
Dynamic Linear Economies with Social Interactions∗

Onur Özgür†
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Abstract

Social interactions are arguably at the root of several important socio-economic phenom-

ena, from smoking and other risky behavioural patterns in teens to peer effects in school

performance. We study social interactions in linear dynamic economies. For these economies,

we are able to (i) obtain several desirable theoretical properties, such as existence, unique-

ness, ergodicity; to (ii) develop simple recursive methods to rapidly compute equilibria; and to

(iii) characterize several general properties of dynamic equilibria. Furthermore, we show that

dynamic forward looking behaviour at equilibrium plays an instrumental role in allowing us

to (iv) prove a positive identification result both in stationary and non-stationary economies.

Finally, we study and sign the bias associated to disregarding dynamic equilibrium, e.g., pos-

tulating a sequence of static (myopic) one-period economies, a common practice in empirical

work.
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1 Introduction

Agents interact in markets as well as socially, in the various socioeconomic groups they belong

to. Models of social interactions are designed to capture in a simple abstract way socioeconomic

environments in which markets do not mediate all of agents’ choices. In such environments,

agents’ choices are determined by their preferences as well as by their interactions with others,

by their positions in a predetermined network of relationships, e.g., a family, a peer group,

or more generally any socioeconomic group. Social interactions are arguably at the root of

several important phenomena. Peer effects, in particular, have been indicated as one of the

main empirical determinants of risky behaviour in adolescents. Relatedly, peer effects have been

studied in connection with education outcomes, obesity, friendship and sex, as well as in labor

market referrals, neighborhood and employment segregation, criminal activity, and several other

socioeconomic phenomena.1

The large majority of the existing models of social interactions are static; or, when dynamic

models of social interactions are studied, it is typically assumed that agents act myopically.

The theoretical and empirical study of dynamic economies with social interactions has in fact

been hindered by several obstacles. Theoretically, the analysis of equilibria induces generally

intractable mathematical problems: equilibria are represented formally by a fixed point in con-

figuration of actions, typically an infinite dimensional object; and embedding equilibria in a full

dynamic economy adds a second infinite dimensional element to the analysis. Computationally,

these economies are also generally plagued by a curse of dimensionality associated with their large

state space. Finally, in applications and empirical work, social interactions are typically hardly

identified, even with population data.

In this paper, however, we study dynamic economies with social interactions, showing how

some of these obstacles can be overcome. We are motivated by the fact that, in most applications

of interest, social interactions are affected or constrained by relevant state variables. Indeed,

peer effects act differently on individuals in different (non freely-reversible) states: belonging to

a social group whose members are actively engaging in criminal activities affect agents with and

without previous criminal experience differently; social links with female peers with an active job

market occupation has a different effect on young women’s labor market entry, exit, and career

path decisions depending on their mothers’ employment history; and so on. Furthermore, several

forms of risky behaviour among adolescents induced by social interactions involve substance

abuse and hence (the fundamentally dynamic) issues of addiction and habits. Indeed, dynamic

equilibrium considerations have fundamental effects on the properties of economies with social

interactions. In a dynamic equilibrium of a finite-horizon economy, for instance, agents whose

choice is affected by the choices of their peers will rationally anticipate the expected length of

1See Brock and Durlauf (2001b), Glaeser and Scheinkman (2001), Glaeser and Scheinkman (2003), Moody

(2001) for surveys; see also the Handbook of Social Economics, Benhabib, Bisin, and Jackson (2011).
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these interactions, which in turn will affect their propensity for conformity.

We focus our attention on linear economies, in which each agent’s preferences display prefer-

ences for conformity, that is, preferences which incorporate the desire to conform to the choices

of agents in a reference group. More specifically, in our economy, each agent’s instantaneous

preferences depend on random preference shocks and on the current choices of agents in his social

reference group, as a direct externality. We focus on symmetric structures of social interactions

in reference groups, with agents disposed on the line or on the circle. Each agent’s instantaneous

preferences also depend on the agent’s own previous choice, representing the inherent costs of

dynamic behavioural changes due, e.g., to irreversibility, habits, or both. We do not impose

any substantial restriction ex-ante on the random preference shocks hitting agents over time.

In particular, specific forms of correlation across agents and time could capture selection in the

formation of the social reference groups agents interact within.

Agents’ choices at equilibrium are determined by linear policy (best reply) functions and

depend on the previous choices and current preference shocks of all the other agents in the

economy, as long as they are observable. In the special case of infinite-horizon economies with

non-autocorrelated i.i.d. preference shocks and agents disposed on the line A, a symmetric Markov

perfect equilibrium (MPE) is represented by a symmetric policy function, g, which maps an

agent’s current choice at time t, linearly in each agent’s past choices, yb,t−1, in each agent’s

contemporaneous idiosyncratic preference shock, θb,t, and in its mean, E(θ):

g (yt−1, θt) =
∑
b∈A

cb yb,t−1 +
∑
b∈A

db θb,t + eE(θ).

For general economies, we provide some fundamental theoretical results: equilibria in pure

strategies exist and they induce an ergodic stochastic process over the equilibrium configuration

of actions. In finite economies, equilibria are unique and select a unique equilibrium in the infinite

horizon limit. Furthermore, a stationary ergodic distribution exists. We also derive a recursive

algorithm to compute equilibria. The proof of the existence theorem, in particular, requires some

subtle arguments.2 In our economy, however, we can exploit the linearity of policy functions to

represent a symmetric MPE by a fixed point of a recursive map which can be directly studied.

Importantly, we exploit our characterization results of the equilibria to address generally the

issue of identification of social interactions in our context, with population data. In economies

with social interactions, identification fundamentally entails distinguishing preferences for con-

formity (social interactions) from selection into social groups; see Manski (1993). Indeed, while a

2Standard variational arguments require bounding the marginal effect of any infinitesimal change dya on the

agent’s value function. But in the class of economies we study, the envelope theorem (as e.g., in Benveniste and

Scheinkman (1979)) is not sufficient for this purpose, as dya affects agent a’s value function directly and indirectly,

through its effects on all other agents’s choices, which in turn affect agent a’s value function. The marginal effect

of any infinitesimal change dya is then an infinite sum of endogenous terms.
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significant high correlation of socioeconomic choices across agents is often interpreted as evidence

of social interactions, the spatial correlation of actions at equilibrium can be also due to the

spatial correlation of preference shocks. More formally, take two agents, e.g., agent a and agent

b. A positive correlation between ya,t and yb,t could be due to e.g., preferences for conformity.

But the positive correlation between ya,t and yb,t could also be due to a positive correlation be-

tween θa,t and θb,t. In this last case, preferences for conformity and social interactions would play

no role in the correlation of actions at equilibrium. Rather, such correlation would be due to

the fact that agents have correlated preferences. Correlated preferences could generally be due

to some sort of assortative matching or positive selection, which induce agents with correlated

preferences to interact socially. High correlations of substance abuse between adolescent friends,

for instance, could be due to social interactions or to friendship relations being selected in terms

of demographic and psychological characteristics.

In the dynamic linear conformity economies studied in this paper, we show that dynamic

forward looking behaviour plays an instrumental role in inducing identification.3 We first show

that exploiting the whole dynamic restrictions imposed by the model is not enough to obtain

identification for general stochastic processes for preference shocks. We then show how specific

relevant restrictions on the stochastic process, which are meant to capture natural properties of

the selection mechanism inducing spatially correlated preferences, guarantee identification in our

economy. More specifically, we prove that identification obtains if preference shocks are affected

by a vector of observable time-varying individual characteristics, xa,t satisfying a finite temporal

memory property:

θa,t = γxa,t + δ(xa−1,t + xa+1,t) + ua,t, E(xa,t|xb,s) = E(xa,t), if t > s+M, ∀a, b ∈ A;

where ua,t is an error term which is unobserved by the econometrician but observed by the

agents. Intuitively, the fundamental effect of forward-looking behaviour in equilibrium consists

in having current actions partly determined by expectations over future actions. Because of the

general pattern on correlation over time and space of the stochastic process for the shocks, the

future actions of any agent depend, in turn, on all the agents’ future shocks. But under finite

temporal memory, observables sufficiently in the past do not affect future shocks (and hence the

expectations of future actions) and hence they can be used as valid instruments for identification.

The simplicity of linear models allows us to extend our analysis in several directions which are

important in applications and empirical work. This is the case, for instance of general (including

asymmetric) neighborhood network structures for social interactions. Furthermore, our analysis

extends to the addition of global interactions.4 Finally, and perhaps most importantly, our

analysis extends to encompass a richer structure of dynamic dependence of agents’ actions in

3Interestingly, Manski (1993) alludes to the possibility that dynamic forward looking behaviour might help

identification in linear models with social interactions.
4One particular form of global interactions occurs when each agent’s preferences depend on an average of actions
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equilibrium, e.g., economies in which agents’ past behaviour is aggregated through an accumulated

stock variable which carries habit persistence.5

1.1 Related literature

As we noted, the large majority of the existing models of social interactions are either static

or myopic.6 The general class of dynamic economies with social interactions we study in this

paper are theoretically equivalent to a class of stochastic games, with an infinite number of

agents, and uncountable state spaces. Available theoretical results for this class of games are

extremely limited, even just regarding existence of “pure strategy” Markov-perfect equilibria;

see Mertens and Parthasarathy (1987), Nowak (2003), and Duffie et al. (1994).7 Bisin, Horst,

and Özgür (2006) obtain existence and ergodicity results in this class of economies but only

for the specific case of one-sided interactions across agents. This assumption greatly simplifies

the analysis, as it excludes strategic interactions, but it is substantive as it severely limits the

scope of social interactions to those which are structured hierarchically. Our work is related

but complementary also to a body of work that studies dynamic discrete games of imperfect

competition in empirical industrial organization8 The restriction to linear economies we adopt

in this paper has generally appealing analytical properties. Hansen and Sargent (2004) study

this class of economies systematically, exploiting the tractability of linear control methods, but

we are aware of only limited theoretical results regarding dynamic linear economies with social

interactions: Bisin, Horst, and Özgür (2006) specialize their general economy to the linear case,

but still only for the case of one-sided interactions; while Ioannides and Soetevent (2007) study

dynamic linear economies with social interactions under the assumption that lagged rather than

of all other agents in the population, e.g. Brock and Durlauf (2001a), and Glaeser and Scheinkman (2003). This is

the case, for instance, if agents have preferences for social status. More generally, global interactions could capture

preferences to adhere to aggregate norms of behaviour, such as specific group cultures, or other externalities as

well as price effects.
5These economies are naturally applied to the study of addiction. With respect to the addiction literature, as

e.g., Becker and Murphy (1988), these economies treat peer effects not only in a single-person decision problem,

but rather in a social equilibrium, allowing for the intertemporal feedback channel between agents across social

space and through time; see also Becker et al. (1994), Gul and Pesendorfer (2007), Gruber and Koszegi (2001); see

Rozen (2010) for theoretical foundations for intrinsic linear habit formation; see also Elster (1999) and Elster and

Skog (1999) for surveys.
6Few exceptions include an example on female labor force participation in Glaeser and Scheinkman (2001),

Binder and Pesaran (2001) on life-cycle consumption, Blume (2003) on social stigma, Brock and Durlauf (2010)

and De Paula (2009) on duration models.
7See also Mertens (2002) and Vieille (2002) for surveys.
8See e.g. Aguirregabiria and Nevo (2013), Bajari, Hong, Nekipelov (2013) for good surveys. The typical model

in this field has a finite number of agents, has a finite set of actions (see e.g. Bajari, Benkard, Levin (2007)

for an exception), a finite-dimensional (typically finite) set of commonly observed states, and most importantly

non-overlapping groups (e.g. geographically segmented markets).

4



contemporaneous average choices of peers affect individuals contemporaneous utility, thereby also

greatly limiting the role of strategic interactions.

The analytical properties of linear economies which we exploit in our theoretical analysis come

at a cost in terms of identification. In the context of linear economies, in fact, the issues pertaining

to the distinction of preferences for conformity (social interactions) and correlated preferences

across agents (selection into social groups) are fully general, running much deeper than Manski

(1993)’s reflection problem.9 In static linear economies, identification can be obtained if the

population of agents can be collected into heterogeneous reference groups and under appropriate

restrictions on the distribution of the agents’ shocks; see Bramoullé et al. (2009) and Davezies

et al. (2009) for identification in overlapping groups and Graham and Hahn (2005) for non-

overlapping groups.10 In dynamic economies with social interactions, identification is studied by

De Paula (2009) for duration models. We are not aware of any results in the class of dynamic

linear models with social interactions studied in this paper.

2 Dynamic Linear Conformity Economies

Time is discrete and is denoted by t = 1, . . . , T . We allow both for infinite economies (T = ∞)

and economies with an end period (T < ∞). A typical economy is populated by a set of agents

A, a generic element of which being denoted by a. We allow for both the case in which A is

countably infinite and the case in which it is finite. In the latter case, it is convenient to dispose

agents on a circle, to maintain symmetry; while in the countable limit, A := Z. Each agent lives

for the duration of the economy.

