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Abstract

We study the wealth distribution in Bewley economies with idiosyncratic capital income risk. We show 
analytically that under rather general conditions on the stochastic structure of the economy, a unique ergodic 
distribution of wealth displays a fat tail.
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1. Introduction

Bewley economies, as e.g., in Bewley (1977, 1983) and Aiyagari (1994),1 represent one of the 
fundamental workhorses of modern macroeconomics, its main tool when moving away from the 
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study of efficient economies with a representative agent to allow e.g., for incomplete markets.2

In these economies each agent faces a stochastic process for labor earnings and solves an infinite 
horizon consumption-saving problem with incomplete markets. Typically, agents are restricted to 
save by investing in a risk-free bond and face a borrowing limit. The postulated process for labor 
earnings determines the dynamics of the equilibrium distributions for consumption, savings, and 
wealth.3

Models of Bewley economies have been successful in the study of several macroeco-
nomic phenomena of interest. Calibrated versions of this class of models have been used to 
study welfare costs of inflation (Imrohoroglu, 1992), asset pricing (Mankiw, 1986; Huggett, 
1993), unemployment benefits (Hansen and Imrohoroglu, 1992), fiscal policy (Aiyagari, 1995;
Heathcote, 2005), and partial consumption insurance (Heathcote et al. 2008a, 2008b; Storesletten 
et al., 2001; Krueger and Perri, 2003).4

On the other hand, standard and plausible parametrizations of Bewley economies are hardly 
able to reproduce the observed distribution of wealth in many countries; see e.g., Aiyagari (1994)
and Huggett (1993). More specifically, they cannot reproduce the high inequality and the fat right 
tail that empirical distributions of wealth tend to display.5 This is because at high wealth levels, 
the incentives for precautionary savings taper off and the right tail of the wealth distribution 
remains thin; see Carroll (1997) and Quadrini (2000) for a discussion of these issues.6

In the present paper we analytically study the wealth distribution in the context of
Bewley economies extended to allow for idiosyncratic capital income risk.7 To this end
we provide first an analysis of the standard Income Fluctuation problem, as e.g., in

2 The assumption of complete markets is generally rejected in the data; see e.g., Attanasio and Davis (1996), Fisher 
and Johnson (2006) and Jappelli and Pistaferri (2006).

3 More recent specifications of the model allow for aggregate risks and an equilibrium determination of labor earnings 
and interest rates; see Huggett (1993), Aiyagari (1994), Rios-Rull (1995), Krusell and Smith (1998, 2006); see also 
Ljungqvist and Sargent (2004), Ch. 17, for a review of results.

4 See Heathcote et al. (2008b) for a recent survey of the quantitative implications of Bewley models.
5 Large top wealth shares in the U.S. since the 60’s are documented e.g., by Wolff (1987, 2004) and, more recently, by 

Kopczuk et al. (2014) using estate tax return data; Piketty and Zucman (2014) find large and increasing wealth-to-income 
ratios in the U.S. and Europe in 1970–2010 national balance sheets data. Fat tails for the distributions of wealth are also 
well documented, for example by Nirei and Souma (2004) for the U.S. and Japan from 1960 to 1999, by Clementi and 
Gallegati (2005) for Italy from 1977 to 2002, and by Dagsvik and Vatne (1999) for Norway in 1998. Restricting to 
the Forbes 400 richest U.S. individuals during 1988–2003, Klass et al. (2007) also find that the top end of the wealth 
distribution obeys a Pareto law.

6 Stochastic labor earnings can in principle generate some skewness in the distribution of wealth, especially if the earn-
ings process is itself skewed and persistent. Extensive evidence for the skewedness of the income distribution has been 
put forth in a series of papers by Emmanuel Saez and Thomas Piketty (some with co-authors), starting with Piketty and 
Saez (2003) on the U.S. We refer to Atkinson et al. (2011) for a survey and to the excellent website of the database they 
have collected (with Facundo Alvaredo), The World Top Incomes Database. However, most empirical studies of labor 
earnings find some form of stationarity of the earnings process; see Guvenen (2007) and e.g., the discussion of Primiceri 
and van Rens (2009) by Heathcote (2009). Persistent income shocks are often postulated to explain the cross-sectional 
distribution of consumption but seem hardly enough to produce fat tailed distributions of wealth; see e.g., Storesletten et 
al. (2004); see also Cagetti and De Nardi (2008) for a survey.

7 Capital income risk has been introduced by Angeletos and Calvet (2005) and Angeletos (2007) and further studied by 
Panousi (2008) and by ourselves (Benhabib et al. 2011, 2013). Quadrini (1999, 2000) and Cagetti and De Nardi (2006)
study entrepreneurial risk, one of the leading examples of capital income risk, explicitly. Jones and Kim (2014) study 
entrepreneurs in a growth context under risk introduced by creative destruction. Relatedly, Krusell and Smith (1998)
introduce heterogeneous discount rates to numerically produce some skewness in the distribution of wealth. We refer to 
these papers and our previous papers, as well as to Benhabib and Bisin (2006) and Benhabib and Zhu (2008), for more 
general evidence on the macroeconomic relevance of capital income risk.
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Chamberlain and Wilson (2000), extended to account for capital income risk.8 As in Aiyagari
(1994), the borrowing constraint together with stochastic incomes assures a lower bound to 
wealth acting as a reflecting barrier.9 We analytically show that enough idiosyncratic capital in-
come risk induces an ergodic stationary wealth distribution which is fat tailed, more precisely, a 
Pareto distribution in the right tail. Furthermore, we show that the consumption function under 
borrowing constraints is strictly concave at lower wealth levels, consistent with, e.g. Saez and 
Zucman (2014)’s evidence of substantial saving rate differentials across wealth levels. In this 
environment, therefore, the rich can get richer through savings, while the poor may not save 
enough to become rich. Such non-ergodicity however would imply no social mobility between 
rich and poor, which seems incompatible with observed levels of social mobility in income over 
time and across generations; see for example Chetty et al. (2014). In our analysis it is capital 
income risk that induces the necessary mobility across wealth levels to generate an ergodic sta-
tionary wealth distribution. This complements the results in our previous papers (Benhabib et 
al. 2011, 2013), which focus on overlapping generation economies. An alternative approach to 
generate fat tails without stochastic returns is to introduce a model with bequests, where the 
probability of death (and/or retirement) is independent of age. In these models, the stochastic 
component is not stochastic returns but the length of life. For models that embody such features, 
see Wold and Whittle (1957), Castaneda et al. (2003), and Benhabib and Bisin (2006). On the 
other hand, sidestepping the income fluctuation problem by assuming a constant savings rate, 
Nirei and Aoki (2015) shows that thick tails are a direct consequence of the linearity of the 
wealth equation.

The rest of the paper is organized as follows. We present the basic setup of our economy in 
Section 2. In Section 3 we obtain the characterization of the income fluctuation problem with 
idiosyncratic capital income risk. In Section 4 we show that the wealth accumulation process 
has a unique stationary distribution and the stationary distribution displays a fat right tail. In 
Section 5 we introduce a model of entrepreneurship which is embedded in our analysis of the 
wealth distribution induced by the income fluctuation problem.10 In Section 6 we extend our 
analysis of Bewley economies to allow for a market for loans. In Section 7 we briefly conclude.

2. The economy

Consider an infinite horizon economy with a continuum of agents uniformly distributed with 
measure 1.11 Let {ct }∞t=0 denote an agent consumption process. Let {yt}∞t=0 represent the agent’s 
labor earnings process and {Rt+1}∞t=0 his/her idiosyncratic rate of return on wealth process, that 
is, capital income risk.

8 The work by Levhari and Srinivasan (1969), Schechtman (1976), Schechtman and Escudero (1977), Chamberlain 
and Wilson (2000), Huggett (1993), Rabault (2002), Carroll and Kimball (2005) has been instrumental to provide several 
incremental pieces to our characterization of the solution of (various specifications of) the Income Fluctuation problem; 
see Ljungqvist and Sargent (2004), Ch. 16, as well as Rios-Rull (1995) and Krusell and Smith (2006), for a review of 
results regarding the standard Income Fluctuation problem.

9 See also Achdou et al. (2015) and Gabaix et al. (2015) for a continuous time model with stochastic returns and bor-
rowing constraints exploring, respectively, the interaction of aggregate shocks and inequality on the transition dynamics 
of the macroeconomy and the speed of convergence to the stationary wealth distribution.
10 The NBER W.P. version of this paper, Benhabib et al. (2014), also contains some simulation results regarding the 
stationary wealth distribution and the social mobility of the wealth accumulation process.
11 We avoid introducing notation to index agents in the paper.
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The agent’s budget constraint at time t is then

qt+1 = Rt+1 (qt + yt − ct ) ,

where {qt+1}∞t=0 is wealth before earnings. In the economy, each agent faces a no-borrowing 
constraint at each time t :

qt+1 ≥ 0.

