcient frst-order conditions, for all i = j : 

j (V ii  − V i j ) = j V i jH (di ) = q q . (7) 
j=i j=i 

V i j ]NFor any i, let  V i = [ j= 1. Let  d(q , V i ) denote the solution to (7). It follows that 

d(q , V i ) is increasing in each element of V i : naturally, the more parents prefer having 
children with their own cultural trait, the larger are their incentives to socialize their children 

6 See Bisin and Verdier (2001b) for an evolutionary justifcation of paternalistic altruism. 
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to their own trait. The dynamics of the fraction of the population with cultural trait i is 
then determined by (4)–(5) evaluated at di (q) = d(q , V i ). If N = 2 the dynamics is: 

iq̇ = q i (1 − q i )(di (q i ) − d j (1 − q i )), i = j , 

which is a logistic with an added nonlinear term (di (q i ) − d j (1 − q i )). In this case it is 
immediate to see that if, as in most of the previous published literature, we assume that 

ivertical transmission is exogenously determined, then di and d j are independent of q , 
and in the limit one cultural group will generically dominate (the group with the higher 
vertical socialization rate; i.e. group i if di > d j ). If instead vertical socialization results 
from the parents’ rational effort choice, under our assumption, di is decreasing in q i and 
the dynamics of cultural traits will robustly look as in Figure 1: a unique stable steady state 

∗of the population dynamics, q , appears in which both traits are represented, whereas the 
dominant steady states, q i = 0, q i = 1, are not stable. 

Characterizing the dynamic behavior of the distribution of traits in the population is 
more complicated in the multiple-traits case (N > 2), and we will make extra assumptions. 
However, even in the general case it is easy to see that any homogeneous population 
constitutes an unstable stationary state of the dynamics of (4)–(5) evaluated at di = d(q , 

V i ). 

Proposition 1 Under Assumptions 1 and 2, any degenerate distribution, that is, any distri-
ibution q such that, for some i ∈ {1 ,  . . . , N}, q = 1 (and, hence, q j = 0, ∀ j = i), is a locally 

unstable stationary distribution. 

PROOF: Pick an arbitrary i ∈ {1 ,  . . . , N}. Differentiating (4)–(5) at the stationary state q 
i jsuch that q = 1, q = 0, ∀ j = i , gives:  

i∂ q̇ = −[d(q , V i ) − d(q , V N )] = (H )−1( V N1) > 0  (8)  
∂q i 

q 

as d(q , V i ) = (H )− 1 (0) = 0. Also, ( 
∂

∂ 
q
q̇ 

k

i 

)q 

= [d(q , V i ) − d(q , V k ) − (d(q , V i ) − d(q , V N ))] 

= (H )−1( V N1) − (H )−1( V k1) 

and 

k∂ q̇ = [d(q , V k ) − d(q , V i )] = (H )−1( V k1) > 0  for  k = i , N (9)
∂q k 

q 

k∂ q̇ = 0  for  k = i , N and h = N; 
∂q h 

q 

(8) and (9) then readily imply local instability of q. � 

Therefore, degenerate homogeneous distributions of traits are unstable. We will next 
characterize (Propositions 2, 3) and study the stability properties (Proposition 4) of 
heterogeneous distributions of preferences for N state trait populations. We shall do this 
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(a) 
. 

q 

q = 0 

q 
. 

q = 1 

(b) 

q = 0 q = 1 

Figure 1 N = 2 traits, where (a) parents choose socialization rates and (b) socialization rates are 

exogenous. 
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by simplifying the symmetry assumption on preferences, as characterized by intolerance 
levels. We shall assume that all groups, while differentially favoring socialization to their 
own state of the cultural trait, disfavor all the other groups symmetrically. Formally, 

Assumption 1 1. [Symmetric Intolerances] For any i ∈ {1 ,  . . . , N}: (i) V i j  = V ik  , ∀ j , 
V i j  ≡k = i (abusing notation, we let V i ). 

12. [Quadratic Costs] H(di ) = (di )2.2 
Under this, condition (7) becomes: 

i i ) V id(q , V i ) ≡ (1 − q (10) 

and the dynamic system (4)–(5), evaluated at (10), can be written as: 

N 
i iq̇ = q (1 − q i ) V i − q j (1 − q j ) V j ] for all i . (11) 

j =1 

Let Fk , with 1  ≤ k ≤ N, denote the set of all k-dimensional subsets of {1 ,  . . . , N}; 

Fk contains (
N

N 
−k

) ≡ (N
N 
− 

! 
k)! different subsets of {1 ,  . . . , N}. We say that a stationary 

distribution supports the k traits Fk ∈ Fk , and we denote it q(F k ), if it is contained in the 
appropriate simplex: 

iq(Fk ) ∈ S Fk ≡ {q ∈ S N | q = 0, for i ∈ Fk }. 