At the beginning of each period t, agent a’s random preference type θa,t is drawn from Θ =

[y, ȳ] ⊂ R, where y < ȳ. Let θ := (θt) := (θa,t)a∈A, t≥1 be a stochastic process of agents’ type

profiles. After the realization of θt, agent a ∈ A chooses an action ya,t from the set Y = [y, ȳ]. Let

Y := {y = (ya)a∈A : ya ∈ Y } be the space of individual action profiles. Similarly, let Θ := {θ =

(θa)a∈A : θa ∈ Θ} be the space of individual type profiles. We assume, with no loss of generality,

that the process θ = (θ1, θ2, · · · ) is defined, on the canonical probability space (Ω,F , P ), i.e.,

Ω := {(θ1, θ2, · · · ) : θt ∈ Θ , t = 1, 2, · · · }. We equip the configuration spaces Y and Θ with

the product topologies, so that compactness of the individual action and type spaces implies

compactness of the configuration spaces. The sequence (F1,F2, · · · ) of Borel sub-σ-fields of F is

a filtration in (Ω,F), that is F1 ⊆ F2 ⊆ · · · ⊆ F . The process θ = (θ1, θ2, · · · ) is adapted to the

9See Brock and Durlauf (2001b) for conditions under which identification can instead be obtained in static

non-linear models.
10Blume, Brock, Durlauf, and Ioannides (2011), Blume and Durlauf (2005), Brock and Durlauf (2007), Graham

(2011), and Manski (1993, 2000, 2007) survey the main questions pertaining to identification in this social context.

Other recent contributions include Blume, Brock, Durlauf, and Jayaraman (2015), Evans et al. (1992), Glaeser and

Scheinkman (2001), Graham (2008), Ioannides and Zabel (2008), and Zanella (2007).
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filtration (Ft : t ≥ 1), i.e., for each t, θt is measurable with respect to Ft. Finally, P : F → [0, 1]

is a probability measure where P ((θ1, . . . , θt) ∈ A) := P ({θ ∈ Ω : (θ1, . . . , θt) ∈ A}), all A ∈ Ft.
We require that E [θa,s | θ1, . . . , θt] ∈ (y, ȳ), for any t < s ≤ T and any a ∈ A, to guarantee that

agents’ choices be interior.

Each agent a ∈ A interacts with agents in the set N(a), a nonempty subset of the set of agents

A, which represents agent a’s social reference group. The map A : N → 2A is referred to as

a neighbourhood correspondence and is assumed exogenous. Agent a’s instantaneous preferences

depend on the current choices of agents in his reference group, {yb,t}b∈N(a), representing social

interactions as direct preference externalities. Agent a’s instantaneous preferences also depend

on the agent’s own previous choice, ya,t−1, representing inherent costs to dynamic behavioural

changes due e.g., to habits. In summary, agent a’s instantaneous preferences at time t are

represented by a continuous utility function(
ya,t−1, ya,t, {yb,t}b∈N(a), θa,t

)
7→ u

(
ya,t−1, ya,t, {yb,t}b∈N(a), θa,t

)
Agents discount expected future utilities using the common stationary discount factor β ∈ (0, 1).

With the objective of providing a clean and simple analysis of dynamic social interactions

in a conformity economy, we impose assumptions that are natural but stronger than required.11

In particular (i) we restrict preferences to be quadratic, so as to restrict ourselves to a linear

economy; (ii) we restrict the neighborhood correspondence to represent the minimal interaction

structure allowing for overlapping groups; and we impose enough regularity conditions on the

agents’ choice problem to render it convex.12 On the other hand, we do not impose any restriction

on the correlation structure of the stochastic process θ.13

Assumption 1 Let A represent the countable or finite (on a circle) set of agents:

1. Each agent interacts with his immediate neighbors, i.e., for all a ∈ A, N(a) := {a−1, a+1}.

2. The contemporaneous preferences of an agent a ∈ A are represented by the utility function

u(ya,t−1, ya,t, ya−1,t, ya+1,t, θa,t) := −α1(ya,t−1 − ya,t)2 − α2(θa,t − ya,t)2

− α3(ya−1,t − ya,t)2 − α3(ya+1,t − ya,t)2
(1)

where αi ≥ 0, i = 1, 2, 3, and either α1 or α2 is strictly positive.

11See Section 2.3 for possible directions in which the structure and the results we obtain are easily generalized.
12While we model preferences for conformity directly as a preference externality, we intend this as a reduced

form of models of behaviour in groups which induce indirect preferences for conformity, as e.g., Jones (1984), Cole

et al. (1992), Bernheim (1994), Peski (2007).
13As we stated explicitly in the description of the environment on page 5, we only require that it satisfies

E [θa,s | θ1, . . . , θt] ∈ (y, ȳ), for any t < s ≤ T and any a ∈ A, to guarantee that agents’ choice be interior. In

Section 3, we will show that identification does indeed require some assumption on the process θ.
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Assumption 1-1 requires that the reference group of each agent a ∈ A be composed of his

immediate neighbors in the social space, namely the agents a− 1 and a+ 1. The utility function

u defined in Assumption 1-2 describes the trade-off that agent a ∈ A faces between matching his

individual characteristics (ya,t−1, θa,t) and the utility he receives from conforming to the current

choices of his peers (ya−1,t, ya+1,t). Different values of αi represent different levels of intensity

of the social interaction motive relative to the own (or intrinsic) motive. The requirements that

α1 > 0 or α2 > 0 anchor agents’ preferences on their own private types or past choices. It

is easy to see that, without such anchor, actions are driven only by social interactions and a

large multiplicity of equilibria arises. Notice also that, under Assumption 1-2, utility functions

with coefficients α1, α2, α3 and λα1, λα2, λα3 represent the same preferences for any λ > 0. Hence

restricting α1+α2+2α3 = 1 represents a normalization which we adopt without loss of generality.

Under Assumption 1, the agents’ choice problem is convex. Let yt−1 = (y0, y1, . . . , yt−1) and

θt−1 = (θ1, . . . , θt−1) be the choices and type realizations up to period t − 1, where y0 ∈ Y is

the initial configuration. Before each agent’s time t choice, both yt−1 and θt are observed by all

agents.

A strategy for an agent a is a sequence of functions ya = (ya,t), adapted to the filtration F ,

where for each t, ya,t : Yt ×Θt → Y . Agents’ strategies along with the probability law for types

induce a stochastic process over future configuration paths. Each agent a ∈ A’s objective is to

choose ya to maximize

E

[
T∑
t=1

βt−1u
(
ya,t−1, ya,t, {yb,t}b∈N(a), θa,t

) ∣∣∣ (y0, θ1)] (2)

given the strategies of other agents and given (y0, θ1) ∈ Y ×Θ.

Note that Assumption 1-1 imposes enough symmetry on the agents’ problem so that it is

enough to analyze the optimization problem relative to a single reference agent, say agent 0 ∈ A.

Indeed, for all a, b ∈ A, N(b) = Rb−aN(a), where Rb−a is the canonical shift operator in the

direction b − a.14 In the finite-horizon economy, at each time t, let l = T − (t − 1) denote the

time periods remaining until the end of the economy T . The optimal choice of any economic

agent a ∈ A at t, for any t ∈ {1, . . . , T}, is then determined by a continuous choice function

gl : Y ×Θt → Y :

ya,t (g)
(
yt−1, θt

)
= g l(R

a yt−1, R
a θt)

In the infinite-horizon economy, the optimal choice of any economic agent a ∈ A at any t, is

instead stationary and determined by a continuous choice function g : Y ×Θt → Y , that is:

ya,t (g)
(
yt−1, θt

)
= g(Ra yt−1, R

a θt)

14That is, c ∈ N(a) if and only if c+ (b− a) ∈ N(b). The operations of addition and subtraction are legitimate

for A := Z as well as for A represented by a circle, defined modularly.
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Definition 1 A symmetric subgame perfect equilibrium of a dynamic linear finite-horizon con-

formity economy is a sequence of maps (g∗l)
1
l=T : Y × Θt → Y adapted to F such that for all

a ∈ A and for all (yt−1, θt) ∈ Yt ×Θt

g∗l
(
Ra yt−1, R

a θt
)
∈ argmax

ya,t∈Y
E

[
T∑
t=1

βt−1u
(
ya,t−1, ya,t, {yb,t(g∗)}b∈N(a) , θ

a
t

) ∣∣∣ (y0, θ1)].
A symmetric subgame perfect equilibrium of a dynamic linear infinite-horizon conformity econ-

omy is a stationary map g∗ : Y × Θt → Y adapted to F such that for all a ∈ A and for all

(yt−1, θt) ∈ Yt ×Θt

g∗
(
Ra yt−1, R

a θt
)
∈ argmax

ya,t∈Y
E

[
T∑
t=1

βt−1u
(
ya,t−1, ya,t, {yb,t(g∗)}b∈N(a) , θ

a
t

) ∣∣∣ (y0, θ1)].
2.1 Equilibrium

We provide here the basic theoretical results regarding our dynamic linear social interaction

economy with conformity. The reader only interested in the characterization can skip this section,

keeping in mind that equilibria exist (for finite economies they are unique) and they induce

an ergodic stochastic process over paths of action profiles. Furthermore, a stationary ergodic

distribution also exists for the economy. Finally, a recursive algorithm to compute equilibria is

derived. Unless otherwise mentioned specifically, the proofs of all statements and other results

can be found in the Supplemental Appendix.

Theorem 1 (Existence) Consider a dynamic linear conformity economy.

(i) If the time horizon is finite (T < ∞), the economy admits a unique subgame perfect equi-

librium which is symmetric, with

g∗l(R
a yt−1, R

aθt) =
∑
b∈A

cb,l ya+b,t−1 +
∑
b∈A

db,l θa+b,t

+
∑
b∈A

T∑
τ=t+1

eb,l,τ−tE
[
θa+b,τ |θt

]
P − a.s.

Furthermore, cb,l, db,l, eb,l,τ−t ≥ 0, ∀τ = t+1, . . . , T , and
∑

b∈A (cb,l + db,l + eb,l) = 1, where

eb,l =
∑T

τ=t+1 eb,l,τ−t.

(ii) If the time horizon is infinite (T =∞), the economy admits a symmetric stationary subgame

perfect equilibrium, with

g∗(Ra yt−1, R
a θt) =

∑
b∈A

cb ya+b,t−1+
∑
b∈A

db θa+b,t+
∑
b∈A

∞∑
τ=t+1

eb,τ−tE
[
θa+b,τ |θt

]
P−a.s.
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Furthermore, cb, db, eb,τ−t ≥ 0, ∀τ = t + 1, . . . ,∞, and
∑

b∈A (cb + db + eb) = 1, where

eb =
∑∞

τ=t+1 eb,τ−t.
15

(iii) g∗l converges to g∗ as l→∞, in the sense that liml→∞ (cb,l, db,l, eb,l) = (cb, db, eb), ∀b ∈ A.

The proof of the existence theorem requires some subtle arguments. While referring to Ap-

pendix A for details, a few comments here in this respect will be useful. Consider the (infinite

dimensional) choice problem of each agent a ∈ A. To be able to apply standard variational ar-

guments to this problem it is necessary to bound the marginal effect of any infinitesimal change

dya on the agent’s value function. To this end, the envelope theorem (as e.g., in Benveniste and

Scheinkman (1979)) is not enough, as dya affects agent a’s value function not only directly, but

also indirectly, that is through its effects on all agents b ∈ A\{a}’s choices, which in turn affect

agent a’s value function. The marginal effect of any infinitesimal change dya is then an infinite

sum, and each term of the sum consists in turn of an infinite sum of endogenous marginal effects

from all agents b ∈ A\{a}’s policy functions.16 In our economy, with quadratic utility, policy

functions g∗l are obviously necessarily linear. Extending the existence proof to general preferences

would require therefore sufficient conditions on the structural parameters to control the curva-

ture of the policy function of each agent’s decision problem. We conjecture that this can be done

although sufficient conditions do not appear transparently from our proof.

Remark (Uniqueness). Social interaction economies are usually plagued with multiple equilib-

ria. Previous uniqueness results in the literature require some form of ‘Moderate Social Influence’

assumption, which roughly means that the effect on marginal utility of a change in individual’s

own choice should dominate the sum of the effects on marginal utility of changes in peers’ choices

(see e.g. Glaeser and Scheinkman (2003)). In fact, as long as either one of the parameters α1 or

α2 is positive (which is true by Assumption 1), this is the case for the economies we study. More

specifically, consider first a finite-horizon economy. The coefficients cb,l and db,l satisfy

lim
|b|→∞

ca+b,l = lim
|b|→∞

da+b,l = 0

The impact of an agent a+b on agent a tends to zero as |b| → ∞. In this sense, linear conformity

economies display weak social interactions. This is why, in contrast to other models in the litera-

ture, no matter how large the interaction parameter α3 is relative to the others, the equilibrium

stays unique for finite-horizon economies. Furthermore, in the infinite horizon economy, while

equilibria are not necessarily unique, there is a unique equilibrium which is the limit of equilibria

in finite economies.
15Several assumptions can be relaxed while guaranteeing existence. This is the case, in particular, for the

symmetry of the neighborhood structure; see Section 2.3.1 for the discussion.
16The methodology used by Santos (1991) to prove the smoothness of the policy function in infinite dimensional

recursive choice problems also does not apply.
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By exploiting the linearity of the policy functions, our method of proof is constructive, pro-

ducing a direct and useful recursive computational characterization for the parameters of the

symmetric policy function at equilibrium. Let Cl :=
∑

b cb,l denote the total effect of past ac-

tions; that is, the effect on an agent a’s action of a uniform unitary increase in all agents’ past

actions. Similarly, let Dl :=
∑

b db,l denote the total effect of contemporary preference shocks;

and El :=
∑

b eb,l the total effect of expected future preference shocks.

Remark (Myopic economy) It is of interest to compare subgame perfect equilibria of dynamic

linear conformity economies with equilibria of myopic (static) conformity economies. Myopic

economies have in fact been extensively studied in the theoretical and empirical literature, fol-

lowing the mathematical physics literature in statistical mechanics on interacting particle sys-

tems.17 More specifically, myopic behaviour in the literature is commonly characterized by the

assumption that an agent a ∈ A, when choosing ya,t at time t, does not consider choosing again

in the future, nor neighbors choosing again in the future.18 It follows straightforwardly that the

coefficients of the policy function in these economies are equal to the ones of the unique subgame

perfect equilibrium policy function of a dynamic linear conformity economy with finite horizon T

with β = 0 (or, also, in the last period, at t = T ). Therefore, a linear conformity economy with

myopic agents admits a unique equilibrium which is symmetric with

g∗(Ra yt−1, R
a θt) =

∑
b∈A

cb ya+b,t−1 +
∑
b∈A

db θa+b,t P − a.s.