It is convenient however for our purposes to work with the process of wealth after earnings, 
that is at = qt + yt . In this case, the agent’s budget constraint and his/her borrowing constraint 
take respectively the following form:

at+1 = Rt+1(at − ct ) + yt+1

ct ≤ at

Each agent in the economy then solves the Income Fluctuation (IF) problem which is obtained 
under Constant Relative Risk Aversion (CRRA) preferences,

u(ct ) = c
1−γ
t

1 − γ
, γ ≥ 1,

constant discounting β < 1, and capital income risk and earnings processes, {Rt+1}∞t=0 and 
{yt }∞t=0:

max
{ct }∞t=0,{at+1}∞t=0

E

∞∑
t=0

βt c
1−γ
t

1 − γ
(IF)

s.t. at+1 = Rt+1(at − ct ) + yt+1

ct ≤ at

a0 given.

The following assumptions characterize formally the stochastic properties of the economic envi-
ronment:

Assumption 1. Rt and yt are stochastic processes, independent and identically distributed (i.i.d.) 
over time and across agents: yt has probability density function f (y) on bounded support [y

¯
, ȳ], 

with y
¯

> 0 and Rt has probability density function g(R) with closed support [R
¯
, R̄].12 Rt and yt

are independent. Furthermore, yt satisfies i) (ȳ)−γ < βE
[
Rt (yt )

−γ
]
, while Rt satisfies: ii) R̄ >

R
¯

> 0 and R̄ large enough, iii) βER
1−γ
t < 1; iv) 

(
βER

1−γ
t

) 1
γ

ERt < 1; and v) Pr(βRt > 1) > 0

and any finite moment of Rt exists.

12 Note however we can allow the support of R to be the real numbers over the half-line, [R
¯
, ∞), which is closed in the 

real numbers. While R̄ = ∞ is allowed for, a finite R̄, as derived in the proof of Theorem 4, is sufficient for all our results. 
In the case R takes discrete values in state space R̃, we also assume the elements of R̃ are not all integral multiples of 
each other; see Saporta (2005), Theorem 1. This non-arithmeticity assumption is immediately satisfied if the support of 
R contains an interval of real numbers; it assures that the discrete stochastic process for wealth results in a distribution 
with a continuous power tail without holes.
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To induce a limit stationary distribution of wealth, these assumptions guarantee that the con-
tractive and expansive components of the rate of return process {Rt}∞t=0 tend to balance and the 
earnings process {yt }∞t=0 act as a reflecting barrier on wealth. The assumption that these processes 
are i.i.d. over time is restrictive as a positive correlation in earnings and returns would capture 
economic environments with limited social mobility (for example, environments in which re-
turns economic opportunities are in part transmitted across generations); but it could possibly be 
relaxed.13

2.1. Outline

It is useful to briefly outline the role of our assumptions and our strategy to obtain the main 
results in the paper. Assumptions 1.i) and 1.ii) guarantee that an agent with zero wealth at some 
time t will not consume all his/her income at time t + 1 for high enough realizations of earnings 
and rates of return; as a consequence, the lower bound of the wealth space is a reflecting barrier, 
i.e., the wealth accumulation process is not trapped in the lower part of the wealth space in which 
savings of the agent are zero (see Proposition 6 in Section 4).

Assumptions 1.iii) and 1.iv) guarantee that the wealth accumulation process is stationary. 
In particular, Assumption 1.iii) guarantees that the aggregate economy displays no unbounded 
growth in consumption and wealth.14 Assumption 1.iv) implies that

βERt < 1.

This is enough to guarantee that the economy contracts, giving rise to a stationary distribution of 
wealth. However, since we cannot obtain explicit solutions for consumption or savings policies, 
we have to explicitly show that under suitable assumptions there are no disjoint invariant sets or 
cyclic sets in wealth, so that agents do not get trapped in subsets of the support of the wealth 
distribution. In other words we have to show that the stochastic process for wealth is ergodic, 
and that a unique stationary distribution exists. We show this in Theorem 3.

We then have to show that idiosyncratic capital income risk can give rise to a fat-tailed wealth 
distribution. Since in our economic environment policy functions are not linear and explicit solu-
tions are not available even under CRRA preferences, we cannot use the results of Kesten (1973), 
for example as in Benhabib et al. (2011). We are nonetheless able to show that consumption and 
savings policies are asymptotically linear; a result which, under appropriate assumptions, in par-
ticular i.i.d. processes for Rt and yt , allow us to apply Mirek (2011)’s generalization of Kesten
(1973).15 We do this in Propositions 3, 4 and 5. The fat right tail of the stationary distribution of 
wealth, obtained in Theorem 4, exploits crucially that Pr(βRt > 1) > 0, that is, Assumption 1.v).

13 See the next subsection for a detailed discussion of Assumptions 1.i)–1.v).
14 We can allow for exogenous growth g > 1 in earnings. To this end, we need to deflate the variables by the growth rate 
and let the borrowing constraint grow at growth rate. (In our context, since we allow for no borrowing, no modification 
of the constraint is needed. However, Assumption 1.2.iii) would have to be modified so that Pr( βRt

gγ > 1) > 0.)
15 We conjecture that the analysis could be extended to serially correlated earnings and returns processes along the 
lines of Benhabib et al. (2011), though this would require extending the main theorems of Saporta (2004, 2005) and 
Roitershtein (2007) to asymptotic Kesten processes. Furthermore our analysis can be generalized to the case in which 
returns follow an AR(1) process. In this case under some regularity conditions (the most important being that the additive 
term in the AR(1) has compact support and has a non-singular distribution); see Collamore (2009).
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3. The income fluctuation problem with idiosyncratic capital income risk

In this section we show several technical results about the consumption function c(a) which 
solves the (IF) problem, as a build-up for its characterization of the wealth distribution in the 
next section. All proofs are in Appendix A.

Theorem 1. A consumption function c(a) which satisfies the constraints of the (IF) problem and 
furthermore satisfies

i) the Euler equation

u′(c(a)) ≥ βERt+1u
′(c [

Rt+1(a − c(a)) + y
])

with equality if c(a) < a, (1)

and
ii) the transversality condition

lim
t→∞Eβtu′(ct )at = 0, (2)

represents a solution of the (IF) problem.

By strict concavity of u(c), there exists a unique c(a) which solves the (IF) problem.
The study of c(a) requires studying two auxiliary problems. The first is a version the (IF)

problem in which the stochastic process for earnings {yt}∞0 is turned off, that is, yt = 0, for any 
t ≥ 0. The second is a finite horizon version of the (IF) problem. In both cases we naturally 
maintain the relevant specification and assumptions imposed on our main (IF) problem.

3.1. The (IF) problem with no earnings

The formal (IF) problem with no earnings is:

max
{ct }∞t=0,{at+1}∞t=0

E

∞∑
t=0

βt c
1−γ
t

1 − γ
(IF with no earnings)

s.t. at+1 = Rt+1(at − ct )

ct ≤ at

a0 given.

This problem can indeed be solved in closed form, following Levhari and Srinivasan (1969). 
Note that for this problem the borrowing constraint is never binding because Inada conditions 
are satisfied for CRRA utility.

Proposition 1. The unique solution to the (IF with no earnings) problem is

cno(a) = φa, for 0 < φ = 1 −
(
βE (Rt+1)

1−γ
) 1

γ
< 1. (3)
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3.2. The finite (IF) problem

For any τ ∈ Z, T > 0, let the finite (IF) problem be:

max
{ct }Tt=τ ,{at+1}T −1

t=τ

E

T∑
t=τ

βt c
1−γ
t

1 − γ
(finite IF)

s.t. at+1 = Rt+1(at − ct ) + yt+1, for τ ≤ t ≤ T − 1

ct ≤ at , for τ ≤ t ≤ T

aτ given.

Proposition 2. The unique solution to the (finite IF) problem is a consumption function ct,τ (a)

which is continuous and increasing in a. Furthermore, let st,τ (a) denote the induced savings 
function,

st,τ (a) = a − ct,τ (a).

Then st,τ (a) is also continuous and increasing in a.

3.3. Characterization of c(a)

We can now derive a relation between ct,τ (a), cno(a) and c(a). The following Lemma is a 
straightforward extension of Proposition 2.3 and Proposition 2.4 in Rabault (2002).

Lemma 1. limt,τ→−∞ ct,τ (a) exists, it is continuous, and satisfies the Euler equation. Further-
more,

lim
t,τ→−∞ ct,τ (a) ≥ cno(a).

The main result of this section follows:

Theorem 2. The unique solution to the (IF) problem is the consumption function c(a) which 
satisfies:

c(a) = lim
t,τ→−∞ ct,τ (a).

Let the induced savings function s(a) be

s(a) = a − c(a).

Proposition 3. The consumption and savings functions c(a) and s(a) are Lipschitz continuous 
and increasing in a.

Carroll and Kimball (2005) show that ct,τ (a) is concave.16 But Lemma 2 guarantees that 
c(a) = limt,τ→−∞ ct,τ (a) and thus c(a) is also a concave function of a.

16 See also Carroll et al. (2014).
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Proposition 4. The consumption function c(a) is a concave function of a.