Essentially, without loss of generality, we order the cultural groups so that 

V 1 >� V 2 > · · · >� V N . (12) 

Ties between intolerance levels are in fact non-generic and can be easily dealt with at some 
notational cost. 

Proposition 2 Under our assumptions, a stationary distribution that supports F k exists iff 

V i > [k − 1]G Fk , ∀i ∈ Fk , (13) 

1 1where ≡ V i . Moreover, a stationary distribution q (F k ), which supports F k , isG Fk i∈Fk 

defined by: 

G Fk jq i (Fk ) = 1 − k − 1 
for i ∈ Fk and q = 0 for j ∈/ (Fk ). (14)

V i 

G Fk is a measure of the cultural intolerance of the traits belonging to F k . Note in fact  
V i G Fk Vthat, for example, if = V for all i ∈ Fk , = . Moreover,  q i (F k ) increases ink 

V i and decreases in V j , for  j = i . Proposition 2 should then be interpreted to imply 
that a cultural group i is not supported by a stationary state if it is not suffciently intolerant 
relative to the other groups. 

PROOF: (If) All F1 ∈ F1 and all F2 ∈ F2 are supported by a stationary distribution. The 
fact that all F1 ∈ F1 belong to C is trivial. As for all F2 ∈ F2, we need to show that for any 
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V i V j
arbitrary i , j ∈ F 2, and any arbitrary F2 ∈ F2, V i > G Fk . However,  G F2 = V jV i + 

V i V j
and V i > = G F2 .V i + V j 

Let 

N 

V iC ≡ {Fk ∈ Fk : > [k − 1]G Fk , ∀i ∈ Fk }. 
k=1 

Note that C = ∅ because F1 and all F2 belong to C. 
For any F k ∈ C , with  k > 1, any q that solves (14) belongs to the interior of S Fk and, 

hence, it satisfes q i = 0 for  i ∈ F k and 

(1 − q i ) V i − q j (1 − q j ) V j = 0 for  i ∈ Fk , 
j ∈Fk 

which implies: (1 − q i ) V i = (1 − q j ) V j , for  i  = j ∈ Fk; that is, q is a stationary 
distribution. 

(Only if) For any arbitrary Fk ∈ Fk , a stationary state, q, in the interior of S Fk satisfes: 
q i = 0, for i ∈ F k , and  

(1 − q i ) V i − q j (1 − q j ) V j = 0 for  i ∈ Fk 

j ∈Fk 

or: 

i j h )1 − q 1 − q h∈Fk 
(1 − q = = = (k − 1)G Fk , for  i = j ∈ Fk1 1 1 

V i V j h∈Fk V h 

and, therefore, 

iq = 1 − k − 1 
G Fk , for  i ∈ Fk ; (15) 

V i 

that is, q satisfes (14) for F k . 
Obviously, (15) can be satisfed only if F k ∈ C . If  F k ∈ C , then no stationary state 

exists in the interior of S Fk . Finally, a stationary state on the boundary of S Fk is a stationary 
state in the interior of S Fk−1 for some F k− 1 and, hence, satisfes (14) for such F k− 1. � 

Proposition 3 Under our assumptions, there exists a k∗ ≥ 2 such that: 

A unique Fk∗ ∈ Fk∗ is supported by a stationary distribution. 
All Fk ∈ Fk , for k < k∗ are supported by a stationary distribution. 
No Fk ∈ Fk , for k > k∗ is supported by a stationary distribution. 

Furthermore, Fk∗ contains the traits with highest intolerance; that is, if V 1 >� V 2 

> · · · >� V N , then F k∗ = {1 ,  . . . , k ∗} . 

Fk∗ is the largest subset of cultural groups {1 ,  . . . , N} that is supported by a stationary 
distribution, and the cultural groups with highest intolerance are supported. 
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PROOF: Recall that essentially, without loss of generality, we assume 

V 1 >� V 2 > · · · >� V N . 

For any k ∈ {1 ,  . . . , N}, let  F̂k ≡ {1, . . . , k}. Recall that V 1 >� V 2 > · · · >� V N , and  
construct k∗ has follows: 

F̂kk∗ ≡ max k ∈ {1, . . . , N} such that V k > (k − 1)G . 

ˆ
Let q(F̂k ) denote a stationary state in the interior of S Fk . By construction of  F̂k , and  
using (12), if such a stationary state exists, it is unique. For k = k∗, existence  follows from  
Proposition 2 and the construction of k∗ . Finally, F̂k∗ = Fk∗ , by (12). 