In Sections 3.1 and 3.2, we will study whether the behaviour in the dynamic linear conformity

economies, with rational forward looking agents, can be identified from behaviour in the same

economies with myopic agents.

Theorem 2 (Characterization and computation) Consider a T -period dynamic linear con-

formity economy.

(i) The equilibrium coefficients, (cb,l, db,l, eb,l), for any b ∈ A, T ≥ l ≥ 1, are independent of

the properties of the stochastic process θ.

(ii) In the terminal time period, l = 1, the sequence of equilibrium coefficients (cb,1, db,1, eb,1), is

17See e.g., Blume and Durlauf (2001), Brock and Durlauf (2001b), Glaeser and Scheinkman (2003), and Özgür

(2010) for a comprehensive survey; and Liggett (1985) for the mathematical literature.
18In some of the literature, myopic behaviour is modelled not only by assuming that all agents in the economy

only interact once, but also that their neighbors do not not change their previous period actions. In this case, the

dynamics describe a backward looking behaviour of the agents and it can be shown that the ergodic stationary

distribution of actions coincides with that of myopic agents as characterized in the text; see e.g., Glaeser and

Scheinkman (2003).
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exponential in |b|.19

(iii) For any β > 0, and any l = 2, . . . ,∞, the sequence of equilibrium coefficients (cb,l, db,l, eb,l),

declines faster than exponentially in |b|.20 It declines exponentially if β = 0.

(iv) Total effects of past actions and of contemporary preference shocks, Cl and Dl respectively,

increase as l decreases; the total effect of expected future preference shocks, El instead de-

creases as l decreases.21

Figure 1: Cross-sectional rates of convergence.22

19Specifically, for any b ∈ A,

cb,1 = r
|b|
1

(
α1

α1 + α2

)(
1− r1

1 + r1

)
and db,1 = r

|b|
1

(
α2

α1 + α2

)(
1− r1

1 + r1

)

where r1 =
(

∆1
2α3

)
−
√(

∆1
2α3

)2

− 1 and ∆1 = α1 +α2 + 2α3. Note that eb,1 = 0 for all b ∈ A optimally since there

are no future shocks.
20The sequence of equilibrium coefficients (cb,l, db,l, eb,l), are computed recursively iterating a map Ll : ∆c,d,e →

∆c,d,e, l = 2, . . . , T , obtained from agent 0’s dynamic program’s first-order condition and characterized in (A.5),

and (A.6).
21Specifically, Cl, Dl, and El take the form of continued fractions:

Cl =
α1

α1 + α2 + α1β (1− Cl−1)

Dl =
α2

α1 + α2 + α1β (1−Dl−1)

El =
α1β (1−Dl−1)

α1 + α2 + α1β (1−Dl−1)

with C1 = α1
α1+α2

; D1 = α2
α1+α2

; E1 = 0.
22Parameter values used for this figure are (α1, α2, α3, β) = (0.2, 0.2, 0.3, 0.95).
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Result (i), that equilibrium coefficients are independent of the properties of θ, is a direct

consequence of the linearity of policy functions. It allows us to study theoretically economies

which are fully general in terms of the stochastic process for the shocks. Restrictions will however

be required to guarantee identification, in Section 3. Results (ii) and (iii) imply that the sequence

of equilibrium coefficients (cb,l, db,l, eb,l), converges in the cross-sectional tail at a constant rate

for l = 1 and at an increasing rate for β > 0, l ≥ 2; see Figure 1. This is a fundamental

equilibrium implication of a dynamic economy (in a terminal period, in fact, the economy would

be effectively static). It is instrumental in allowing us to identify forward looking from myopic

behaviour in a dynamic economy; see Remark (Myopic behaviour) in Section 3. Finally, result

(iv) on the dependence of total effects on the length of the remaining economy l, implies that in

earlier periods agents put relatively more weight on expectations and, as the horizon gets shorter,

they eventually shift weight on to history and current shocks. Importantly, while we do not have

a formal result, simulations show that ( c0lCl ), the relative weight on own history, decreases as l

decreases.23

We turn now to the relationship between the equilibrium coefficients and the preference pa-

rameters of the economy. Fix the normalization α1 + α2 + 2α3 = 1, and consider α2 determined

residually by the normalization.

Theorem 3 (Dependence on the preference parameters) Consider a dynamic linear con-

formity economy with T > 1 and α1 6= 0.

(i) At a Subgame Perfect equilibrium of a finite horizon economy, the map between parameters

(α1, α3, β) and coefficients (cb,l)
T
l=1, b∈A is injective. Similarly, at a subgame perfect equilib-

rium of an infinite horizon economy, the map between parameters (α1, α3, β) and coefficients

(cb)b∈A is injective.

(ii) Seeing the sequences of equilibrium coefficients cb,l, db,l, and eb,l as distributions over b, an

increase in α3, keeping β and the ratio α1
α2

intact, induces a mean preserving spread in each

of these distributions.24

Result (i) is a fundamental component of our identification results in Section 3. It reduces the

problem of identifying (α1, α3, β) to one of consistently estimating the parameters (cb,l)
T
l=1, b∈A

(or (cb)b∈A, when the horizon is infinite). Result (ii) is represented in Figure 2. It implies that,

by weighting more the action of closer neighbors, a large α3 induces equilibrium actions which

are more concentrated along the social space. This in turn can be seen in Figure 3.26

23The structural dependence of the parameters’ configuration on the length of the remaining economy l is in

principle useful to distinguish the implications of social interactions from those e.g., of habit persistence models,

that also generally induce interesting non-stationary effects.
24Indeed, total effects Cl, Dl, El are independent of α3.
26See Appendix J for details of the simulations generating the figures.
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Figure 2: Distribution of policy coefficients on past actions for mild and strong interactions.25

Remark (Markov economy) A (s-)Markov linear conformity economy, for s ∈ N, is a dy-

namic linear conformity economy whose stochastic process θ is (s-)Markov, that is, it satis-

fies P (
{
θ ∈ Ω : θt ∈ A

}
) = P (

{
θ′ ∈ Ω : θ′t ∈ A

}
) for all θ, θ′ such that (θt−s, θt−s−s, . . . , θt) =(

θ′t−s, θ
′
t−s−s, . . . , θ

′
t

)
, and for all A ∈ Ft.

If the time horizon is finite (T <∞), the unique subgame perfect equilibrium in a (s-)Markov

linear conformity economy is (s-)Markov, with

ya,t = g∗l(R
a yt−1, R

a (θt−s, . . . , θt)) =
∑
b∈A

cb,l ya+b,t−1 +
∑
b∈A

db,l θa+b,t (3)

+

T∑
τ=t+1

∑
b∈A

eb,l,τ−tE [θa+b,τ |θt−s, . . . , θt] P − a.s.

If the time horizon is infinite (T = ∞), there exists a (s-)Markov symmetric subgame perfect

equilibrium, with

ya,t = g∗(Ra yt−1, R
a (θt−s, . . . , θt)) =

∑
b∈A

cb ya+b,t−1 +
∑
b∈A

db θa+b,t (4)

+
∞∑

τ=t+1

∑
b∈A

eb,τ−tE [θa+b,τ |θt−s, . . . , θt] P − a.s.

such that cb,l, db,l, eb,l converge to cb, db, eb. Once again, in the infinite horizon economy, when

equilibria are not necessarily unique, we can select the unique limit of finite economies.

26Final period policy is used. Parameter values used are α3 = 0.1 for Mild and α3 = 0.3 for Strong interactions.

The rest of the parameters are α1 = α2 = 0.5(1−2α3) and β = 0.95. See Appendix J for details of the simulations.
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Remark (Social welfare)27 Social interactions are modeled in this paper as a preference exter-

nality, that is, by introducing a dependence of agent a’s preferences on his/her peers’ actions. A

benevolent social planner, taking into account the preference externalities and at the same time

treating all agents symmetrically, maximizes the expected discounted utility of a generic agent,

say of agent a ∈ A, by choosing a symmetric choice function h in the space of bounded, continu-

ous, and Y -valued measurable functions CB(Y ×Θ, Y ). The choice of h induces, in a recursive

way, a sequence of choices for any agent b ∈ A, given (y0, θ1). A subgame perfect equilibrium

of a conformity economy is inefficient, in the sense that the sequence of choices induced by the

benevolent planner for each agent Pareto-dominate the equilibrium choices. Most importantly,

an efficient policy function will weight less heavily the agent’s own-effect and more heavily other

agents’ effects, relative to the equilibrium policy.

2.2 Ergodicity

Given the characterization of the parameters of the policy function at hand, we are also able to

determine the long-run behaviour of the equilibrium process emerging from the class of dynamic

models we study. To that end, let an infinite-horizon economy with conformity preferences be

given and let g∗ be a symmetric subgame perfect equilibrium (recall that Theorem 1 does not

guarantee that a unique such g∗ exists). Let π0 be an initial distribution on the space of action

profiles Y. Given π0 and a stationary (s-)Markov process for (θt), g
∗ induces an equilibrium

process (yt ∈ Y )∞t=0 and an associated transition function Qg∗ . This latter generates iteratively a

sequence of distributions (πt)
∞
t=1 on the configuration space Y, i.e., for t = 0, 1, . . .

πt+1 (A) = πtQg∗ (A) =

∫
Y
Qg∗ (yt . . . , yt−s, A) πt (dyt+1)

We show first that, given the induced equilibrium process, the transition function Qg∗ admits

an invariant distribution π, i.e., π = πQg∗ and that the equilibrium process starting from π is

ergodic.28

Furthermore, we show that, for any initial distribution π0 and a (s-)Markov symmetric sub-

game perfect equilibrium policy function g∗, the equilibrium process (yt ∈ Y )∞t=0 converges in

distribution to the invariant distribution π, independently of π0. This also implies that π is the

unique invariant distribution of the equilibrium process (yt ∈ Y )∞t=0. More specifically,

Theorem 4 (Ergodicity) Consider a dynamic linear conformity economy. The equilibrium

process (yt ∈ Y )∞t=0 induced by a stationary (s-)Markov symmetric subgame perfect equilibrium

27We relegate the formal treatment of Social welfare to the Technical Appendix H.
28We call a Markov process (yt) with state space Y under a probability measure P ergodic if 1

T

∑T
t=1 f(yt) →∫

fdP P -almost surely for every bounded measurable function f : Y → R. See, e.g., Duffie et al. (1994) for a

similar usage.
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Figure 3: Simulated stationary profile of actions in a dynamic economy with Mild (top) and Strong

(bottom) α3. The horizontal axis represents agents and the vertical axis represents agents’ choices

from a common interval. Infinite-horizon policy is iterated with i.i.d. shocks and a large number

of agents. Parameter values used are α3 = 0.1 for Mild and α3 = 0.3 for Strong interactions. The

rest of the parameters are α1 = α2 = 0.5(1 − 2α3) and β = 0.95. See Appendix J for details of

the simulations.
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via the policy function g∗(yt−1, (θt−s, . . . , θt)) and the unique invariant measure π as the initial

distribution is ergodic; π is the joint distribution of

yt =

 ∞∑
m=1

∑
b1

· · ·
∑
bm

cb1 · · · cbm−1

[
dbm θa+b1+···+bm,t+1−m

+

∞∑
τ=1

ebm,τ E[θa+b1+...+bm,t+1−m+τ | θ1−m, . . . , θ1−m−s]
])

a∈A

(5)

where C :=
∑

a∈A ca is the sum of coefficients in the stationary policy function that multiply cor-

responding agents’ last period choices. Moreover, the sequence (πt)
∞
t=1 of distributions generated

by the equilibrium process (yt ∈ Y )∞t=0 converges to π in the topology of weak convergence for

probability measures, independently of any initial distribution π0.29

2.3 Extensions

The class of social interaction economies we study is restricted along several dimensions. Some of

these restrictions, however, might turn out to be important in applications and empirical work.

In this section we briefly illustrate how our analysis can be extended to study more general

neighborhood network structures for social interactions, more general stochastic processes for

preference shocks, the addition of global interactions, that is, interactions at the population level,

and the effects of stock variables which carry habit effects. For simplicity we consider here only

(s−)Markov linear conformity economies with infinite time horizon, T =∞. Extension to general

stochastic processes for θ and/or to finite time horizons are straightforward.30

2.3.1 General Network Structures

Consider a linear conformity economy with arbitrary neighborhood structure (not necessarily

translation invariant), N : A→ 2A. In particular, let a generic agent a’s preferences for conformity

be represented by a general term −
∑

b∈N(a) α3,a,b (yb,t − ya,t)2, entering additively in the utility

function ua.

At a (s−)Markov Subgame Perfect equilibrium of this economy, policy functions satisfy

ya,t =
∑
b∈A

ca,b yb,t−1 +
∑
b∈A

da,b θb,t (6)

+

∞∑
τ=t+1

∑
b∈A

ea,b,τ−tE [θb,τ |θt−s, . . . , θt] P − a.s.;

29A sequence of probability measures (λt) is said to converge weakly (or in the topology of weak convergence for

probability measures) to λ if, for any bounded, measurable, continuous function f : Y → R, limt→∞
∫
f dλt =

∫
fdλ

almost surely (see e.g. Kallenberg (2002), p.65).
30We sketch proof arguments for all extensions in Section I of the Technical Appendix.
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and our analysis extends.31

2.3.2 Social Accumulation of Habits

Consider a linear conformity economy where individual behaviour depends on the accumulated

stock of present and previous choices

ra,t = (1− δ) ra,t−1 + ya,t

rather than on her present choice ya,t only. In particular, let a generic agent a’s preferences for

conformity be represented by a general term −α1 (ra,t − ya,t)2, entering additively in the utility

function ua.
32

At a (s−)Markov subgame perfect equilibrium of this economy, policy functions satisfy

ya,t =
∑
b∈A

cb ra+b,t−1 +
∑
b∈A

db θa+b,t (7)

+
∞∑

τ=t+1

∑
b∈A

eb,τ−tE [θa+b,τ |θt−s, . . . , θt] P − a.s.;

and our analysis extends.