The most important result of this section is that the optimal consumption function c(a), in the 
limit for a → ∞, is linear and has the same slope as the optimal consumption function of the 
income fluctuation problem with no earnings, φ.

Proposition 5. The consumption function c(a) satisfies lima→∞ c(a)
a

= φ.

The proof, in Appendix A, is non-trivial.

4. The stationary distribution

In this section we study the distribution of wealth in the economy. The wealth accumulation 
equation of the (IF) problem is

at+1 = Rt+1(at − c(at )) + yt+1. (4)

It is useful to compare it with the (IF with no earnings). Using Lemma 1 we have:

at+1 = Rt+1(at − c(at )) + yt+1

≤ Rt+1(at − cno(at )) + yt+1

= Rt+1(1 − φ)at + yt+1.

Let

μ = 1 − φ =
(
βER1−γ

) 1
γ

.

Thus μ < 1 by Assumption 1.iii). We have

at+1 ≤ μRt+1at + yt+1.

The main results in this section are the following two theorems.17

Theorem 3. The process {at+1}∞t=0 is ergodic and hence there exists a unique stationary distri-
bution for at+1 which satisfies the stochastic wealth accumulation equation (4).

The proof, in Appendix A, requires two steps. First, we show that the wealth accumulation pro-
cess {at+1}∞t=0 induced by equation (4) above is ϕ-irreducible, i.e., there exists a non-trivial
measure ϕ on [y

¯
, ∞) such that if ϕ(A) > 0, the probability that the process enters the set A in fi-

nite time is strictly positive for any initial condition (see Chapter 4 of Meyn and Tweedie, 2009). 
Second, to show that there exists a unique stationary wealth distribution we exploit the results in 
Meyn and Tweedie (2009) and show that the process {at+1}∞t=0 is ergodic.

The next proposition shows that the stationary wealth distribution of our model is critically 
different from that of Aiyagari (1994), in that it is unbounded.

Proposition 6. The support of the unique stationary distribution for at+1 is unbounded.

17 The result in Theorem 3 can also be obtained as an application of Theorem 2 in Kamihigashi and Stachurski (2014)
under slightly weaker assumptions. We thank a referee for pointing this out to us.
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In the next theorem we show that the wealth accumulation process {at+1}∞t=0 has a fat tail.18

More precisely,

Definition 1. A distribution X is said to have a right fat tail if there exists α > 0 such that

lim inf
x→+∞

Pr (X > x)

x−α
≥ C,

where C is a positive constant.

We use the characterization of c(a) and s(a) in Section 3.3, and in particular the fact that s(a)
a

is increasing in a and s(a)
a

approaches μ as a goes to infinity (see the discussion after the proof 
of Lemma 3 in Appendix A); this allows us to apply some results by Mirek (2011) regarding 
conditions for asymptotically Pareto stationary distributions for processes induced by non-linear 
stochastic difference equations.

Theorem 4. The unique stationary distribution for at+1 which satisfies the stochastic wealth 
accumulation equation (4) has a fat tail.

Proof. We use a comparison method to show the result. Firstly, we construct an auxiliary pro-
cess, {ãt+1}∞t=0. Then we show that the tail of the stationary distribution for ãt+1 is asymptotic to 
a Pareto law. Finally, we show that the stationary distribution for at , which satisfies the stochas-
tic wealth accumulation equation (4) has a fat tail, through comparing processes {at+1}∞t=0 and 
{ãt+1}∞t=0.

Construction of {ãt+1}∞t=0. Since s(a)
a

is increasing in a and s(a)
a

approaches μ as a goes to 
infinity (see the discussion after the proof of Lemma 3 in Appendix A), there exist an ε > 0
arbitrarily small such that we can pick a large aε to satisfy

μ − s(aε)

aε
< ε.

Let

με = s(aε)

aε
.

Thus μ − ε < με ≤ μ.

18 A simple definition of a power law, or fat tailed, distribution is as follows. Define a regularly varying function with 
index α ∈ (0, ∞) as

lim
x→∞

L(tx)

L(x)
= t−α,∀t > 0

Then, a distribution with a differentiable cumulative distribution function (cdf) F(x) and counter-cdf 1 −F(x) is defined 
as a power-law with tail index α if 1 − F(z) is regularly varying with index α > 0. If limx→∞ 1−F(tx)

1−F(x)
= 1, ∀t > 0, this 

is a slowly-varying function. If limx→∞ 1−F(tx)
1−F(x)

= ∞, ∀t > 0, then the function is neither a slowly-varying function 
nor a power-law. For example, the counter-cdf of the Cauchy distribution is slowly varying (i.e., α = 0 above), while for 
the lognormal and normal distributions, the limit is infinite. Intuitively, α captures the number of moments: α = 0 means 
the Cauchy has no moments, while α = ∞ means the distribution has all the moments; see Soulier (2009).
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Let

l(a) =
{

s(a), a ≤ aε

μεa, a ≥ aε.
(5)

Note that l(a) ≤ s(a) for ∀a ∈ [y
¯
, ∞), since s(a)

a
is increasing in a; furthermore, the function 

l(a) in (5) is Lipschitz continuous, since s(a) is Lipschitz continuous.
Let θ = (R, y) and

ψθ(a) = Rl(a) + y. (6)

The stochastic process {ãt+1}∞t=0 is induced by ãt+1 = ψθ(ãt ). Now we apply Theorem 1.8 of 
Mirek (2011) to show that {ãt+1}∞t=0 has a unique stationary distribution. From Proposition 6
we know that the support of the stationary distribution for at+1 is unbounded. It is easy to see, 
from the construction of ψθ(·) and Assumptions 1.i) and 1.ii), that the support of the stationary 
distribution for ãt+1 is also unbounded. Furthermore, Theorem 1.8 of Mirek (2011) implies that 
the tail of the stationary distribution for ãt+1 is asymptotic to a Pareto law, i.e.

lim
a→∞

Pr(ã∞ > a)

a−α
= C,

where C is a positive constant.
In order to apply Theorem 1.8 of Mirek (2011), we need to verify Assumption 1.6 and As-

sumption 1.7 of Mirek (2011). Assumption 1.6 essentially guarantees that ψθ(·) is asymptotically 
linear. Assumption 1.7 instead is the standard assumption which induces fat tails in the stationary 
distribution of a Kesten (linear) process.

Verification of Assumption 1.6 of Mirek (2011). For every z > 0, let

ψθ,z(a) = zψθ

(
1

z
a

)
.

ψθ,z are called dilatations of ψθ . Let

ψ̄θ (a) = lim
z→0

ψθ,z(a).

By the definition of ψθ(·) we have

ψ̄θ (a) = lim
z→0

ψθ,z(a) = lim
z→0

[
zψθ

(
1

z
a

)]
= μεRa, for ∀a ∈ [y

¯
,∞).

Let

Mε = μεR.

Thus

ψ̄θ (a) = Mεa.

Let

Nθ = �R + y

where

� = max
a∈[y,aε ] |s(a) − μεa|.
¯
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It is easy to verify that

|ψθ(a) − Mεa| < Nθ , for ∀a ∈ [y
¯
,∞),

and hence that Assumption 1.6 (Shape of the mappings) in Mirek (2011) is satisfied.

Verification of Assumption 1.7 of Mirek (2011). As for Assumption 1.7 in Mirek (2011), condi-
tion (H3) is satisfied since Mε = μεR, Rt is i.i.d. over time and the support of Rt is closed. The 
law of logMε is non-arithmetic by Assumption 1 (see footnote 12) so H(4) in Assumption 1.7 
of Mirek is satisfied. Let h(d) = logE (Mε)d . By Assumption 1.iv) we have E (μRt) < 1. 
Thus h(1) = logE (Mε) ≤ logE (μR) < 0. We now show that Assumption 1.iv) and Assump-
tion 1.v) imply that there exists κ > 1 such that μκE(Rt )

κ > 1. By Jensen’s inequality we have 
E(Rt)

1−γ ≥ (ERt)
1−γ . Also, Assumption 1.iv) implies that βERt < 1. Thus

μ =
(
βE(Rt )

1−γ
) 1

γ ≥
[
β (ERt)

1−γ
] 1

γ ≥
[
β

(
1

β

)1−γ
] 1

γ

= β.

Thus

E (μRt)
κ ≥ E (βRt )

κ ≥
∫

{βRt>1}
(βRt )

κ .

By Assumption 1.v), Pr(βRt > 1) > 0. Thus there exists κ > 1 such that μκE(Rt )
κ > 1. We 

could pick με such that (με)κ E(Rt )
κ > 1. Thus h(κ) = logE (Mε)κ > 0. By Assumption 1.v), 

any finite moment of Rt exists. Thus h(d) is a continuous function of d . Thus there exists α > 1
such that h(α) = 0, i.e. E (Mε)α = 1. Also we know that h(d) is a convex function of d . Thus 
there is a unique α > 0, such that E (Mε)α = 1.