ˆBy the ordering in (12), V k > (k − 1)G Fk implies that, 

ˆ
V k > (k − 1)G Fk , for  any  k < k, (16) 

ˆ
V k < (k − 1)G Fk , for  any  k > k. (17) 

ˆAs a consequence: for k > k∗ , no stationary state exists in the interior of S Fk (from (16)); 
ˆ

whereas, for any k ≤ k̂, there exists a stationary state q k in the interior of S Fk (from (17)). 

Proposition 4 Under our assumption, the stationary distribution q(F k∗ ), which supports 
F k∗ , is locally stable. Moreover, any stationary distribution q(F k ), which supports F k , is 
locally unstable for k < k∗ . 

PROOF: See the Appendix. 

The population dynamics in the case of three state locally stable traits (k∗ = N = 3) is 
illustrated in Figure 2. 

We obtain the following simple corollary. 

Corollary If 

N 
1 N − 1 

> ,
V i Mini { V i }

i=1 

there is a unique stationary state in the interior of S N : 

−1N
N − 1 1iq = 1 − , ∀i ∈ {1, . . . , N}. 

V i V i 
i=1 

Moreover, this stationary state is locally stable. 

Note that (18) is stricter for larger N (in the limit, for N → ∞, it requires symmetric 
preferences for children of their own type across cultural groups: V i independent of 
i). This Corollary then identifes symmetry of the parents’ preferences for children as a 
factor that facilitates the stability of heterogeneous stationary distributions of traits in the 
population. 
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q  = 01 

q*
. 

q2 = 0 q3 = 0 

Figure 2 The dynamics of three trait populations with a stable stationary state q ∗ in S3. 
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Figure 3 Simulations with N = 3; and V i such that (13) is satisfed. 
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Figure 4 Simulations with N = 4; �V i such that k∗ = 4. 

3 More on the stability properties 

Because our theoretical analysis of population dynamics only produces local stability re-
sults, we proceed to simulate the dynamical system, with the objective of gaining a better 
understanding of the global stability properties of q(F k∗ ) under our assumptions. Starting 
with N = 3, we simulate the process choosing values for �V i that satisfy condition (13), 
∀ i ∈ F N . The simulations are performed in discrete time for 500 iterations, which are more 
than suffcient for reaching the stationary distribution (see Figure 3). As initial conditions, 
we choose a set A0 of points in the interior of (but close to) the simplex S N , starting with 
the vertices (1 − 2ε, ε, ε), (ε, 1  − 2ε, ε), (ε, ε, 1  − 2ε) and moving along the segments that 
join these points.7 

7 We use ε = 0.001 and a step size equal to 0.001 in performing this grid search. 
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Figure 5 Simulations with N = 4; �V i such that k∗ = 3. 

The result of the simulations is that for every possible initial condition in this set, 
the process converges to the stationary distribution q(F k∗ ), defned in (14). A few typical 
simulation runs are reported in Figure 3, using different initial conditions. Essentially, in 
the simulations, we check that the vector feld of the system is inward pointing on the 
boundary of A0, and, moreover, that the dynamical system does not converge to a limit 
cycle from any initial condition on the boundary of A0 . This is a strong indication that the 
basin of attraction of q(F k∗ ) is in fact the whole interior of the simplex S N , and, therefore, 
that the stationary distribution q(F k∗ ) is indeed globally stable. 

The same results  hold  with  an  N = 4 state traits population. In this case, we study both 
the case in which the values for �V i are such that: (i) condition (13) is satisfed for k∗ = 4 
= N (see Figure 4) and (ii) condition (13) is satisfed for k∗ = 3 < N (see Figure 5). 
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4 Conclusion 

In this paper we have studied a simple stylized model of intergenerational cultural trans-
mission of multiple traits. Cultural transmission is the result of vertical and oblique trans-
mission, and the intensity of vertical transmission is determined by the rational choice 
of parents. Many simplifying assumptions have made the formal analysis tractable: for 
example, asexual reproduction, no horizontal transmission (through peers), quadratic so-
cialization costs, symmetric intolerances, and parental preferences for children of their own 
trait independent of the cultural environment. All these assumption can be relaxed without 
changing the nature of the analysis. 

Our analysis implies that intolerant groups have relatively larger incentives to socialize 
their children to their own cultural trait. As a consequence, intolerant groups will tend to 
dominate the population dynamics of cultural traits. Because this is historically not the 
case, our analysis must miss some countervailing forces of cultural dynamics. For instance, 
intolerant groups often require higher participation costs on the part of their members 
(e.g. to signal purity of intentions and motivations). 