2.3.3 Global Interactions

Consider a linear conformity economy where individual behaviour is affected by global as well as

local determinants.33 In particular, consider an economy in which the preferences of each agent

a ∈ A depend also on the average action of the agents in the economy. Let the average action

given a choice profile y be defined as

p(y) := lim
n→∞

1

2n+ 1

n∑
a=−n

ya,

31However, in this economy, for finite time horizon T < ∞, uniqueness of subgame perfect equilibrium is not

guaranteed with an infinite number of agents. It is however sufficient for uniqueness that the relative composition

of the peer effects within the determinants of individual choice be uniformly bounded:

∃ 0 < K < 1 such that, ∀a ∈ A,
∑
b∈N(a) α3,a,b

α1 + α2 +
∑
b∈N(a) α3,a,b

< K;

see e.g. Glaeser and Scheinkman (2003), Horst and Scheinkman (2006), and Ballester, Calvó-Armengol, and Zenou

(2006) for Moderate Social Influence conditions restrictions in a similar spirit.
32For instance, ra,t captures what the addiction literature calls a “reinforcement effect” on agent a’s substance

consumption.
33With respect to finite economies (as e.g., in Blume and Durlauf (2001) and in Glaeser and Scheinkman (2003)),

a few technical subtleties arise in our economy due to the infinite number of agents. The techniques we use are

extensions of the ones we used in a previous paper, Bisin, Horst, and Özgür (2006). We refer the reader to this

paper for details. Some of the needed mathematical analysis is developed in Föllmer and Horst (2001) and Horst

and Scheinkman (2006).
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when the limit exists. Let a generic agent a’s preferences for conformity be represented by a

general term −α4 (p(yt)− ya,t)2, entering additively in the utility function ua.

At a (s−)Markov subgame perfect equilibrium of this economy, policy functions satisfy

ya,t =
∑
b∈A

cb ya+b,t−1 +
∑
b∈A

db θa+b,t (8)

+

∞∑
τ=t+1

∑
b∈A

eb,τ−tE [θa+b,τ |θt−s, . . . , θt] + B(p(y1) P − a.s.,

for some constant B(p(y1)) that depends only on the initial average action, p(y1) (which is

assumed to exist); and our analysis extends.

3 Identification

We study here the identification properties of dynamic linear conformity economies. Identifica-

tion obtains when the restrictions imposed on equilibrium choices allow to unambiguously recover

the model’s parameters from observed actions. In economies with social interactions, this fun-

damentally entails distinguishing preferences for conformity (social interactions) and correlated

preferences across agents, which can be generally due to some sort of assortative matching or

positive selection into social groups. A positive correlation between ya,t and yb,t, for any two

agents a and b at some time t, could be due to social interaction preferences, with α3 > 0, or

to a positive correlation between θa,t and θb,t even in the presence of no social interactions, with

α3 = 0.

Formally, we assume that the time horizon T ≥ 234 and the size of the economy N are known

(to the econometrician as well as to the agents); and so is the population probability distribution

over actions F (y), e.g., because an arbitrarily large number of replications of the economy is ob-

served. Preference shocks may depend on observable covariates and, in that case, the probability

distribution over these covariates is also known. The structural parameters of the model to be

recovered are: the weights placed on own past action α1, own preference shock α2, and others’

current actions in current utility α3, as well as the discount factor β. Fixing the normalization

α1 +α2 +2α3 = 1, we focus on α1, α3, and β as the parameters of interest. Denote by Fα1,α3,β(y)

the population probability distribution under parameters α1, α3 and β. Identification means

that these structural parameters can be uniquely recovered from the probability distribution on

outcomes.35

Definition 2 A dynamic linear conformity economy is identified if Fα1,α3,β = Fα′1,α′3,β′ implies

that α1 = α′1, α3 = α′3 and β = β′.

34The static case T = 1 is degenerate in our context.
35The notion of identification we adopt is parametric. More generally, Rust (1994) and Magnac and Thesmar

(2002) show that, even in dynamic discrete choice models, utility functions cannot be non-parametrically identified.
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The properties of the stochastic process of preference shocks (θa,t)a∈A,t≥1 clearly affect iden-

tification. We prove, first, that the model is not identified when no restrictions are placed on this

process. We then prove our main result in this section, determining conditions on the structure

of preference shocks, and on how they depend on observables, under which identification holds.

Theorem 5 A dynamic linear conformity economy with no restriction on the stochastic process

of preference shocks (θa,t)a∈A,t≥1 is not identified, for finite or infinite T and finite or infinite N .

Proof: Suppose first that T = ∞. Consider the stationary distribution of a linear confor-

mity economy with social interactions, that is, α3 > 0, and an i.i.d. preference shock process

(θa,t)a∈A,t≥1, where θ̄ is their identical expected value. We have shown in Section 2.2 that such

stationary distribution is given by the ergodic measure π in (5), which under the i.i.d assumption

takes the form

yt =

 E (α) θ

1− C (α)
+
∞∑
m=1

∑
b1

· · ·
∑
bm

c (α)b1 · · · c (α)bm−1

(
d (α)bm θa+b1+···+bm,t+1−m

)
a∈A

.

Consider now an alternative specification of this economy with no interactions between agents

(α′3 = 0) and no habits (α′1 = 0) but simply a preference shock process {θ′a,t}a∈A,t≥1 and own

type effects with α′2 > 0. For this economy, equilibrium choice of agent a at time t is given by

ya,t = θ′a,t. As long as the process {θ′a,t}a∈A,t≥1 is the one where

θ′a,t :=
E (α) θ

1− C (α)
+
∞∑
m=1

∑
b1

· · ·
∑
bm

c (α)b1 · · · c (α)bm−1

(
d (α)bm θa+b1+···+bm,t+1−m

)
,

the probability distributions that the two specifications (with and without interactions)) generate

on the observables of interest, {ya,t}a∈A,t≥1, are identical. Hence, one cannot identify from the

stationary distribution of choices which specification generates the data. Similarly if T is finite,

we showed in Section 2.1 that yt is a well-defined linear function of y0, θs and θ. Set θ′at = yat.

Then, the outcome probability distributions of an economy with habits α1, interactions α3 and

shocks (θa,t) and one with no habits, no interactions and shocks (θ′a,t) are identical. �

An intuition about this result can be obtained by considering the infinite horizon case and

loosely reducing the identification of dynamic conformity economies to the problem of distin-

guishing a VAR from an MA(∞) process. Stacking in a vector yt (resp. θt) the actions ya,t over

the index a ∈ A (resp. the preference shocks θa,t), policy functions can be loosely written as a

VAR:

yt = Φyt−1 + δt, with δt = Γθt + eθ

where E (δtδt−τ ) = 0 for all τ > 0, and θ̄ is their identical expected values. Let L be a lag

19



operator.36 Under standard stationarity assumptions, the VAR has an MA (∞) representation

yt = (IA − ΦL)−1δt = δt + Ψ1δt−1 + Ψ2δt−2 + . . .

for a sequence Ψ1,Ψ2 . . . such that (IA − ΦL)
(
IA + Ψ1L + Ψ2L

2 + . . .
)

= IA. The argument in

the proof of Theorem 5 therefore amounts to picking

yt = θ′t = δt + Ψ1δt−1 + Ψ2δt−2 + ....

3.1 Main Result

The intuition about Theorem 5 we provided suggests that identification might be obtained under

restrictions on the correlation structure of the stochastic process (θa,t)a∈A,t≥1. More specifically,

assume that preference shocks are affected by a vector of observable time-varying individual

characteristics, xa,t, as follows:37

θa,t = γxa,t + δ(xa−1,t + xa+1,t) + ua,t

where ua,t is an error term which is unobserved by the econometrician but observed by the

agents and γ, δ are parameters to be estimated jointly with the deep preference parameters of

the economy, (α1, α3, β). The identification result will formally require γ 6= 0;38 when also δ 6= 0,

the economy is characterized by contextual peer effects, that is, individual preference shocks are

directly affected by friends’ covariates. We make the following two classical assumptions on

observables.

Assumption 2 (Exogeneity) ∀s, t, E(us|xt) = 0.

Assumption 3 (Full rank) ∀s, ∀a,∀B ⊂ N finite, xa,s does not depend linearly on {xb,s}b∈B.

Assumption 2 requires that observables in any given period t be uncorrelated with unobservables

in any period s. Assumption 3 requires that the matrix formed of elements in {xb,s}b∈B for any

finite subset B, has full rank. Furthermore, in the infinite horizon case, when equilibria are not

necessarily unique, we maintain the selection that the equilibrium is the limit of equlibria of finite

economies.

An important role in our analysis will be played by restrictions on the temporal memory of

the (θa,t)a∈A,t≥1 process. More specifically,

36L is a lag operator, i.e., Lδt := δt−1 for any period t. Polynomials of the lag operator can be used, follow

similar rules of multiplication and division as do numbers and polynomials of variables, and this is a common

notation for autoregressive moving average models. See e.g. Hamilton (1994) chapter 2 for an in-depth discussion

of lag operators. See also Hamilton (1994) chapter 3 for a discussion of invertibility and equivalent representation

arguments.
37Our analysis directly extends to the case of several characteristics.
38We however suggest that a related result can be obtained if γ = 0; see the discussion after the outline of the

proof of Theorem 6, p. 24.

20



Definition 3 Observables x have finite temporal memory if there exists some duration M such

that ∀a, b, E(xa,t|xb,s) = E(xa,t) if t > s+M .

Under finite temporal memory, thus, correlation in observables across time does not extend for

more than M periods.

We now state our main identification result.

Theorem 6 (Identification) Consider a dynamic linear conformity economy such that the

stochastic process (θa,t)a∈A,t≥1 satisfies θa,t = γ xa,t + δ (xa−1,t +xa+1,t) +ua,t under Assumptions

2 and 3. Suppose that α1 6= 0 and γ 6= 0. If T is infinite and x has finite temporal memory, then

the economy is identified. If T is finite, then the economy is identified even without restrictions

on temporal memory.

We provide an outline of the proof here and fill all details in the formal proof in the Appendix.

It is useful to proceed in several steps to better illustrate the intuition of the results and, in par-

ticular, to stress the role that dynamic forward looking behaviour plays in the result.

No contextual effects. Consider first the special case in which δ = 0 and individual preference

shocks are not directly affected by friends’ covariates:

θa,t = γ xa,t + ua,t.

Observe that E
[
θa+b,τ | θt

]
= γE

[
xa+b,τ | θt

]
+E

[
ua+b,τ | θt

]
= γE

[
xa+b,τ |xt

]
+E

[
ua+b,τ |ut

]
for

τ > t, since the agent observes both x and u. Moreover, E
[
xa+b,τ |xt

]
is a function of xt, which

is known.

I) Infinite horizon. If T = ∞, our characterization of the equilibrium, in Theorem 1, can be

re-written into the following econometric equation:

ya,t =
∑
b∈A

cb ya+b,t−1 + γ
∑
b∈A

db xa+b,t

+ γ
∞∑

τ=t+1

∑
b∈A

eb,τ−tE
[
xa+b,τ |xt

]
+ εa,t

where the error term εa,t is a linear combination of own and others’ current unobservables and

expectations of future unobservables.

Identification then obtains if (i) we can consistently estimate “reduced-form” parameters cb

in the equation above; (ii) the mapping expressing cb as functions of α1, α3 and β is injective,

so that a unique vector of structural parameters can be obtained. We already showed that (ii)

is true in Theorem 3-(i). As for (i), however, consistent estimates cannot be obtained by simple
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regression as past outcomes (ya+b,t−1)b∈A are generally endogenous, for instance due to correla-

tion between θa,t and θa+b,t−1. We can nonetheless use an instrumental variables approach, with

lagged observed shocks xa+b,t−M−1 as instruments for past outcomes ya+b,t−1.
39 This approach

is valid under our assumptions. Indeed, Assumption 3 ensures that the instruments are not per-

fectly correlated; Assumption 2 and finite temporal memory together ensure that the appropriate

exclusion restrictions are satisfied; specifically, finite memory ensures that the instruments are

not correlated with the expectations of future covariates, E
[
xa+b,τ |xt

]
. Finally, when γ 6= 0 and

α1 6= 0, these instruments are correlated with the endogenous regressors.

II) Finite horizon. If T is finite, our characterization of the equilibrium, in Theorem 1, can be

re-written into the following econometric equation:

ya,t =
∑
b∈A

cb,T−(t−1) ya+b,t−1 + γ
∑
b∈A

db,T−(t−1) xa+b,t

+ γ

T∑
τ=t+1

∑
b∈A

eb,T−(t−1),τ−tE
[
xa+b,τ |xt

]
+ εa,t

The proof and the procedure adopted for proving identification for T =∞ in I) also works when

T is finite, as long as M < T . However, the restriction on x’s correlation structure is actually not

needed to guarantee identification in this case, because we can exploit the lack of stationarity of

the dynamic equilibrium in a fundamental manner. Indeed, consider decisions at T and T −1. In

the last period, the first-order condition of agent a’s optimization problem admits the following

simple expression:

ya,T = α1 ya,T−1 + α3 (ya−1,T + ya+1,T ) + α2 γ xa,T + εa,T , (9)

where εa,T = α2 ua,T . This econometric equation expresses own current outcome as a function of

two endogenous variables: own past outcome and friends’ current outcomes. Under Assumptions 2

and 3, this equation can be consistently estimated by using as instruments, for instance, own past

observed shock xa,T−1 and friends’ current observed shocks (xa−1,T +xa+1,T ). These instrumental

regressions provide direct estimates of α1 and α3.