Moreover, E
[
(Mε)α | logMε |] < ∞, since Mε has a lower bound, and, by Assumption 1.v), 

any finite moment of R exists.
We also know that E(Nθ)

α < ∞ since y has bounded support and, by Assumption 1.v), any 
finite moment of R exists.

Thus Mε and N satisfy Assumption 1.7 (Moments condition for the heavy tail) of Mirek
(2011).

The comparison method. Applying Theorem 1.8 of Mirek (2011), we find that the stationary 
distribution of {ãt+1}∞t=0, ã∞, has an asymptotic Pareto tail. Finally, we show that the stationary 
distribution of {at+1}∞t=0, a∞, has a fat tail.

Pick a0 = ã0. The stochastic process {at+1}∞t=0 is induced by

at+1 = Rt+1s(at ) + yt+1.

And the stochastic process {ãt+1}∞t=0 is induced by

ãt+1 = Rt+1l(ãt ) + yt+1.

For a path of {(Rt+1, yt+1)}∞t=0, we have at ≥ ãt , ∀t ≥ 0. Thus for ∀a > y
¯
, we have

Pr(at > a) ≥ Pr(ãt > a), for ∀t ≥ 0.

This implies that

Pr(a∞ > a) ≥ Pr(ã∞ > a),
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since stochastic processes {at+1}∞t=0 and {ãt+1}∞t=0 are ergodic. Thus

lim inf
a→∞

Pr(a∞ > a)

a−α
≥ lim inf

a→∞
Pr(ã∞ > a)

a−α
= lim

a→∞
Pr(ã∞ > a)

a−α
= C. �

5. Investment risk and entrepreneurship

In this section we discuss how to embed the analysis of the distribution of wealth induced by 
the (IF) problem in an equilibrium economy of entrepreneurship, one of the leading examples 
of investment risk. Following Angeletos (2007) we assume that each agent acts as entrepreneur 
of his own individual firm. Each firm has a constant returns to scale neo-classical production 
function

F(k,n,A)

where k, n are, respectively, capital and labor, and A is an idiosyncratic productivity shock. 
Agents can only use their own savings as capital in their own firm. In each period t + 1, each 
agent observes his/her firm’s productivity shock At+1 and decides how much labor to hire in 
a competitive labor market, nt+1. Therefore, each firm faces the same market wage rate wt+1. 
The capital he/she invests is instead predetermined, but the agent can decide not to engage in 
production, in which case nt+1 = 0 and the capital invested is carried over (with no return nor 
depreciation) to the next period. The firm’s profits in period t + 1 are denoted πt+1:

πt+1 = max {F(kt+1, nt+1,At+1) − wnt+1 + (1 − δ)kt+1, kt+1} . (7)

Letting each agent’s earnings in period t + 1 are denoted wt+1et+1, where et+1 is his/her 
idiosyncratic (exogenous) labor supply, we have

at+1 = πt+1 + wt+1et+1.

Furthermore,

kt+1 = at − ct .

Given a sequence {wt }∞t=0, each agent solves the following modified (IF) problem:

max
{ct ,nt }∞t=0,{kt+1,at+1}∞t=0

E

∞∑
t=0

βt c
1−γ
t

1 − γ
(IF with entrepreneurship)

s.t. at+1 = πt+1 + wt+1et+1 where πt+1 is defined in (7)

kt+1 = at − ct

ct ≤ at

k0 given.

A stationary equilibrium in our economy consists of a constant wage rate w, sequences 
{ct , nt }∞t=0, {kt+1, at+1}∞t=0 which constitute a solution to the (IF with entrepreneurship) problem 
under wt = w for any t ≥ 0, and a distribution v(at+1; w), such that the following conditions 
hold:
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(i) labour markets clear: Ent = Eet ;19

(ii) v is a stationary distribution of at+1, given w.

We can now illustrate how such an equilibrium can be constructed, inducing a stationary 
distribution of wealth for a given wage w, v(at+1; w), with the same properties, notably the 
fat tail, as the one characterized in the previous section under appropriate assumptions for the 
stochastic processes {At+1}∞t=0 and {et }∞t=0. The first order conditions of each agent firm’s labor 
choice requires

∂F

∂n
(kt+1, nt+1,At+1) = wt+1;

which, under constant returns to scale implies,

∂F

∂n

(
1,

nt+1

kt+1
,At+1

)
= wt+1. (8)

Equation (8) can be solved to give

nt+1

kt+1
= g(wt+1,At+1); or nt+1 = g(wt+1,At+1)kt+1.

The market clearing condition (i) is then satisfied by a constant wage rate w such that

Ent+1 = E (g (w,At+1))Ekt+1,

as long as the process {At+1}∞t=0 is i.i.d. over time and in the cross-section and Ekt+1 is constant 
over time.

In the stationary equilibrium nt+1
kt+1

is determined by At+1 and w. From the constant returns to 
scale assumption, once again, we can write profits πt+1 as:

πt+1 = Rt+1kt+1

where {Rt+1}∞t=0, in the stationary equilibrium, is induced by the process {At+1}∞t=0 and w as 
follows:

Rt+1 = max

{
∂F

∂k

(
1,

nt+1

kt+1
,At+1

)
+ 1 − δ, 1

}
.

Let yt+1 = wet+1. Then the dynamic equation for wealth can be written as

at+1 = Rt+1(at − ct ) + yt+1.

We conclude that the solution to (IF with entrepreneurship) induces a stochastic process 
{at+1}∞t=0 which has the same properties as the one induced by the (IF) problem as long as 
i) Ekt+1 is constant and ii) the process {Rt+1}∞t=0 induced by {At+1}∞t=0 and the process {yt }∞t=0
induced by {et }∞t=0 satisfy Assumption 1.20 In particular, in this case, {at+1}∞t=0 has a unique 

19 The usual abuse of the Law of Large Numbers guarantees that the market clearing condition as stated holds in the 
cross-section of agents.
20 General conditions on {At+1}∞

t=0 that induce a process {Rt+1}∞
t=0 that satisfies Assumption 1 are hard to charac-

terize. Simulations might have to be used to have a better sense of the range of parameters which induces a stationary 
distribution of wealth with a fat right tail; see Benhabib et al. (2014).
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stationary distribution. The stationary distribution of {at+1}∞t=0 induces in turn a stationary dis-
tribution of kt+1. The aggregate capital Ekt+1 is the first moment of the stationary distribution of 
kt+1 and is therefore constant. As a consequence, the labor market indeed clear with a constant 
wage w as postulated. It is verified then that at a stationary general equilibrium, as long as ii) 
above is satisfied, the stochastic process {at+1}∞t=0 has the same properties as the one induced by 
the (IF) problem; it displays, in particular, a fat tail.

6. Market for loans

Our analysis of Bewley economies is constructed on the assumption that the agent’s borrowing 
is restricted as in the (IF) problem. More specifically, the agent at t can only invest in a risky asset 
with idiosyncratic return Rt+1 and no market for loans is active in the economy. In this section 
we show how to extend the analysis to relax this assumption.

Let bt+1 denote the agent’s holdings of the riskless asset at time t + 1, while kt+1 de-
notes his/her risky asset holdings. Let then at+1 denote the total wealth after earnings: at+1 =
Rf bt+1 + Rt+1kt+1 + yt+1, where Rf is the rate of return of the riskless asset and Rt+1 is the 
rate of return of the risky asset, as in Section 2.21 We maintain Assumption 1 and we impose a 
negative borrowing limit on bond holdings: bt+1 ≥ −L, where 0 ≤ L.22.

The (IF) problem, after allowing for an active market for loans to complement the risky asset, 
takes the following form:

E

∞∑
t=0

βt c
1−γ
t

1 − γ
(IF with loan market)

s.t. bt+1 + kt+1 = at − ct

at+1 = Rf bt+1 + Rt+1kt+1 + yt+1

kt+1 ≥ 0

bt+1 ≥ −L

a0 given.

We can now illustrate how the solution of the (IF with loan market) problem induces a stochas-
tic process {at+1}∞t=0 which has the same properties as the one induced by the (IF) problem. 
Indeed, the key to this result is that, as at becomes large, the solution to the (IF with loan market)
problem is characterized by asymptotically constant portfolio shares and as a consequence by an 
asymptotically linear consumption function, as in the (IF) problem (Proposition 5).23

More specifically, the policy functions of the (IF with loan market) problem can be written as

ct = c (at ) , kt+1 = k (at ) , bt+1 = b (at ) .

21 We assume Rf is constant and exogenous; though a constant Rf can be endogenously obtained at the stationary 
distribution by imposing market clearing in the market for loans.
22 To guarantee that the constraints are binding and induce a reflecting barrier, it is enough for instance to assume that 
L <

y
¯Rf −1 .