Most importantly, we have studied the population dynamics of traits determined by 
cultural transmission in isolation, with no attempt to analyze the genetic and cultural co-
evolution of traits. Several authors have built on the work of Cavalli-Sforza and Feldman 
(1981) and Boyd and Richerson (1983) to study co-evolutionary models (see e.g. Bowles 
and Gintis 2003; Gintis 2003a,b). The integration of co-evolution with rational parental 
choice has yet to be developed; but, for a frst attempt, see Bisin and Verdier (2001a,b). 

Appendix 

Proof of Proposition 4: Without loss of generality, one can order groups so that 

V 1 V 2 V N>� > · · ·  >� . 

Suppose k∗ = N. Then, by (13), 

N 
1 N − 1 

> . (18)
V i Mini { V i }

i=1 

By (12), V N = mini∈{1, ...,N} Vi. Consider then the system 

⎡ ⎤ 
N 

q̇ = qi ⎣(1 − qi ) V i − q j (1 − q j ) V j ] , i = 1, . . .  , N − 1, (19)⎦ 

j=1 

N−1 

q N = qi , (20) 
i=1 

which is equivalent to (11). The Jacobian matrix of this dynamical system evaluated at q is given by [aik]i, k∈{1, N− 1}, 
where: 
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∂ q̇ i N − 1 
aii  ≡ = −  1 − G N V N < 0 for  i = N 

∂qi V i 
q 

∂ q̇ i N − 1ik  G N V k − V Na ≡ = 1 − ≥ 0 for  i , k = N and i = k.
k∂q V i 

q 

We now introduce the following result. 

Lemma 1 (Tambs-Lyche, 1928) Suppose the n × n-dimensional (real) matrix A ≡ [aik  ] satisfies the following 
conditions: 

aik  ≥ 0 for all i , k(i = k), 

there exists positive numbers t 1 , . . . , t n such that < 0, for i = 1 ,  . . . n n
j =1 t j ai j  

Then the real parts of all the characteristic roots of A are non-positive. 

For a proof of this result, see Marcus and Minc (1964). 

Using Lemma 1 we then need to fnd positive numbers t 1 , . . . , t N− 1 such that 

N−1 
∂ q̇ i 

tk < 0, for i = 1, . . . N − 1. 
∂q k 

k=1 

G F N−1 iN−1Let F N− 1 = {1 ,  . . . , N − 1}, and consider tk = > 0. Then, tk ( ∂ q̇ )
V k k=1 k∂q 

N−1 
G F N−1 

G F N−1 
N − 1 N − 1 = 1 − G N V k − V N − 1 − G N V N ,

V k V i V i V i 
k=1, k=i 

which has the sign of 

N−1 
G F N−1 

G F N−1 N−1 
G F N−1 

( V k − V N ) − V N = (N − 2)G F N−1 − V N 

V k V i V k 
k=1, k=i k=1 

= (N − 2)G F N−1 − V N 

1 N−1 1(the last equality follows from = ). We need to show then that 
G F N−1 k=1 V k 

(N − 2)G F N−1 
<� V N . (21) 

From (18), 

N
1 1 N − 1 N − 1 = > = . 

G FN V i Mini { V i } V N 
i =1 

1 1 1 1 1 N−1However, = + As a consequence, + > which implies V N > 
G F N 

G F N−1 V N . 
G F N−1 V N V N , 

(N − 2)G F N−1
. 

This proves the local stability of the q(F N ) (note  that  F N = {1 ,  . . . , N}); moreover, q(F N ) is uniquely 

defned by 

−1N
N − 1 1i q = 1 − , ∀i ∈ {1, . . . , N}. (22)

V i V i 
i=1 

As noted, q(F N ) exists if (18) is satisfed. 
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We next prove the local stability result for heterogeneous distributions of preferences whenever condition 

(18) does not hold. 

Note that 

ˆ
V k > ( resp.  <) (k − 1)G Fk 

implies that 

V k i V i> ( resp.  <) (1  − qk ) , ∀i ∈ F̂k ; 

and, from (10), V i = d(0, V i ). In particular, 

iV k < (1 − qk ) V i , ∀i ∈ F̂k , k > k̂ (23) 

and 

iV k > (1 − qk ) V i , ∀i ∈ F̂k , k ≤ k∗ . (24) 

Equation (23) then implies that the same argument used to prove local uniqueness of the stationary state in the 

interior of S N , under condition (18), in Lemma 1, proves then local uniqueness of q k∗ ; while (24) implies that 

any stationary state in the interior of S Fk , for  k < k∗, is locally unstable (see Figure 1 for the phase diagram in the 

case k∗ = 3). 
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