To identify β, however, we need to focus on equilibrium outcomes at T − 1. We show in

Appendix E.2 that the first-order condition at T − 1 is equivalent to the following econometric

39We adopt an asymptotic framework based on an arbitrarily large number of replications of the economy. Thus,

outcomes and errors should in principle be indexed by replication r in the econometric equations. We omit these

additional indices for clarity.
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equation:

[1 + β α1 (1− c1,1)] ya,T−1 = α1 ya,T−2 + α3 (ya−1,T−1 + ya+1,T−1)

+ β (α1 − c1,1(1− 2α3)) ya,T

+ γ α2 xa,T−1 + γ β α2 c1,1 xa,T + εa,T−1

(10)

where c1,1 is independent of β and εa,T−1 includes preference shocks as well as differences be-

tween expected and realized outcomes at T . When β = 0, agents are myopic and first-order

conditions at T − 1 and T have the same form. In contrast, when β > 0, forward looking de-

cisions taken in T − 1 depend on their anticipated impact on the agent’s utility at T . As a

consequence, the econometric equation expresses current outcome of agent a (at T − 1) as a

linear function of own future outcome ya,T , besides own past outcome ya,T−2 and friends’ cur-

rent outcomes (ya−1,T−1 + ya+1,T−1). Three valid instruments are enough to provide consistent

estimates. When α3 6= 0, these instruments could be, for instance, xa,T−2, (xa−1,T−1 +xa+1,T−1),

and (xa−2,T−1 + xa+2,T−1); that is, own past observed shocks, friends’ current observed shocks

and friends of friends’ current observed shocks.

Contextual effects. Consider first the case in which T is infinite. Equilibrium characterization can

now be written as follows:

ya,t =
∑
b∈A

cbya+b,t−1 + γ
∑
b∈A

dbxa+b,t + δ
∑
b∈A

db(xa−1+b,t + xa+1+b,t) + γ

∞∑
τ=t+1

∑
b∈A

eb,τ−tE
[
xa+b,τ |xt

]
+ δ

∞∑
τ=t+1

∑
b∈A

eb,τ−t(E
[
xa−1+b,τ |xt

]
+ E

[
xa+1+b,τ |xt

]
) + εa,t.

Under finite temporal memory, the argument exploited in case I) above, with no contextual

effects, directly applies. We can still use lagged observed shocks xa+b,t−M−1 as instruments for

past outcomes ya+b,t−1.

Consider next the case in which T is finite. The econometric expression of the first-order

condition at T is:

ya,T = α1ya,T−1 + α3(ya−1,T + ya+1,T ) + α2γxa,T + α2δ(xa−1,T + xa+1,T ) + εa,T

Contextual peer effects prevent, of course, the use of current observed shocks of friends as instru-

ments. However, and related to the approach developed in Bramoullé et al. (2009), the current

observed shocks of friends of friends, (xa−2,T + xa+2,T ), can now be used as an instruments for

friends’ current outcome.

At T − 1 we now have:

[1 + βα1(1− c1,1)]ya,T−1 = α1ya,T−2 + α3(ya−1,T−1 + ya+1,T−1) + β(α1 − c1,1(1− 2α3))ya,T

+ γα2xa,T−1 + δα2(xa−1,T−1 + xa+1,T−1)

+ γβα2c1,2xa,T + δβα2c1,1(xa−1,T + xa+1,T ) + εa,T−1
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And we can now, for instance, use own past observed shocks, xa,T−2, friends’ past observed

shocks, (xa−1,T−2+xa+1,T−2), and friends of friends’ past observed shocks, (xa−2,T−2+xa+2,T−2),

as instruments.

This outline of the proof of Theorem 6 shows that the fundamental effect of forward-looking

behaviour at equilibrium consists in having current actions partly determined by expectations

over future actions. Because of the general pattern on correlation over time and space of the

stochastic process for the shocks, the future actions of any agent depend, in turn, on all the

agents’ future shocks. This is the case also with no contextual effects. In the econometric equation

for the infinite horizon economy, with no contextual effects, expectations over future actions are

solved out for in terms of expected future observables of all the agents, collected in the term∑∞
τ=t+1

∑
b∈A eb,τ−tE

[
xa+b,τ |xt

]
. While the dependence of current actions on expectations over

future actions in the dynamic economy complicates identification, under finite temporal memory,

observables sufficiently in the past do not affect future shocks (and hence the expectations of

future actions) and hence they can be used as valid instruments for identification.

While the same issue appears in the finite horizon economy, in this case we can exploit the non-

stationarity of forward-looking behaviour in equilibrium to identify the parameters of the model.

In particular, the reduced form parameters in the econometric equations, which determine any

agent’s actions, depend on t (more precisely, on the number of periods to the end of the economy

T ). The properties of this dependence can be exploited to identify the model. As we noted in the

outline of the proof, when α3 6= 0, we can exploit, for instance, either friends of friends’ current

observed shocks (xa−2,T−1 +xa+2,T−1) or friends’ past observed shocks (xa−1,T−2 +xa+1,T−2). In

other words, valid instruments can be found back in time and further out in social space: thanks

to the dynamic nature of the model, we can make use of the two dimensions of time and space

to help correct the endogeneity problems arising in the regressions. We can combine social and

temporal lags in ways unfeasible in static models of peer effects or in individual dynamic models.

Importantly, this whole discussion about the role of forward-looking behaviour at equilibrium

and non-stationarity in identification naturally extends to the introduction of contextual peer

effects. Indeed, in the stationary infinite horizon economy contextual effects do not require any

additional instrument for identification. In the non-stationary economy instead, we need to rely

either on friends of friends’ past observed shocks, (xa−2,T−2 + xa+2,T−2), or on friends’ observed

shocks further in the past, (xa−1,T−3 + xa+1,T−3). Once again, we can make use of the two

dimensions of time and space to strengthen identification.

Identification may also hold, under additional assumptions on their correlation structure,

even when preference shocks θa,t do not depend on exogenous covariates, that is, when γ = 0.

For instance, suppose that the stochastic process is of expectation zero and has finite temporal

memory. Then, adapting classical techniques from dynamic panels (see e.g., Arellano and Bond

(1991)), own and friends’ lagged outcomes, ya,t−M−1 and (ya−1,t−M−1 + ya+1,t−M−1), can be
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used as instruments for own and friends’ current outcome, ya,t and (ya−1,t + ya+1,t). Unlike with

dynamic panels, however, the interplay of habits and social interactions means that own current

outcome may be affected by own lagged outcome, friends’ lagged outcome, friends of friends’

lagged outcomes, etcetera. Thus the strength of identification generally depends on α1, α3 and

β.

It is also apparent from the outline of the proof of Theorem 6 that we can extend our previous

arguments to the case in which we do not observe outcomes yt and observables xt in all periods

t. Indeed, if observables display finite temporal memory of length M < T , identification holds

under the same conditions as in Theorem 6 if we observe outcomes at any t, t − 1, t − 2 and

observables from t−M − 1 to t.40

Finally, we note that our identification strategy depends on the ability to exploit exogenous

shocks on the preference parameter: applying our strategy to some observable x which is not

exogenous would invalidate it and could e.g., generate positive estimates of social interactions

even if α3 = 0, whenever unobservables are correlated with x and also across time and space.

This is related to the standard problem of endogeneity which occurs in peer effects estimations in

static models. Of course, as we show, standard solutions of this problem in the applied literature,

involving random groups or exogenous shocks, still fail when they do not account for dynamic

effects and these dynamic effects are present.

Remark (Myopic economy - continued) We can now turn to the question of whether be-

haviour in the dynamic linear conformity economies, with rational forward looking agents, can be

identified from behaviour in the same economies with myopic agents introduced in Section 2.1.

As we already noticed, the coefficients of the policy function in economies with myopic agents

are equal to the ones of the policy function of a dynamic linear conformity economy with either

β = 0 or at t = T . In this sense, myopic models are nested within the class of dynamic models we

study and forward looking and myopic behaviour can be separately identified as an immediate

consequence of Theorem 6.

Furthermore, and most importantly, forward looking and myopic behaviour can be identified

also when only outcomes at any arbitrary time t (< T if the economy has finite horizon) are

observed. This is a direct consequence of Theorem 2-(ii-iii). There we show in fact that, when

β = 0, and/or in the last period T of a finite horizon economy, the coefficients of the policy function

form an exponentially declining sequence in | b |. When instead β > 0 and the economy has an

infinite horizon, or when β > 0 and t < T in a finite horizon economy, the coefficients of the policy

function do not decline exponentially. It follows therefore that the policy function coefficients

in a myopic economy decline exponentially in | b |. Showing that the estimated sequence (cb,l) is

40If, furthermore, observables display no temporal correlation, that is, if ∀a, b and t > s, E(xa,t|xb,s) = E(xa,t),

then conditional expectations E
[
xa+b,τ |xt

]
are equal to zero in the econometric equations and the economy is fully

identified from observations of outcomes and observables of any consecutive periods t, t− 1, t− 2 only.
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not exponential in | b |, where l = T − (t − 1) > 1, implies that these data could not have been

generated by a myopic model.41

Following this analysis, we can also sign the error we would make if we fitted a myopic (or

a static) model to data generated by a dynamic model with forward looking agents. In fact,

in Theorem 2-(iii) we show that, in a dynamic model with forward looking agents, at any time

t < T , the sequence (cb,l) declines faster than exponentially in | b |. As a consequence, erroneously

fitting a myopic (or a static) model induces under-estimating (cb,l) for b’s close enough to a and

overestimating them for all the more distant b’s in social space.42 While theoretically this could

lead to both under- or over-estimating the social interaction parameter α3, the Monte Carlo

simulations we report in the next section suggest that erroneously fitting a static model generally

leads to an under-estimation of the true value of this parameter. Thus, current estimates of social

interactions may potentially be seriously biased downwards in contexts where forward-looking

behaviour has a relevant effect.

Remark (Extensions) The identification strategy developed in this chapter can be adapted

and extended to cover the more general economies we introduce in Section 2.3. We briefly

outline the arguments here. In economies with general network structures, the policy functions

are expressed as in equation (7). With a general (arbitrary) network structure, b cannot be

interpreted any more as a sufficient measure of the social distance between an arbitrary agent a

and a + b. As a consequence policy functions lose symmetry: the coefficient of the policy of a

with respect to e.g., the past action of agent a+ b is ca,b; that is, it depends on a as well as on b.

Nonetheless, the coefficients are known functions of the network and the structural parameters.

Under finite temporal memory and an infinite or sufficiently long finite time horizon, sufficiently

lagged shocks continue to represent valid instruments for past actions. If anything, the (known)

network structure should help with identification. In the economy with social accumulation of

habits, the policy functions, in equation (8), depend on the accumulated stock ra+b,t−1 in place of

action ya+b,t−1. But the idea of using lagged past shocks as instruments extends directly: we can

simply instrument ra+b,t−1 by xa+b,t−M−1. More specifically, in finite horizon economies, non-

stationary patterns can also be exploited for identification: for instance, social interactions might

lose significance in the last periods in contrast to what predicted by habit models (or by simple

behavioural imitation models, which we do not explicitly discuss).43 Finally, in the economy with

global interactions, provided that the average action ρ(y) is well defined, the structure of the

policy functions is maintained unchanged with respect to the the global interactions and α4 is

41Equivalently, we can estimate the sequence (γdb,l) by simply regressing ya,t on (xb,t)b∈A and then by showing

that the estimated sequence is not exponential in | b |, where l = T − (t − 1) > 1. The value of γ does not affect

the rate of decline of the sequence (γdb,l), as long as γ 6= 0, and hence it can be disregarded in this argument.
42The same holds for the sequence (db,l).
43We thank an anonymous referee for this point.
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absorbed in the coefficient (cb, db, eb), in equation (9). Then, after showing these new coefficients

are injective, we can straighforwardly apply our identification strategy.

3.2 Monte Carlo Simulations

The strength of identification will generally be a function of the three structural parameters,

capturing the complex interactions between habits, social interactions and discounting of future

utilities, in connecting, in equilibrium, the actions across time. In this section, we explore this

issue through Monte Carlo simulations where we evaluate the performance of Generalized Method

of Moments (GMM) estimators of the parameters of interest obtained by exploiting moment

conditions induced by dynamic economic equilibrium restrictions.

We concentrate on a three period (T, T − 1, T − 2) conformity economy. We restrict the

stochastic process (θa,t)a∈A,t∈{T−2,T−1,T} by assuming no contextual effects, that is δ = 0; there-

fore, θa,t = γxa,t + ua,t. Also, we assume xa,t ∼ N(0, 1) and ua,t ∼ N(0, 1), for a ∈ A and

t = T − 2, T − 1, T .