23 Achdou et al. (2015) have an elegant analysis of a related problem in continuous time, using viscosity solutions. 
Their analysis is formulated in general equilibrium with an endogenously determined risk free rate clearing the market 
for loans.
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Most importantly, they satisfy

lim
a→∞

k(a)

a
= ω(1 − φ̃), lim

a→∞
b(a)

a
= (1 − ω)(1 − φ̃)

and hence

lim
a→∞

c(a)

a
= φ̃

for some 0 < φ̃, ω < 1.
In fact we can easily solve for φ̃ and ω. For large at , the first order conditions for the problem 

are

c
−γ
t = βRf Ec

−γ

t+1 (9)

and

Ec
−γ

t+1

(
Rf − Rt+1

) = 0. (10)

Equation (10) implies

E
[
Rf (1 − ω) + Rt+1ω

]−γ (
Rf − Rt+1

) = 0, (11)

which determines ω; and in turn equation (9) implies(
ct

at

)−γ

= βRf E

(
at+1

at

)−γ (
ct+1

at+1

)−γ

,

and thus

φ̃ = 1 −
(
βRf E

[
Rf (1 − ω) + Rt+1ω

]−γ
) 1

γ
. (12)

Note that the equation for φ̃ is analogous to equation (3) for φ, the asymptotic slope of the 
consumption function in the (IF) problem we obtained in Proposition 5:

φ = 1 −
(
βE (Rt+1)

1−γ
) 1

γ
,

once the rate of return on the risky asset Rt+1 is substituted by the rate of return on the agent’s 
portfolio, Rf (1 − ω) + Rt+1ω.

Assuming the upper bound on labor earnings, ȳ, is large enough, we obtain a reflecting barrier 
at the lower bound of the wealth accumulation process

at+1 = Rf bt+1 + Rt+1kt+1 + yt+1,

as in the benchmark model with only the risky asset. It is straightforward now to proceed as in 
benchmark to construct a stationary wealth distributions with fat tails.24

24 An interesting result in this context is that an increase in the volatility of the risky asset can cause wealth inequality to 
decrease because agents respond by holding a smaller share of the risky asset in their portfolio, and in effect the volatility 
of the overall portfolio declines; see Benhabib and Zhu (2008).
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7. Conclusion

In this paper we construct an equilibrium model with idiosyncratic capital income risk in a 
Bewley economy and analytically demonstrate that the resulting wealth distribution has a fat 
right tail under well defined and natural conditions on the parameters and stochastic structure of 
the economy.

Appendix A

Proof of Theorem 2. A feasible policy c(a) is said to overtake another feasible policy ĉ(a) if 
starting from the same initial wealth a0, the policies c(a) and ĉ(a) yield stochastic consumption 
processes (ct ) and (ĉt ) that satisfy

E

[
T∑

t=0

βt
(
u(ct ) − u(ĉt )

)]
> 0 for all T > some T0.

Also, a feasible policy is said to be optimal if it overtakes all other feasible policies.
Proof: For an a0, the stochastic consumption process (ct ) is induced by the policy c(a). Let 

(ĉt ) be an alternative stochastic consumption process, starting from the same initial wealth a0. 
By the strict concavity of u(·), we have

E

[
T∑

t=0

βt
(
u(ct ) − u(ĉt )

)] ≥ E

[
T∑

t=0

βtu′(ct )(ct − ĉt )

]
.

From the budget constraint we have

at+1 = Rt+1(at − ct ) + yt+1

and

ât+1 = Rt+1(ât − ĉt ) + yt+1.

For a path of (Rt , yt ), we have

at+1 − ât+1

Rt+1
= at − ct − (ât − ĉt ) (13)

and

ct − ĉt = at − ât − at+1 − ât+1

Rt+1
.

Therefore we have

T∑
t=0

βtu′(ct )(ct − ĉt ) =
T∑

t=0

βtu′(ct )

(
at − ât − at+1 − ât+1

Rt+1

)
.

Using a0 = â0 and rearranging terms, we have
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T∑
t=0

βtu′(ct )(ct − ĉt )

= −
T∑

t=0

βt [u′(ct ) − βRt+1u
′(ct+1)]at+1 − ât+1

Rt+1
− βT u′(cT )

aT +1 − âT +1

RT +1
.

Using equation (13) we have

T∑
t=0

βtu′(ct )(ct − ĉt )

= −
T∑

t=0

βt [u′(ct ) − βRt+1u
′(ct+1)]{at − ct − (ât − ĉt )}

− βT u′(cT )[aT − cT − (âT − ĉT )]

≥ −
T∑

t=0

βt [u′(ct ) − βRt+1u
′(ct+1)]{at − ct − (ât − ĉt )} − βT u′(cT )aT .

Thus we have

E

[
T∑

t=0

βtu′(ct )(ct − ĉt )

]

≥ −E

(
T∑

t=0

βt [u′(ct ) − βERt+1u
′(ct+1)]{at − ct − (ât − ĉt )}

)
− EβT u′(cT )aT . (14)

By the Euler equation (1) we have u′(ct ) − βERt+1u
′(ct+1) ≥ 0. If ct < at , then u′(ct ) =

βERt+1u
′(ct+1). If ct = at , then at − ct − (ât − ĉt ) = −(ât − ĉt ) ≤ 0. Thus

−E

(
T∑

t=0

βt [u′(ct ) − βERt+1u
′(ct+1)]{at − ct − (ât − ĉt )}

)
≥ 0. (15)

Combining equations (14) and (15) we have

E

[
T∑

t=0

βtu′(ct )(ct − ĉt )

]
≥ −EβT u′(cT )aT .

By the transversality condition (2) we know that for large T ,

E

[
T∑

t=0

βt
(
u(ct ) − u(ĉt )

)] ≥ 0. �

Proof of Proposition 3. The Euler equation of this problem is

c
−γ
t = βERt+1c

−γ

t+1. (16)
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Guess ct = φat . From the Euler equation (16) we have

φ = 1 −
(
βER1−γ

) 1
γ

,

which is > 0 by Assumption 1.iii).
It is easy to verify the transversality condition,

lim
t→∞E

(
βtc

−γ
t at

)
= 0. �

In the finite (IF) problem, let Vt(a) be the optimal value function of an agent who has wealth 
a in period t . Thus we have

Vt(a) = max
c≤a

{u(c) + βEVt+1 (R(a − c) + y)} for t ≥ τ

and

VT (a) = max
c≤a

u(c).

We have then the Euler equation for this problem, for t > 1:

u′(ct (a)) ≥ βE[Ru′(ct+1(R(a − ct (a)) + y))] with equality if ct (a) < a.

Proof of Proposition 2. Continuity is a consequence of the Theorem of the Maximum and 
mathematical induction. The proof that ct,τ (a) and st,τ (a) are increasing can be easily adapted 
from the proof of Theorem 1.5 of Schechtman (1976); it makes use of the fact that ct,τ (a) > 0, a 
consequence of Inada conditions which hold for CRRA utility functions. �
Proof of Theorem 2. By Lemma 1 we know that c(a) satisfies the Euler equation. Now we 
verify that c(a) satisfies the transversality condition (2).

By Lemma 1 and Theorem 2 we have

ct ≥ φat .

Note that at ≥ y
¯

for t ≥ 1. We have

u′(ct )at ≤ φ−γ
(

y
¯

)1−γ

for t ≥ 1.

Thus

lim
t→∞Eβtu′(ct )at = 0. �

Proof of Proposition 3. By Lemma 1, c(a) is continuous. Thus s(a) is continuous since s(a) =
a − c(a).

Also, by Theorem 2, limt,τ→−∞ st,τ (a) = s(a), since limt,τ→−∞ ct,τ (a) = c(a), st,τ (a) =
a − ct,τ (a), and s(a) = a − c(a). The conclusion that c(a) and s(a) are increasing in a follows 
from Proposition 2.

For ã, â > 0, without loss of generality, we assume that ã < â. We have c(ã) ≤ c(â) and 
s(ã) ≤ s(â). Also c(ã) + s(ã) = ã and c(â) + s(â) = â. Thus

c(â) − c(ã) + s(â) − s(ã) = â − ã.
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Thus we have

0 ≤ c(â) − c(ã) ≤ â − ã

and

0 ≤ s(â) − s(ã) ≤ â − ã.

Thus

|c(â) − c(ã)| ≤ |â − ã|
and

|s(â) − s(ã)| ≤ |â − ã|.
Therefore, c(a) and s(a) are Lipschitz continuous. �
Proof of Proposition 5. The proof involves several steps, producing a characterization of c(a)

a
.

Lemma 2. ∃ζ > y
¯

, such that s(a) = 0, ∀a ∈ (0, ζ ].

Proof. Suppose that s(a) > 0 for a > y
¯
. Pick a0 > y

¯
. For any finite t ≥ 0, we have at > y

¯
and 

u′(ct ) = βERt+1u
′(ct+1). Thus

u′(c0) = βtER1R2 · · ·Rt−1Rtu
′(ct ). (17)

By Lemma 1 and Theorem 2 we have

ct ≥ φat > φy
¯
.

Thus equation (17) implies that

u′(c0) ≤
(
φy

¯

)−γ

(βER)t . (18)

Thus the right hand side of equation (18) approaches 0 as t goes to infinity. A contradiction. Thus 
s(ζ ) = 0 for some ζ > y

¯
. By the monotonicity of s(a), we know that s(a) = 0, ∀a ∈ (0, ζ ]. �

We can now show the following:

Lemma 3. c(a)
a

is decreasing in a.