The parameters we aim at estimating are (α1, α3, β, γ). To this end, (i) we generate data

from the stochastic process (θa,t)a∈A,t∈{T−2,T−1,T} and (ii) for the dependent choice variables ya,t,

t = T − 2, T − 1, T , by using the unique equilibrium policy function in Theorem 1-(i).44 In the

benchmark specification whose output we present in Figures 4 and 5, we use α1 = 0.2, α3 =

0.3, α2 = 0.2, β = 0.95, γ = 1.0,m = 1000, and B = 500, where B is the Monte Carlo size,

although we rely on multiple other designs for our evaluations.45 We then apply the GMM

procedure to the data we generated, using 2 moment conditions imposed by equations (9) for

t = T :

E [εa,T | xa,T−1] = 0 (11)

E [εa,T | (xa−1,T + xa+1,T )] = 0; (12)

and 3 moment conditions from equation (10) for t = T − 1:

E [εa,T−1 | xa,T−2] = 0 (13)

E [εa,T−1 | (xa−1,T−1 + xa+1,T−1)] = 0 (14)

E [εa,T−1 | (xa−2,T−1 + xa+2,T−1)] = 0. (15)

44In order to make sure that the results are not influenced by initial observations (ya,T−2)a∈A, we used multiple

designs with buffer periods of size 0, 10, 20, and 50. We either set the first buffer period values to zero or picked

them iid from N(0, 1). For the rest of the buffer periods, we generated xa,t ∼ N(0, 1) and ua,t ∼ N(0, 1), and

let the ya,t be determined by the equilibrium policy function in Theorem 1-(i). We obtained practically identical

results in each, to the ones in Figures 4 and 5.
45Precisely, we have used in our Monte Carlo experiments the following designs: N = 2m + 1, with m =

10, 25, 50, 100, 500, 1000, and 5000 agents on both sides of agent zero; α3 = 0, .05, .1, .15, .20, .25, .30, .35, .40, .45, .50;

α1 = p(1− 2α3), and α2 = (1− p)(1− 2α3), where p = 0, .1, .2, .3, .4, .5, .6, .7, .8, .9, 1.
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Given these 5 population moment conditions for each agent a ∈ A, nonlinear in the parameters of

interest, (α1, α3, β, γ), the model is overidentified. Therefore it is not possible to solve the system

of analogous sample moment conditions for a unique value of the parameter vector. Instead, the

structural coefficients can be estimated using GMM.46

The results of our Monte Carlo simulations reported in Figure 4 are encouraging regarding the

strength of identification: all coefficient estimates converge to the true values and standard errors

shrink, as the number of agents becomes arbitrarily large. Interestingly, however, the convergence

speed for the β estimate is much slower than for (α1, α3). We suggest this is a consequence of the

fact that the GMM estimate of β is obtained exclusively off of equations (13-15), whereas (α1, α3)

enter both T and T − 1 period first order conditions, equations (13-15) and (11-12), respectively.

Our Monte Carlo allows us to study more in detail the issue of distinguishing myopic (or static)

and dynamic economies. In particular we aim at studying the error associated with estimates of

α1 and α3 that ignore the dynamic structure of the economy when the true model is a dynamic

linear conformity economy. To this end, we perform the following experiment: For the same data

drawn in each Monte-Carlo round, we estimate (i) the full GMM (5 moments-2 periods), (ii)

GMM with T − 1-period data only and 3 moment conditions for period T − 1, and finally (iii)

myopic (static) GMM, with T − 1-period data where the econometrician (mistakenly) believes

that it is T -period data and using the 2 moment conditions for period T . Figure 5 reports the

outcome of the experiment: the full GMM in red, the GMM with T − 1-period data only in blue,

and the myopic (static) GMM in green.

As it is apparent from the Figure, both the full GMM and the GMM with T − 1-period data

consistently estimate α1 and α3, although standard errors under the full GMM are much smaller,

due to the fact that this procedure uses more information. The estimates of both parameters under

myopic (static) GMM are instead biased, evidencing the mis-specification of the true dynamic

forward-looking equilibrium data generating process. Most importantly, while theoretically we

can only sign the error in terms of the patterns of (cb,l) and (db,l), in the simulations we can

directly sign the bias in the estimates: the myopic (static) GMM under-estimates both α1 and α3

with respect to the true value; that is, it over-estimates the effect of agents’ own shock in their

preferences, α2. Thus, an econometrician who ignores the true dynamic structure with forward-

looking behaviour might potentially end up obtaining estimates of social interactions that are

biased downwards.

4 Conclusion

Social interactions provide a rationale for several important phenomena at the intersection of

economics and sociology. As we noted in the Introduction, however, the theoretical and empir-

46We follow closely the setup of Section 6.5 of Cameron and Trivedi (2005) on nonlinear instrumental variables.
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Figure 5: Distribution of the estimates α̂1 and α̂3 for the true values of (α1, α3, β, γ) =

(0.2, 0.3, 0.95, 1), under three different specifications.
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ical study of economies with social interactions has been hindered by both mathematical and

conceptual problems.

In this paper we show how some of these obstacles to the study of economies with social

interactions can be overcome. Admittedly, we restrict our analysis to linear economies, but in

this context we are able to prove several desirable theoretical and computational properties of

equilibria and to exploit the properties of dynamic equilibria we characterize to produce positive

identification results both in stationary and non-stationary economies.

We conclude that the class of dynamic linear economies with social interactions we have

studied in this paper can be fruitfully employed in applied and empirical work.
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APPENDIX

This Appendix contains proofs of the major results in the main text. There are a total of seven lemmas

these proofs depend upon. As a general rule, we have stated the technical lemmas we need when we need

them, and relegated the detailed proofs to the Technical Appendix (not for publication), to make the

article flow better. All notation is as defined in the main text unless explicitly noted otherwise.

A Proof of Theorem 1: Existence and Uniqueness

By exploiting the linearity of the policy functions, our method of proof is constructive, producing also a

direct and useful recursive computational characterization for the parameters of the symmetric policy func-

tion at equilibrium. We implement the proof in three main steps, by induction on the length of the economy.

Step 1: Existence, uniqueness and the convex form for T = 1. One can interpret this step either

as a one-period economy or the last period of a finite-horizon economy, by considering initial histories of

any finite length s. Let any history (y0, θ1) = (y−(s−1), θ−(s−2), . . . , y−1, θ0, y0, θ1) of previous choices and

preference shock realizations be given. Agent a solves

max
ya,1∈Y

{
−α1 (ya,0 − ya,1)

2 − α2 (θa,1 − ya,1)
2 − α3 (ya−1,1 − ya,1)

2 − α3 (ya+1,1 − ya,1)
2
}

(A.1)

The first order condition

2 [α1 (ya,0 − ya,1) + α2 (θa,1 − ya,1) + α3 (ya−1,1 − ya,1) + α3 (ya+1,1 − ya,1)] = 0

implies that

ya,1 = ∆−1
1 (α1 ya,0 + α2 θa,1 + α3 ya−1,1 + α3 ya+1,1) (A.2)

where ∆1 := α1 +α2 + 2α3 > 0. This choice is feasible (in Y ) since it is a convex combination of elements

of Y , a convex set by assumption. The objective function (A.1) is strictly concave in ya,1, thus ya,1 in

(A.2) is the unique optimizer. The form in (A.2) maps bounded measurable policy functions fa−1 and

fa+1, for a−1 and a+ 1 respectively, into a bounded measurable function for a. The system of such maps,

one for each agent a, defines, given any s-length history (y0, θ1), an operator L1 : B→ B that acts on the

family of bounded measurable functions f = (fa) ∈ B :=
∏
a∈AB ((Y ×Θ)s, Y ) according to

(L1f)a
(
yt−1, θt

)
= ∆−1

1

(
α1 ya,0 + α2 θa,1 + α3 fa−1

(
yt−1, θt

)
+ α3 fa+1

(
yt−1, θt

))
Clearly, L1 is a self-map. We show next that it is a contraction. Endow B ((Y ×Θ)s, Y ) and B with the

37



sup norm ‖ · ‖∞ which makes them into Banach spaces. Pick f, f ′ ∈ B. For all
(
y0, θ1

)
∣∣∣ (L1f)a

(
y0, θ1

)
− (L1f

′)a
(
y0, θ1

) ∣∣∣ = ∆−1
1

∣∣∣α1 ya,0 + α2 θa,1 + α3 fa−1

(
y0, θ1

)
+ α3 fa+1

(
y0, θ1

)
−α1 ya,0 − α2 θa,1 − α3 f

′
a−1

(
y0, θ1

)
− α3 f

′
a+1

(
y0, θ1

) ∣∣∣
= ∆−1

1

∣∣∣α3

(
fa−1

(
y0, θ1

)
− f ′a−1

(
y0, θ1

))
+α3

(
fa+1

(
y0, θ1

)
− f ′a+1

(
y0, θ1

)) ∣∣∣
≤

(
α3

∆1

) ∣∣∣ fa−1

(
y0, θ1

)
− f ′a−1

(
y0, θ1

) ∣∣∣
+

(
α3

∆1

) ∣∣∣ fa+1

(
y0, θ1

)
− f ′a+1

(
y0, θ1

) ∣∣∣
≤

(
α3

∆1

)(∥∥fa−1 − f ′a−1

∥∥
∞ +

∥∥fa+1 − f ′a+1

∥∥
∞

)
≤

(
2α3

∆1

)
‖f − f ′‖∞

Since the above inequality holds for each a, then

‖L1f − L1f
′‖∞ ≤

(
2α3

∆1

)
‖f − f ′‖∞

The coefficient 2α3 ∆−1
1 < 1 since α1 + α2 > 0 thanks to Assumption 1-2.. Hence L1 is a contraction

mapping on B. Thus, by Banach Fixed Point Theorem (see e.g., Aliprantis and Border (2006), p.95) L1 has

a unique fixed point, i.e., a unique family f∗ = (f∗a ) in B that satisfies the system of first-order conditions

for all agents. Consider now Bs the subset of B that includes symmetric families of bounded measurable

maps in the sense that for any a, b ∈ A and any given history (y0, θ1), fa+b(y
0, θ1) = fa(Rb y0, Rb θ1),

where Rb is the canonical shift operator in the direction b. It is easy to show that Bs is a closed subset

of B and that L1 maps Bs into itself. Since L1 is a contraction mapping, its unique fixed point then lies

necessarily in Bs. This establishes that the unique solution needs to be symmetric. Furthermore, as we

show in the next Lemma, by applying the operator L1 directly to policy coefficient sequences, this unique

symmetric family takes the convex combination form as in the statement of Theorem 1. Let

G :=



g : Y ×Θs → Y s.t.

g(y0, θ
1) =

∑
a∈A ca ya,0 +

∑
a∈A da θa,1 +

∑T
τ=t+1

∑
a∈A ea,τ−tE

[
θa,τ |θ1

]
with

(i) ca, da, ea ≥ 0 and
∑
a∈A

(
ca + da +

∑T
τ=t+1 ea,τ−t

)
= 1

(ii) ( 1
2 )ca+1 + ( 1

2 )ca−1 ≥ ca,∀a 6= 0

(iii) cb ≤ ca,∀a, b ∈ A with |b| > |a|.
(iv) ca = c−a, ∀a ∈ A

and properties (ii), (iii), and (iv) also holding for the d and e sequences.


(A.3)

be the class of functions that are convex combinations (i) of one-period before history, current and expected

future preference shocks, having the (ii) ‘convexity’, (iii) ‘monotonicity’, and (iv) ‘symmetry’ properties.

Property (ii) states that the rate of ‘spatial’ (cross-sectional) convergence of the policy weights is non-

increasing in both directions, relative to the origin. Monotonicity property, (iii), has a very natural
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interpretation: agent b’s effect on agent 0’s marginal utility is smaller than agent a’s effect on it, if a is

closer to 0 than b is. Finally, (iv) says that the policy weights are symmetric around 0.

Lemma 1 (Convex Combination Form) For any history (y0, θ1), the unique symmetric solution de-

pends solely on last period equilibrium choices and current preference shock realizations, i.e. y∗1(y0, θ1) =

g1(y0, θ1), for some g1 : Y × Θ → Y . Moreover, the policy function g1 has the convex combination form

as in the statement of the theorem.

This proves Step 1, namely that the statement of the Theorem is true for 1-period economies. Next, we

demonstrate that this result holds for any any finite-horizon, T -period economy.

Step 2: Induction, T-1 implies T. Let 2 ≤ T < ∞. Assume that the statement of Theorem 1 is

true up to T − 1-period. The T -period economy can be separated into a first period and a T − 1-period

continuation economy. By hypothesis, there exists a unique subgame perfect equilibrium (g∗l)
1
l=T−1 for

the T − 1-period continuation economy. Note that we use the notation l = T − (t − 1) in the Theorem

to denote the time periods remaining until the end of the economy, to make it it easier for the reader.

Agent a believes that all other agents, including his own reincarnations, will use that unique symmetric

equilibrium map from period 2 on, i.e., for any agent b ∈ A,

yb,t
(
yt−1, θt

)
= g∗l (Rb yt−1, R

b θt), for all l = T − 1, . . . , 1

Given any initial history (y0, θ1), the current strategies of other agents (yb,1)b 6=a, and the fact that (yb,t)
b∈A
t≥2

are induced by g, agent a solves

max
ya,1∈Y

{
− α1 (ya,0 − ya,1)

2 − α2 (θa,1 − ya,1)
2 − α3 (ya−1,1 − ya,1)

2 − α3 (ya+1,1 − ya,1)
2

+E

[
T∑
τ=2

βτ−1
(
−α1 (ya,τ−1 − ya,τ )

2 − α2 (θa,τ − ya,τ )
2

(A.4)

−α3 (ya−1,τ − ya,τ )
2 − α3 (ya+1,τ − ya,τ )

2
) ∣∣∣∣∣ (y0, θ1

) ] }

Thanks to the linearity of the optimal future choices given by iterative application of equilibrium policy,

agent a’s problem (A.4) is differentiable with respect to ya,1 and the unconstrained (ya,1 ∈ R) first order

condition is

0 = α1 (ya,0 − ya,1) + α2 (θa,1 − ya,1) + α3 (ya−1,1 − ya,1) + α3 (ya+1,1 − ya,1)

+E

[
T∑
τ=2

βτ−1

(
−α1 (ya,τ−1 − ya,τ )

∂

∂ya,1
(ya,τ−1 − ya,τ ) + α2 (θa,τ − ya,τ )

∂

∂ya,1
ya,τ (A.5)

− α3 (ya−1,τ − ya,τ )
∂

∂ya,1
(ya−1,τ − ya,τ )− α3 (ya+1,τ − ya,τ )

∂

∂ya,1
(ya+1,τ − ya,τ )

) ∣∣∣∣∣ (y0, θ1
) ]

Moreover, agent a’s problem (A.4) is strictly concave in his choice ya,1 since the second partial of the
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objective function with respect to ya,1, −∆T , is negative

∆T := α1 + α2 + 2α3 +

T∑
t=2

βt−1

(
α1

(
∂

∂ya,1
(ya,t−1 − ya,t)

)2

+ α2

(
∂

∂ya,1
ya,t

)2

+ α3

(
∂

∂ya,1
(ya−1,t − ya,t)

)2

+ α3

(
∂

∂ya,1
(ya+1,t − ya,t)

)2
)

> 0 (A.6)

Consequently, the first order condition (FOC) characterizes the unique maximizer of the unconstrained

problem. Since agent’s objective (A.4) is a discounted expected weighted sum of quadratic terms with

peaks in the set Y , and the conditional expectations of shocks are in the interior of Y , the unique maximizer

of the unconstrained problem is almost surely in the interior of Y , as the first part of Lemma 2 states. We

prove that lemma in Technical Appendix F.

By hypothesis, there exists a unique subgame perfect equilibrium for the T − 1-period continuation

economy. Hence, iterated application of the policy maps backwards towards period 1 allows one to write

any t-period equilibrium choice of agent a ∈ A as

ya,t = gT−(t−1)(R
a yt−1, R

a θt)

=
∑
b1∈A

cb1,T−(t−1) ya+b1,t−1 +
∑
b1∈A

db1,T−(t−1) θa+b1,t +
∑
b∈A

T∑
τ=t+1

eb,T−(t−1),τ−tE
[
θa+b,τ |θt

]
=

∑
b1∈A

cb1,T−(t−1) gT−t(R
a+b1 yt−2, R

a+b1 θt−1)︸ ︷︷ ︸
ya+b1,t−1

+
∑
b1∈A

db1,T−(t−1) θa+b1,t

+
∑
b∈A

T∑
τ=t+1

eb,T−(t−1),τ−tE
[
θa+b,τ |θt

]
...

=
∑
b1∈A
· · ·

∑
bt−1∈A

cb1,T−(t−1) · · · cbt−1,T−1 ya+b1+···+bt−1,1

+

t−1∑
s=1

∑
b1∈A
· · ·

∑
bs−1∈A

cb1,T−(t−1) · · · cbs−1,T−(t−s)+1

[∑
bs∈A

dbs,T−(t−s)θa+b1+···+bs,t−(s−1)

+
∑
bs∈A

T∑
τ=t−s+2

ebs,T−(t−s),τ−(t−s+1)E
[
θa+b,τ |θt−s+1

]]
(A.7)

which shows that each future choice can be written as a convex combination of period-1 choices, period-1

shocks, and future expected shocks by iterated application of policy maps. Since at each iteration, convex

combination structure is preserved, it is so at the end too. As a direct consequence of (A.7), we have for

any t > 1 and for a ∈ A

∂y0,t

∂ya,1
=

∑
b1

· · ·
∑
bt−1

cb1,T−(t−1) · · · ca−(b1+···+bt−1),T−1 (A.8)

Consequently, the coefficient multiplying ya+b,1 in (A.5), γb,T , can be obtained by computing the cross

partial of the objective function with respect to ya+b,1 and ya,1 (i.e. the partial of the right hand side of
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(A.5)), and it represents the total effect of a change in ya+b,1 on the expected discounted marginal utility

of agent a. Namely, for any b ∈ A

γb,T := α3 I{b∈{−1,1}}

−
T∑
t=2

βt−1

(
α1

∂

∂ya+b,1
(ya,t−1 − ya,t)

∂

∂ya,1
(ya,t−1 − ya,t) + α2

∂

∂ya+b,1
ya,t

∂

∂ya,1
ya,t (A.9)

+ α3
∂

∂ya+b,1
(ya−1,t − ya,t)

∂

∂ya,1
(ya−1,t − ya,t) + α3

∂

∂ya+b,1
(ya+1,t − ya,t)

∂

∂ya,1
(ya+1,t − ya,t)

)
.

Similarly, the coefficients multiplying E [θa+b,τ |θt] =: z(a+ b, τ) in equation (A.5)

µb,τ,T =
∂

∂z(a+ b, τ)
E

[
T∑
τ=2

βτ−1

(
−α1 (ya,τ−1 − ya,τ )

∂

∂ya,1
(ya,τ−1 − ya,τ ) + α2 (θa,τ − ya,τ )

∂

∂ya,1
ya,τ

− α3 (ya−1,τ − ya,τ )
∂

∂ya,1
(ya−1,τ − ya,τ )− α3 (ya+1,τ − ya,τ )

∂

∂ya
(ya+1,τ − ya,τ )

) ∣∣∣∣∣ (y0, θ1
) ]

Moreover, the second part of Lemma 2 states that thanks to the linearity of the FOC in the choice

variables, the preference shocks, and the expected future preference shocks, one can write the FOC in

equation (A.5) as a function only of contemporaneous choices, and expected future shocks, through iterative

application of the policy functions for future period equilibrium choices, as we demonstrated in (A.7). Since

the unique optimizer ya,1 is almost surely interior, the coefficients multiplying these are non-negative.

Lemma 2 (Interiority) Let T ≥ 2. The unique optimizer ya,1 is almost surely in the interior of Y =

[y, ȳ], and equation (A.5) can be written as

0 = −ya,1 ∆T + α1 ya,0 + α2 θa,1 +
∑
b 6=0

γb,T ya+b,1 +
∑
b∈A

T∑
τ=2

µb,τ,T E
[
θa+b,τ |θ1

]
(A.10)

where ∆T := α1+α2+
∑
b6=0 γb,T+

∑
b∈A

∑T
τ=2 µb,τ,T , and the coefficients α1, α2, (γb,T )b 6=0, and (µb,τ,T )τ≥2

b∈A
are non-negative.

By isolating the choice ya,1, we can write the unique maximizer as a convex combination of ya,0, θa,1, (ya+b,1)b6=0

and (E
[
θa+b,τ |θ1

]
)b∈A

ya,1 = ∆−1
T

α1 ya,0 + α2 θa,1 +
∑
b6=0

γb,T ya+b,1 +
∑
b∈A

T∑
τ=2

µb,τ,T E
[
θa+b,τ |θ1

] (A.11)

Each of these are elements of Y , a convex set. Thus, the optimal choice of the unconstrained problem is in

the feasible set of the constrained problem, hence it is its unique maximizer. The form in (A.11) implies

that showing the existence of a symmetric equilibrium policy for the first period of a T -period economy

is equivalent to finding the fixed point of an operator LT : B → B that acts on the family of bounded

measurable functions f = (fa) ∈ B :=
∏
a∈AB ((Y ×Θ)s, Y ) according to

(LT f)a
(
y0, θ1

)
= ∆−1

T

α1 ya,0 + α2 θa,1 +
∑
b 6=0

γb,T fa+b

(
y0, θ1

)
+
∑
b∈A

T∑
τ=2

µb,τ,T E
[
θa+b,τ |θ1

]
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Clearly LT is a self-map. Using straightforward modifications of the arguments in the proof of Step 1,

one obtains for f, f ′ ∈ B and for all
(
y0, θ1

)
that∣∣∣ (LT f)a

(
y0, θ1

)
− (LT f

′)a
(
y0, θ1

) ∣∣∣ ≤
∑
b6=0

(
γb,T
∆T

)
‖f − f ′‖∞

The coefficient
∑
b 6=0

(
γb,T
∆T

)
< 1 since α1 + α2 > 0. Thus, LT is a contraction mapping on the Banach

space B; hence it has a unique fixed point f∗. Using straightforward modifications of the arguments in

Step 1, the unique fixed point f∗ is necessarily symmetric. Moreover, LT maps the subspace (call it

BG) of bounded measurable functions that assume the convex combination form into itself, as we show

next. Let g ∈ BG be such that after any history (y0, θ1) = (y−(s−1), θ−(s−2), . . . , y−1, θ0, y0, θ1), one has

y1(y0, θ1) = g(y0, θ
1) with (c, d, e) being the coefficient sequence associated with g. Applying LT to g, we

get

(LT g)
(
Rayt−1, Raθt

)
= ∆−1

T

[
[α1 +

∑
b 6=0

γb,T c−b︸ ︷︷ ︸
∆T c′0

] ya,0 + [α2 +
∑
b6=0

γb,T d−b︸ ︷︷ ︸
∆T d′0

] θa,1

+
∑
b1 6=0

(
[
∑
b6=0

γb,T cb1−b︸ ︷︷ ︸
∆T c′b1

] ya+b1,0 + [
∑
b 6=0

γb,T db1−b︸ ︷︷ ︸
∆T d′b1

] θa+b,1

)

+
∑
b1∈A

T∑
τ=2

[µb,τ,T +
∑
b6=0

γb,T eb−b1,τ−1︸ ︷︷ ︸
∆T e′b1,τ−1

]E
[
θa+b1,τ |θ1

] ]
(A.12)

By construction, the policy coefficient series involved in the rearrangement, are non-negative, bounded-

valued, absolutely summable sequences. Hence, all sums above converge, since choices and shocks come

from the same compact interval of the real line. Consequently, by Fubini’s Theorem (see e.g., Dunford

and Schwartz (1958), p.190), one may switch the order of summation since the double sums yield a finite

answer when the summand is replaced by its absolute value. Moreover, the expression above is linear in

period 0 choices, period-1 shocks, and future expected shocks. By definition of the new coefficient sequence

(c′, d′, e′), each element of the new sequence is nonnegative since each element of the original one was so

and the new elements are positive weighted sums of the original ones. The total sum of the coefficients on

the right hand side of (A.12) is ∆−1
T (α1 +α2 +

∑
b 6=0 γb,T +

∑
b∈A

∑T
τ=2 µb,τ,T ) = 1 since (A.12) is basically

a convex combination of elements and of functions that are convex combinations of elements of the convex

set Y . The proof of the properties (i), (ii), (iii), and (iv) follows analogous arguments as in Lemma 1.

Thus, the unique fixed point, call it g∗∗T , lies in the set BG.

Therefore, when the symmetric continuation equilibrium policies are in G, after any history (y0, θ1), the

unique symmetric equilibrium policy in the first period, g∗∗T is in G too. Now, construct the policy function

g∗ as g∗T (y0, θ1) = g∗∗T (y0, θ1) for any initial (y0, θ1); and g∗l (yt−1, θ
t) = gl(yt−1, θ

t), for all l = T − 1, . . . , 1

and for all t ∈ {2, · · · , T} . The function g∗ is by construction the unique SPE of the T -period economy.

This completes the induction step for any given T ≥ 2. Therefore, the claim in Theorem 1 is true for any

finite horizon economy.
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Step 3: Convergence and stationarity. This step proves that the sequence of finite horizon symmetric

subgame perfect equilibria tends to a stationary symmetric subgame perfect equilibrium. To do that, we

treat finite-horizon economies as finite truncations of the infinite-horizon economy. Let G∞ :=
∏∞
t=1G be

the infinite-horizon strategy set. For a fixed discount factor β ∈ (0, 1), let Lβ := {βT ∈ [0, 1]∞ | βT,t =

βt−1, for 1 ≤ t ≤ T, and βT,t = 0, for t > T, where T ∈ {1, 2, . . .} ∪ {∞}} be the space of exponentially

declining sequences (at the rate β) that are equal to zero after the T -th element. Endow Lβ with the sup

norm. We can show that

Lemma 3 (Compactness) Lβ and G endowed with the supnorm are compact metric spaces.

Now, given g ∈ G∞, let ya(g) be agent a’s strategy induced by g, i.e., ya(g)(y0, θ1) = gt(R
a y0, R

a θ1), for

all a ∈ A and all (y0, θ1). Define the objective function U for agent a in the class of truncated economies

as U : G∞ × Lβ ×G∞ as

U(g0 ; βT , g) := E

[ ∞∑
t=1

βT,t u
(
ya,t−1(g0), ya,t(g

0), {ya+b,t(g)}b∈{−1,1}, θa,t
) ∣∣∣ (y0, θ1)

]

where u represents the conformity preferences. Pick θ̄ ∈ Y . Let the feasibility correspondence Γ : Lβ ×
G∞ → G∞ be defined for T <∞ as Γ(βT , g) = {g0 ∈ G∞ | g0

t (y, θt) = θ̄ ∈ Θ, ∀t > T, ∀(y, θt) ∈ Y ×Θt},
and for T = ∞ as Γ(β∞, g) = G∞. It is easy to see, thanks to the monotonicity of Γ in T (through βT )

and the compactness of G that Γ is a compact-valued and continuous correspondence. Moreover, as the

next Lemma shows, the parameterized objective function U is continuous in g0, the choice variable.

Lemma 4 (Continuity) For any given (βT , g) ∈ Lβ × G∞, U(·; βT , g) is continuous on Γ(βT , g) with

respect to the product topology.