Proof. By Lemma 2 we know that c(y
¯
) = y

¯
. For ∀a > y

¯
, c(a)

a
≤ 1 = c(y

¯
)

y
¯

. Note that −c(a) is a 

convex function of a, since c(a) is a concave function of a. For â > ã > y
¯
, we have25

c(â) − c(y
¯
)

â − y
¯

≤ c(ã) − c(y
¯
)

ã − y
¯

.

This implies that

25 See Lemma 16 on p. 113 of Royden (1988).
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c(â)ã ≤ c(ã)â − [
â − ã − (c(â) − c(ã))

]
y
¯
. (19)

From the Proof of Proposition 3 we know that

c(â) − c(ã) ≤ â − ã. (20)

Combining inequalities (19) and (20) we have

c(â)ã ≤ c(ã)â,

i.e.

c(â)

â
≤ c(ã)

ã
. �

By Lemma 1, Thereom 2 and Proposition 1 we know that c(a)
a

≥ φ. Thus we have

lim
a→∞

c(a)

a
exists.

Let

λ = lim
a→∞

c(a)

a
. (21)

Note that λ ≤ 1 since c(a) ≤ a. This furthermore implies that s(a)
a

is increasing and converges to 
a limit as a goes to infinity.

The Euler equation of this problem is

c
−γ
t ≥ βERt+1c

−γ

t+1 with equality if ct < at . (22)

Lemma 4. λ ∈ [φ, 1).

Proof. Suppose that λ = 1. Thus

lim inf
at→∞

c(at )

at

= lim
at→∞

c(at )

at

= 1.

From the Euler equation (22) we have

c
−γ
t ≥ βERt+1c

−γ

t+1 ≥ βERt+1a
−γ

t+1

since ct+1 ≤ at+1 and γ ≥ 1.
Thus(

c(at )

at

)−γ

≥ βERt+1

(
Rt+1

(
1 − c(at )

at

)
+ yt+1

at

)−γ

.

By Fatou’s lemma we have

lim inf
at→∞ERt+1

(
Rt+1

(
1 − c(at )

at

)
+ yt+1

at

)−γ

≥ E lim inf
at→∞

[
Rt+1

(
Rt+1

(
1 − c(at )

at

)
+ yt+1

at

)−γ
]

.
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Thus

1 = lim
at→∞

(
c(at )

at

)−γ

≥ β lim
at→∞ERt+1

(
Rt+1

(
1 − c(at )

at

)
+ yt+1

at

)−γ

= β lim inf
at→∞ERt+1

(
Rt+1

(
1 − c(at )

at

)
+ yt+1

at

)−γ

≥ βE lim inf
at→∞

[
Rt+1

(
Rt+1

(
1 − c(at )

at

)
+ yt+1

at

)−γ
]

= βE lim
at→∞

[
Rt+1

(
Rt+1

(
1 − c(at )

at

)
+ yt+1

at

)−γ
]

= ∞.

A contradiction. �
From Lemma 4 we know that ct < at when at is large enough. Thus the equality of the Euler 

equation holds

c
−γ
t = βERt+1c

−γ

t+1.

Thus(
ct

at

)−γ

= βERt+1

(
ct+1

at

)−γ

. (23)

Taking limits on both sides of equation (23) we have

lim
at→∞

(
ct

at

)−γ

= β lim
at→∞ERt+1

(
ct+1

at

)−γ

.

Thus

λ−γ = β lim
at→∞ERt+1

(
ct+1

at

)−γ

. (24)

We turn to the computation of limat→∞ ERt+1

(
ct+1
at

)−γ

.

In order to compute limat→∞ ERt+1

(
ct+1
at

)−γ

, we first show a lemma.

Lemma 5. For ∀H > 0, ∃J > 0, such that at+1 > H for at > J . Here J does not depend on 
realizations of Rt+1 and yt+1.

Proof. Note that

at+1

at

= Rt+1(at − ct ) + yt+1

at

≥ Rt+1

(
1 − ct

at

)
.
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From equation (21) we know that for some ε > 0, ∃J1 > 0, such that

ct

at

< λ + ε

for at > J1. Thus

at+1

at

≥ Rt+1

(
1 − ct

at

)
≥ Rt+1(1 − λ − ε). (25)

And
at+1

at

≥ Rt+1(1 − λ − ε) ≥ R
¯
(1 − λ − ε).

We pick J > J1 such that R
¯
(1 − λ − ε) ≥ H

J
. Thus for at > J , we have

at+1

at

≥ H

J
.

This implies that

at+1 ≥ H

J
at > H. �

From equation (21) we know that for some η > 0, ∃H > 0, such that

ct+1

at+1
> λ − η (26)

for at+1 > H .
From Lemma 5 and equations (25) and (26) we have

Rt+1

(
ct+1

at

)−γ

= Rt+1

(
ct+1

at+1

at+1

at

)−γ

≤ (λ − η)−γ (1 − λ − ε)−γ R
1−γ

t+1

for at > J . And

(λ − η)−γ (1 − λ − ε)−γ ER
1−γ

t+1 < ∞
since γ ≥ 1. Thus when at is large enough, (λ − η)−γ (1 −λ −ε)−γ R

1−γ

t+1 is a dominant function 

of Rt+1

(
ct+1
at

)−γ

.

Note that

lim
at→∞

ct+1

at+1
= lim

at→∞
c(at+1)

at+1
= λ a.s.

by Lemma 5 and equation (21). And

lim
at→∞

at+1

at

= lim
at→∞

(
Rt+1(at − ct ) + yt+1

at

)
= Rt+1(1 − λ) a.s.

since yt+1 ∈ [y
¯
, ȳ]. Thus

lim
at→∞

ct+1

at

= lim
at→∞

ct+1

at+1

at+1

at

= λ(1 − λ)Rt+1 a.s.
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Thus by the Dominated Convergence Theorem, we have

lim
at→∞ERt+1

(
ct+1

at

)−γ

= ERt+1

(
lim

at→∞
ct+1

at

)−γ

= λ−γ (1 − λ)−γ ER
1−γ

t+1 . (27)

Combining equations (24) and (27) we have

λ−γ = βλ−γ (1 − λ)−γ ER
1−γ

t+1 . (28)

By Lemma 4 we know that λ ≥ φ > 0. Thus we find λ from equation (28)

λ = 1 −
(
βER1−γ

) 1
γ

.

Thus λ = φ. �
Proof of Theorem 3. The proof requires two steps.

Lemma 6. The wealth accumulation process {at+1}∞t=0 is ψ -irreducible.

Proof. First we show that the process {at+1}∞t=0 is ϕ-irreducible. We construct a measure ϕ on 
[y
¯
, ∞) such that

ϕ(A) =
∫
A

f (y)dy,

where f (y) is the density of labor earnings yt . Note that the borrowing constraint binds in finite 
time with a positive probability for ∀a0 ∈ [y

¯
, ∞). Suppose not. For any finite t ≥ 0, we have 

at > y
¯

and u′(ct ) = βERt+1u
′(ct+1). Following the same procedure as in the proof of Lemma 2, 

we obtain a contradiction. If the borrowing constraint binds at period t , then at+1 = yt+1. Thus 
any set A such that 

∫
A

f (y)dy > 0 can be reached in finite time with a positive probability. The 
process {at+1}∞t=0 is ϕ-irreducible.

By Proposition 4.2.2 in Meyn and Tweedie (2009), there exists a probability measure ψ on 
[y
¯
, ∞) such that the process {at+1}∞t=0 is ψ -irreducible, since it is ϕ-irreducible. �
To show that there exists a unique stationary wealth distribution, we have to show that the 

process {at+1}∞t=0 is ergodic. Actually, we can show that it is geometrically ergodic.

Lemma 7. The process {at+1}∞t=0 is geometrically ergodic.

Proof. To show that the process {at+1}∞t=0 is geometrically ergodic, we use part (iii) of Theo-
rem 15.0.1 of Meyn and Tweedie (2009). We need to verify that

a the process {at+1}∞t=0 is ψ -irreducible;
b the process {at+1}∞t=0 is aperiodic;26 and

26 For the definition of aperiodic, see p. 114 of Meyn and Tweedie (2009).
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c there exists a petite set C,27 constants b < ∞, ρ > 0 and a function V ≥ 1 finite at some 
point in [y

¯
, ∞) satisfying

EtV (at+1) − V (at ) ≤ −ρV (at ) + bIC(at ), ∀at ∈ [y
¯
,∞).

By Lemma 6, the process {at+1}∞t=0 is ψ -irreducible.
For a ϕ-irreducible Markov process, when there exists a v1-small set A with v1(A) > 0,28

then the stochastic process is called strongly aperiodic; see Meyn and Tweedie (2009, p. 114). 
We construct a measure v1 on [y

¯
, ∞) such that

v1(A) =
∫
A

f (y)dy.

By Lemma 2, we know that s(a) = 0, ∀a ∈ [y
¯
, ζ ]. Thus [y

¯
, ζ ] is v1-small and v1([y

¯
, ζ ]) =∫ ζ

y
¯

f (y)dy > 0. The process {at+1}∞t=0 is strongly aperiodic.

We now show that an interval [y
¯
, B] is a petite set for ∀B > y

¯
. To show this, we first show 

that R
¯
s(a) + y

¯
< a for a ∈ (y

¯
, ∞). For s(a) = 0, this is obviously true. For s(a) > 0, suppose 

that R
¯
s(a) + y

¯
≥ a, we have

u′(c(a)) = βERtu
′(c(Rt s(a) + y)) ≤ βERtu

′(c(a)).

We obtain a contradiction since Assumption 1.iv) implies that βERt < 1. Also by Lemma 2, 
there exists an interval [y

¯
, ζ ], such that s(a) = 0, ∀a ∈ [y

¯
, ζ ]. For an interval [y

¯
, B], ∀a0 ∈ [y

¯
, B], 

there exists a common t such that the borrowing constraint binds at period t with a positive prob-
ability. Then for any set A ⊂ [y

¯
, ȳ], Pr(at+1 ∈ A|s(at ) = 0) = ∫

A
f (y)dy. Note that a t -step 

probability transition kernel is the probability transition kernel of a specific sampled chain. 
Thus we construct a measure va on [y

¯
, ∞) such that va has a positive measure on [y

¯
, ȳ] and 

va((ȳ, ∞)) = 0. The t -step probability transition kernel of a process starting from ∀a0 ∈ [y
¯
, B]

is greater than the measure va . An interval [y
¯
, B] is a petite set for ∀B > y

¯
.

We pick a function V (a) = a + 1, ∀a ∈ [y
¯
, ∞). Thus V (a) > 1 for a ∈ [y

¯
, ∞). Pick 0 < q <

1 − μERt+1. Let ρ = 1 − μERt+1 − q > 0 and b = 1 − μERt+1 + Eyt+1. Pick B > y
¯
, such 

that B + 1 ≥ b
q

. Let C = [y
¯
, B]. Thus C is a petite set. Therefore, for ∀at ∈ [y

¯
, ∞), we have

EtV (at+1) − V (at ) = E (at+1) − at

≤ − (1 − μERt+1)V (at ) + 1 − μERt+1 + Eyt+1

≤ −ρV (at ) + bIC(at )

where IC(·) is the indicator function of the set C.
By Theorem 15.0.1 of Meyn and Tweedie (2009) the process {at+1}∞t=0 is geometrically er-

godic. �
This concludes the proof of Theorem 3. �

Proof of Proposition 6. From the proof of Lemma 6 we know that the borrowing constraint 
binds in finite time with a positive probability for ∀a0 ∈ [y

¯
, ∞). If the borrowing constraint 

27 For the definition of petite sets, see p. 117 of Meyn and Tweedie (2009).
28 For the definition of small sets, see p. 102 of Meyn and Tweedie (2009).
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binds at period t , then at+1 = yt+1. By Assumption 1.ii), R̄ is large enough. Thus to show that 
the support of the stationary distribution is unbounded, it is sufficient to show that s(ȳ) > 0. 
Suppose that s(ȳ) = 0. Then s(a) = 0 for a ∈ [y

¯
, ȳ]. Thus by the Euler equation we have

(ȳ)−γ ≥ βE
[
Rt (yt )

−γ
]
.

This is impossible under Assumption 1.i). Thus s(ȳ) > 0 and the support of the stationary distri-
bution is unbounded. �
References

Achdou, Y., Lasry, J-M, Lions, P.-L., B. Moll, 2015. Heterogeneous agent models in continuous time. Mimeo, Princeton 
University. Available at: http://www.princeton.edu/~moll/HACT.pdf.

Aiyagari, S.R., 1994. Uninsured idiosyncratic risk and aggregate saving. Q. J. Econ. 109 (3), 659–684.
Aiyagari, S.R., 1995. Optimal capital income taxation with incomplete markets and borrowing constraints. J. Polit. 

Econ. 103 (6), 1158–1175.
Angeletos, G., 2007. Uninsured idiosyncratic investment risk and aggregate saving. Rev. Econ. Dyn. 10, 1–30.
Angeletos, G., Calvet, L.E., 2005. Incomplete-market dynamics in a neoclassical production economy. J. Math. Econ. 41, 

407–438.
Atkinson, T., Saez, E., Piketty, T., 2011. Top incomes in the long run of history. J. Econ. Lit. 49 (1), 3–71.
Attanasio, O.P., Davis, S.J., 1996. Relative wage movements and the distribution of consumption. J. Polit. Econ. 104 (6), 

1227–1262.
Benhabib, J., Bisin, A., 2006. The distribution of wealth and redistributive policies. Mimeo, New York University.
Benhabib, J., Zhu, S., 2008. Age, luck and inheritance. NBER W.P. 14128.
Benhabib, J., Bisin, A., Zhu, S., 2011. The distribution of wealth and fiscal policy in economies with finitely lived agents. 

Econometrica 79 (1), 122–157.
Benhabib, J., Bisin, A., Zhu, S., 2013. The distribution of wealth in the Blanchard–Yaari model. Macroecon. Dyn. 

http://dx.doi.org/10.1017/S1365100514000066. Forthcoming, special issue on Complexity in Economic Systems.
Benhabib, J., Bisin, A., Zhu, S., 2014. The wealth distribution in Bewley models with investment risk. NBER W.P. 20157.
Bewley, T., 1977. The permanent income hypothesis: a theoretical formulation. J. Econ. Theory 16 (2), 252–292.
Bewley, T., 1983. A difficulty with the optimum quantity of money. Econometrica 51 (5), 1485–1504.
Cagetti, M., De Nardi, M., 2006. Entrepreneurship, frictions, and wealth. J. Polit. Econ. 114 (5), 835–870.
Cagetti, M., De Nardi, M., 2008. Wealth inequality: data and models. Macroecon. Dyn. 12 (52), 285–313.
Carroll, C.D., 1997. Buffer-stock saving and the life cycle/permanent income hypothesis. Q. J. Econ. 112, 1–56.
Carroll, C.D., Kimball, M.S., 2005. Liquidity constraints and precautionary saving. Mimeo, Johns Hopkins University.
Carroll, C.D., Slacalek, J., Tokuoka, K., 2014. The distribution of wealth and the marginal propensity to costume. Mimeo, 

Johns Hopkins University.
Castaneda, A., Diaz-Gimenez, J., Rios-Rull, J.V., 2003. Accounting for the US earnings and wealth inequality. J. Polit. 

Econ. 111 (4), 818–857.
Chamberlain, G., Wilson, C.A., 2000. Optimal intertemporal consumption under uncertainty. Rev. Econ. Dyn. 3 (3), 

365–395.
Chetty, R., Hendren, N., Kline, P., Saez, E., 2014. Where is the land of opportunity? The geography of intergenerational 

mobility in the United States. Mimeo, University of California, Berkeley. Available at: http://obs.rc.fas.harvard.edu/
chetty/mobility_geo.pdf.

Clementi, F., Gallegati, M., 2005. Power law tails in the Italian personal income distribution. Physica A 350, 427–438.
Collamore, J.F., 2009. Random recurrence equations and ruin in a Markov-dependent stochastic economic environment. 

Ann. Appl. Probab. 19 (4), 1404–1458.
Dagsvik, J.K., Vatne, B.H., 1999. Is the distribution of income compatible with a stable distribution? Discussion Pa-

per 246. Research Department, Statistics Norway.
Fisher, J., Johnson, D., 2006. Consumption mobility in the United States: Evidence from two panel data sets. B.E. J. 

Econ. Anal. Policy 6 (1), 16.
Gabaix, X., Lasry, M., Lions, P.-L., Moll, B., 2015. The dynamics of inequality. Mimeo, NYU.
Guvenen, F., 2007. Learning your earning: are labor income shocks really very persistent? Am. Econ. Rev. 97 (3), 

687–712.
Hansen, G.D., Imrohoroglu, A., 1992. The role of unemployment insurance in an economy with liquidity constraints and 

moral hazard. J. Polit. Econ. 100 (1), 118–142.

http://www.princeton.edu/~moll/HACT.pdf
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib32s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib33s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib33s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib35s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib36s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib36s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib34s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib37s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib37s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3130s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3130s1
http://dx.doi.org/10.1017/S1365100514000066
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3133s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3134s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3135s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3136s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3137s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3230s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3230s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3231s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3231s1
http://obs.rc.fas.harvard.edu/chetty/mobility_geo.pdf
http://obs.rc.fas.harvard.edu/chetty/mobility_geo.pdf
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3233s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3234s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3234s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3235s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3235s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3236s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3236s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3238s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3238s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3239s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3239s1


514 J. Benhabib et al. / Journal of Economic Theory 159 (2015) 489–515
Heathcote, J., 2005. Fiscal policy with heterogeneous agents and incomplete markets. Rev. Econ. Stud. 72 (1), 161–188.
Heathcote, J., 2009. Discussion of “Heterogeneous life-cycle profiles, income risk and consumption inequality” by Gior-

gio Primiceri and Thijs van Rens. J. Monet. Econ. 56, 40–42.
Heathcote, J., Storesletten, K., Violante, G.L., 2008a. Insurance and opportunities: a welfare analysis of labor market 

risk. J. Monet. Econ. 55 (3), 501–525.
Heathcote, J., Storesletten, K., Violante, G.L., 2008b. The macroeconomic implications of rising wage inequality in the 

United States. Mimeo, New York University.
Huggett, M., 1993. The risk-free rate in heterogeneous-agent incomplete-insurance economies. J. Econ. Dyn. Control 175 

(6), 953–969.
Imrohoroglu, A., 1992. The welfare cost of inflation under imperfect insurance. J. Econ. Dyn. Control 16 (1), 79–91.
Jappelli, T., Pistaferri, L., 2006. Intertemporal choice and consumption mobility. J. Eur. Econ. Assoc. 4 (1), 75–115.
Jones, C.I., Kim, J., 2014. A Schumpeterian model of top income inequality. Mimeo, Stanford University. Available at: 

http://web.stanford.edu/~chadj/inequality.pdf.
Kamihigashi, T., Stachurski, J., 2014. Stochastic stability in monotone economies. Theor. Econ. 9 (2), 383–407.
Kesten, H., 1973. Random difference equations and renewal theory for products of random matrices. Acta Math. 131, 

207–248.
Klass, O.S., Biham, O., Levy, M., Malcai, O., Solomon, S., 2007. The Forbes 400, the Pareto power-law and efficient 

markets. Eur. Phys. J. B 55, 143–147.
Kopczuk, W., Saez, E., Top, 2014. Wealth shares in the United States, 1916–2000: Evidence from estate tax returns. Natl. 

Tax J. 57 (2), 445–487. Long NBER Working Paper No. 10399, March 2004.
Krueger, D., Perri, F., 2003. On the welfare consequences of the increase in inequality in the United States. In: Gertler, 

M., Rogoff, K. (Eds.), NBER Macroeconomics Annual 2003. MIT Press, Cambridge, MA, pp. 83–121.
Krusell, P., Smith, A.A., 1998. Income and wealth heterogeneity in the macroeconomy. J. Polit. Econ. 106 (5), 867–896.
Krusell, P., Smith, A.A., 2006. Quantitative macroeconomic models with heterogeneous agents. In: Blundell, R., Newey, 

W., Persson, T. (Eds.), Advances in Economics and Econometrics: Theory and Applications. Cambridge University 
Press, Cambridge.

Levhari, D., Srinivasan, T.N., 1969. Optimal savings under uncertainty. Rev. Econ. Stud. 36, 153–163.
Ljungqvist, L., Sargent, T.J., 2004. Recursive Macroeconomic Theory. MIT Press, Cambridge, MA.
Mankiw, N.G., 1986. The equity premium and the concentration of aggregate shocks. J. Financ. Econ. 17 (1), 211–219.
Meyn, S.P., Tweedie, R.L., 2009. Markov Chains and Stochastic Stability. Cambridge University Press.
Mirek, M., 2011. Heavy tail phenomenon and convergence to stable laws for iterated Lipschitz maps. Probab. Theory 

Relat. Fields 151, 705–734.
Nirei, M., Aoki, S., 2015. Pareto distribution of income in neoclassical growth models. Mimeo, Hitotsubashi University. 

Available at: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2436858.
Nirei, M., Souma, W., 2004. Two factor model of income distribution dynamics. Mimeo, Utah State University.
Panousi, V., 2008. Capital taxation with entrepreneurial risk. Mimeo, MIT.
Piketty, T., Saez, E., 2003. Income inequality in the United States, 1913–1998. Q. J. Econ. 118, 1–39. http://dx.doi.org/

10.1162/00335530360535135.
Piketty, T., Zucman, G., 2014. Capital is back: wealth–income ratios in rich countries, 1700–2010. Q. J. Econ. 129, 

1155–1210.
Primiceri, G., van Rens, T., 2009. Heterogeneous life-cycle profiles, income risk and consumption inequality. J. Monet. 

Econ. 56, 20–39.
Quadrini, V., 1999. The importance of entrepreneurship for wealth concentration and mobility. Rev. Income Wealth 45, 

1–19. http://dx.doi.org/10.1111/j.1475-4991.1999.tb00309.x.
Quadrini, V., 2000. Entrepreneurship, savings and social mobility. Rev. Econ. Dyn. 3, 1–40. http://dx.doi.org/10.1006/

redy.1999.0077.
Rabault, G., 2002. When do borrowing constraints bind? Some new results on the income fluctuation problem. J. Econ. 

Dyn. Control 26, 217–245.
Rios-Rull, J.V., 1995. Models with heterogeneous agents. In: Cooley, T.F. (Ed.), Frontiers of Business Cycle Research. 

Princeton University Press, Princeton, NJ.
Roitershtein, A., 2007. One-dimensional linear recursions with Markov-dependent coefficients. Ann. Appl. Probab. 17, 

572–608. http://dx.doi.org/10.1214/105051606000000844. mr=2308336.
Royden, H.L., 1988. Real Analysis, third ed. Prentice-Hall, Inc., Upper Saddle River, New Jersey.
Saez, E., Zucman, G., 2014. The distribution of US wealth, capital income and returns since 1913. University of Califor-

nia, Berkeley. Unpublished slides available at: http://gabriel-zucman.eu/files/SaezZucman2014Slides.pdf.
Saporta, B., 2004. Etude de la Solution Stationnaire de l’Equation Yn+1 = anYn+bn, a Coefficients Aleatoires. Thesis. 

Université de Rennes I. Available at http://tel.archivesouvertes.fr/docs/00/04/74/12/PDF/tel-00007666.pdf.

http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3330s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3331s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3331s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3334s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3334s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3336s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3336s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3338s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3432s1
http://web.stanford.edu/~chadj/inequality.pdf
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3430s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3433s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3433s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3434s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3434s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3435s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3435s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3431s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3431s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3436s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3437s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3437s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3437s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3438s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3439s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3530s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3531s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3532s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3532s1
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2436858
http://dx.doi.org/10.1162/00335530360535135
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3535s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3535s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib505232303039s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib505232303039s1
http://dx.doi.org/10.1111/j.1475-4991.1999.tb00309.x
http://dx.doi.org/10.1006/redy.1999.0077
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3538s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3538s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3539s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3539s1
http://dx.doi.org/10.1214/105051606000000844
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3630s1
http://gabriel-zucman.eu/files/SaezZucman2014Slides.pdf
http://tel.archivesouvertes.fr/docs/00/04/74/12/PDF/tel-00007666.pdf
http://dx.doi.org/10.1162/00335530360535135
http://dx.doi.org/10.1006/redy.1999.0077


J. Benhabib et al. / Journal of Economic Theory 159 (2015) 489–515 515
Saporta, B., 2005. Tail of the stationary solution of the stochastic equation Yn+1 = anYn + γn with Markovian coeffi-
cients. Stoch. Process. Appl. 115 (12), 1954–1978.

Schechtman, J., 1976. An income fluctuation problem. J. Econ. Theory 12 (2), 218–241.
Schechtman, J., Escudero, V.L.S., 1977. Some results on an income fluctuation problem. J. Econ. Theory 16 (2), 151–166.
Soulier, P., 2009. Some applications of regular variation in probability and statistics. Escuela Venezolana de Matemáticas. 

http://evm.ivic.gob.ve/LibroSoulier.pdf.
Storesletten, K., Telmer, C.L., Yaron, A., 2001. The welfare cost of business cycles revisited: finite lives and cyclical 

variation in idiosyncratic risk. Eur. Econ. Rev. 45 (7), 1311–1339.
Storesletten, K., Telmer, C.L., Yaron, A., 2004. Consumption and risk sharing over the life cycle. J. Monet. Econ. 51 (3), 

609–633.
Wold, H.O.A., Whittle, P., 1957. A model explaining the Pareto distribution of wealth. Econometrica 25, 591–595.
Wolff, E., 1987. Estimates of household wealth inequality in the U.S., 1962–1983. Rev. Income Wealth 33, 231–256.
Wolff, E., 2004. Changes in household wealth in the 1980s and 1990s in the U.S. Mimeo, New York University.

http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3632s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3632s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3633s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3634s1
http://evm.ivic.gob.ve/LibroSoulier.pdf
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3635s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3635s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3636s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3636s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3638s1
http://refhub.elsevier.com/S0022-0531(15)00136-2/bib3639s1

	The wealth distribution in Bewley economies with capital income risk
	1 Introduction
	2 The economy
	2.1 Outline

	3 The income ﬂuctuation problem with idiosyncratic capital income risk
	3.1 The (IF) problem with no earnings
	3.2 The ﬁnite (IF) problem
	3.3 Characterization of c(a) 

	4 The stationary distribution
	5 Investment risk and entrepreneurship
	6 Market for loans
	7 Conclusion
	References