For every T -period symmetric equilibrium policy sequence g∗T , define g∗∗T ∈ G∞ as

∀t,∀(y, θt) ∈ Y ×Θt, g∗∗Tt (y, θt) :=

{
g∗TT−(t−1)(y, θ

t), if t ≤ T
θ̄, if t > T

G∞ endowed with the product topology is compact since each G endowed with the supnorm is compact

from Lemma 3. Since product topology is metrizable, say with metric d,47 (G∞, d) is a compact metric

space hence the sequence (g∗∗T )T has a convergent subsequence (g∗∗Tn)Tn in G∞ that converges say to

g∗ ∈ G∞. Let M : Lβ × G∞ → G∞ be the correspondence of maximizers of U given the value of the

parameters. Lastly, let E : Lβ → G∞ be the symmetric equilibrium correspondence for the sequence of

finite economies. Since g∗Tn is a symmetric subgame perfect equilibrium for any Tn, for all gTn ∈ G∞ we

47See Footnote 54 for an example of metrization of product topology.
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have

U(g∗Tn ; βTn , g
∗
Tn) = E

[ ∞∑
t=1

βTn,t u
(
y0,t−1(g∗Tn), y0,t(g

∗Tn), {yb,t(g∗Tn)}b∈{−1,1}, θ0,t

) ∣∣∣ (y0, θ1)

]

= E

[
Tn+1∑
t=1

βt−1 u
(
y0,t−1(g∗Tn), y0,t(g

∗Tn), {yb,t(g∗Tn)}b∈{−1,1}, θ0,t

) ∣∣∣ (y0, θ1)

]

≥ E

[
Tn+1∑
t=1

βt−1 u
(
y0,t−1(gTn), y0,t(g

Tn), {yb,t(g∗Tn)}b∈{−1,1}, θ0,t

) ∣∣∣ (y0, θ1)

]

= E

[ ∞∑
t=1

βTn,t u
(
y0,t−1(gTn), y0,t(g

Tn), {yb,t(g∗Tn)}b∈{−1,1}, θ0,t

) ∣∣∣ (y0, θ1)

]
= U(gTn ; βTn , g

∗
Tn)

Thus, g∗Tn ∈ M(βTn , g
∗Tn) for all Tn. Since U is continuous in the choice dimension due to Lemma 4

and that the feasibility correspondence Γ is continuous, by the Maximum Theorem (see Berge (1963), p.

115), the correspondence of maximizers, M , is upper hemi-continuous. This implies that if (βTn , g
∗Tn)→

(β∞, g
∗), then g∗ ∈M(β∞, g

∗) hence g∗ is a symmetric SPE of the infinite-horizon economy. This implies

immediately that the equilibrium correspondence E is upper hemi-continuous too.

Uniqueness of finite-horizon symmetric SPEs imply that E is single-valued hence continuous for T <∞.

Define F(βT ) := E(βT ), for T <∞ and let F(β∞) = g∗. This way, F is continuous on the space Lβ , which

is compact under the supnorm by Lemma 3. Consequently, F is uniformly continuous. This means, for a

given ε > 0, we can pick δ > 0 small enough so that ||βT − βT ′ ||∞ < δ implies d (F(βT ),F(βT ′)) <
ε
2 . We

know from the previous approximation that for βT → β∞ there is a subsequence g∗Tn → g∗. Since (βT )T

is convergent, it is Cauchy. So, choose T (δ) large enough such that ∀T, T ′ ≥ T (δ), ||βT − βT ′ || < δ and

∀Tn ≥ T (δ), ||g∗Tn − g∗||∞ < ε
2 . Pick, then, any element Tn of the subsequence and any other element, T ′

such that Tn, T
′ ≥ T (δ). We have

d
(
g∗T

′
, g∗
)

= d (F(βT ′),F(β∞))

≤ d (F(βT ′),F(βTn)) + d (F(βTn),F(β∞))

<
ε

2
+ d

(
g∗Tn , g∗

)
< ε

The first inequality is the triangle inequality; the second is due to the uniform continuity of F and the third

is by the fact that g∗Tn → g∗ uniformly. This proves that the whole sequence g∗T → g∗ uniformly. The

implication of this latter is that, as the finite-horizon economies approach the infinite-horizon economy,

every two consecutive period, we make choices approximately with respect to the same stationary SPE

policy, hence g∗ is stationary. This concludes Step 3 which in turn establishes the proof of the statement

of Theorem 1. �

B Proof of Theorem 2: Characterization and Computation

-(i) : The first-order conditions of each agent’s objective is linear in the choices, the preference shocks,

and the conditional expected values of the future shocks. The structural coefficients multiplying these are

44



independent of the realizations or the probability law of the stochastic process θ. Hence, the resulting

equilibrium coefficients are so as well.

-(ii) : In the terminal time period, l = 1, matching the coefficients of the policy function on both sides of

equation (A.2), characterizing the unique optimal choice for agent zero, one obtains for a ∈ A

ca,1 =

(
α1

∆1

)
I{a=0} +

(
α3

∆1

)
ca−1,1 +

(
α3

∆1

)
ca+1,1 (B.1)

We simply show that one can fit an exponentially declining sequence into this equation. Since the equation

has a unique solution as argued in the existence proof, this would prove the statement. If α1α3 = 0,

equation (B.1) implies that ca,1 = 0 for all a 6= 0 and c0,1 = α1/(α1 + α2). So, the statement is trivially

satisfied where the rate of decline is zero. Assume now that α1α3 6= 0. Assume wlog that a > 0, we can

safely divide both sides by ca−1,1 now and multiply them by
(

∆1

α3

)
to obtain(

∆1

α3

)(
ca,1
ca−1,1

)
︸ ︷︷ ︸

r1

= 1 +

(
ca+1,1

ca,1

)
︸ ︷︷ ︸

r1

(
ca,1
ca−1,1

)
︸ ︷︷ ︸

r1

which induces a quadratic equation

r2
1 −

(
∆1

α3

)
r1 + 1 = 0

whose determinant
(

∆1

α3

)2

− 4 > 0 since ∆1 = α1 + α2 + 2α3 > 2α3 (remember that α1 + α2 > 0). The

equation has two positive roots, one bigger and one smaller than 1. The bigger root cannot work since it

is explosive as |a| → ∞. We pick the smaller root

0 < r1 =

(
∆1

2α3

)
−

√(
∆1

2α3

)2

− 1 < 1 (B.2)

which is decreasing in
(

∆1

2α3

)
spanning the interval (0, 1) for different values of the former in the interval

(1,∞). Finally, the sum of coefficients can be written∑
a∈A

ca,1 =
∑
a∈A

c0,1 r
|a|
1 = c0,1 + 2 c0,1

r1

1− r1
=

α1

α1 + α2
(B.3)

Solving for c0,1 from above, we obtain

c0,1 =

(
α1

α1 + α2

)(
1− r1

1 + r1

)
and finally thanks to exponentiality

ca,1 = r
|a|
1

(
α1

α1 + α2

)(
1− r1

1 + r1

)
, for a ∈ A

The argument for the sequence (da,1)a∈A is identical with one change: The sum of coefficients
∑
a da,1 =(

α2

α1+α2

)
. Note that ea,1 = 0 for a ∈ A optimally since there are no future shocks. This proves part (ii) of

the theorem.

-(iii) : We will use the following lemma which we prove in Technical Appendix G.
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Lemma 5 (Monotone Increasing Cross-Sectional Rates) For any l ≥ 2, the rates at which the pol-

icy coefficients converge to zero at the cross-section are strictly monotonic in a, i.e., for any a ∈ A

r|a|+1,l =
c|a|+1,l

c|a|,l
<

c|a|+2,l

c|a|+1,l
= r|a|+2,l (B.4)

Moreover, given β and α1

α1+α2
, the cross-sectional rates are strictly increasing in α3, i.e.,

ra,l(α
′
3) > ra,l(α3), for any a 6= 0. (B.5)

The analogous results hold for for dl and el.

Exponential convergence (as in T = 1) implies that ra = rb for any a, b 6= 0. As the Lemma demonstrates,

for T ≥ 2, as |a| increases (going away from zero at the cross-section), coefficients decline much faster

for closer agents than for farther agents. In case N is large, the rate of decline stabilizes eventually to a

slower exponential rate, lim|a|→∞ ra,T > rb,T , for any b ∈ A, due to the fact that (ra,T )a∈A is a bounded

monotone increasing sequence in the interval (0, 1).

-(iv) : As defined in section 2.1, Cl :=
∑
b cb,l denote the total effect of past actions; that is, the effect

on an agent a’s action of a uniform unitary increase in all agents’ past actions. Similarly, Dl :=
∑
b db,l

denote the total effect of contemporary preference shocks; and El :=
∑
b eb,l the total effect of expected

future preference shocks. We demonstrate in the next Lemma, wich we prove in the Technical Appendix

G, that these sums are given by a continued fraction form across periods.

Lemma 6 (Policy Coefficient Sums) For a T -period dynamic conformity economy with T > 1, the

policy coefficient sums for l = 2, . . . , T are given by the following recursive system of continued fractions

Cl =
α1

α1 + α2 + α1β (1− Cl−1)

Dl =
α2

α1 + α2 + α1β (1− Cl−1)
(B.6)

El =
α1β (1− Cl−1)

α1 + α2 + α1β (1− Cl−1)

where C1 = α1

α1+α2
, D1 = α2

α1+α2
, and E1 = 0. Moreover, Cl ↓ C∞ and Dl ↓ D∞ are monotonically

decreasing (hence El ↑ E∞) sequences where C∞, D∞, and E∞ are the fixed points of the respective

equations in the recursive system (B.6).

Using the structure in Lemma 6, for the period just before the last (l = 2),

C2 =
α1

α1 + α2 + α1β(1− C1)
≤ α1

α1 + α2
= C1

and strictly so when α1β > 0. Assuming now that Cl−1 < . . . < C1, we also obtain

Cl =
α1

α1 + α2 + α1β(1− Cl−1)
<

α1

α1 + α2 + α1β(1− Cl−2)
= Cl−1

as claimed in the statement. The proof for Dl is identical. Since, El = 1 − Cl − Dl and that Cl and

Dl increase as l decreases, the total effect of expected future preference shocks, El instead decreases as l

decreases, as stated.
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C Proof of Theorem 3: Dependence on the Preference Parame-

ters

- Proof of (i) : We prove here injectivity of the maps going from structural parameters into the space of

policy coefficients. We start with the finite horizon economy.

- Finite Horizon: 1 < T <∞. We will first demonstate that the map (α1, α3)→ (cb,1(α1, α3))b is injective.

Since α1 + α2 > 0 by Assumption 1, Lemma 6 (see also the proof of Theorem 2-(ii)) yields C1 = α1

α1+α2
,

and D1 = α2

α1+α2
; hence, C1 + D1 =

∑
a ca,1 +

∑
a da,1 = α1

α1+α2
+ α2

α1+α2
= 1. Pick the coefficients whose

sum is non-zero. Since the structural equations are the same, the arguments below are the same. So,

assume wlog that C1 > 0. Now, there are two possibilities:

(i) If cb,1 = 0 for all b 6= 0, Theorem 2-(ii) (see also footnote 19) implies that α3 = 0. In that case, we

can also recover α1 = C1 and α2 = C2.

(ii) If there is b 6= 0 such that cb,1 6= 0, then what we know from Theorem 2-(ii) (see also footnote 19),

namely

cb,1 =

(
α1

1− 2α3

)(
1− r1

1 + r1

)
r
|b|
1 > 0, for all b ∈ A

where r1 =

(
1

2α3

)
−

√(
1

2α3

)2

− 1 < 1

would imply that cb,1 6= 0 for all b ∈ A. Moreover, we can recover r1 by computing the ratio of

two consecutive policy coefficients, for instance, r1 = c1,1/c0,1. Since, r1, as shown in the second

equation above, is strictly increasing in α3, there exists a unique value of α3 that generates the

policy coefficient sequence we observe. Moreover, knowing the true value of α3, we can also recover

α1 = (1− 2α3)C1 and α2 = (1− 2α3)(1− C1).

So far, we established that the map (α1, α3) → (cb,1(α1, α3))b is injective. Now, let an observationally

equivalent series of policy coefficients (cb,l(α1, α3, β))b∈A,l>1 and (cb,l(α
′
1, α
′
3, β
′))b∈A,l>1 be given. Namely,

for all l > 1 and any b ∈ A

cb,l(α1, α3, β) = cb,l(α
′
1, α
′
3, β
′)

This implies that the sums should match for any period as well, i.e., for any l > 1

Cl =
∑
b∈A

cb,l(α1, α3, β) =
∑
b∈A

cb,l(α
′
1, α
′
3, β
′) = C ′l

Let p := α1

α1+α2
and p′ :=

α′1
α′1+α′2

. So, we can write C1 = p and C ′1 = p′. Moreover, by dividing the

numerator and the denominator of the right hand side of the continued fractions in Lemma 6 by (α1 +α2),

we can write for l > 1

Cl =
p

1 + β p (1− Cl−1)
=

p′

1 + β′ p′ (1− C ′l−1)
= C ′l (C.1)
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Given the observable sequence of sums (Cl)l>1, one can solve for the unique value of p for any given value

of β from (C.1) as

p =
Cl

1 − β Cl (1− Cl−1)

This establishes a continuous, strictly monotonically increasing, and differentiable function between β and

p and identifies the following sets of observationally equivalent (p, β) pairs for any l > 1

Pl := {(p′′, β′′) ∈ [0, 1]× [0, 1) such that Cl(p
′′, β′′) = Cl}

Now, we will show that equilibrium dynamics across periods impose sufficient restrictions on the inverse

image of the observed policy coefficient sequences. A total derivative, assuming that the levels Cl and

Cl−1 do not change, yields

∂p

∂β

∣∣∣
Pl

= p2 (1− Cl−1)

We know from Theorem 2-(iv) that for l > 1

p = C1 > . . . > Cl > . . .

Hence, for any l′ > l > 1

∂p

∂β

∣∣∣
Pl′

= p2 (1− Cl′−1) > p2 (1− Cl−1) =
∂p

∂β

∣∣∣
Pl

(C.2)

Since the parameter vectors (α1, α3, β) and (α′1, α
′
3, β
′) generate these sequence of sums, (p, β) ∈ Pl and

(p′, β′) ∈ Pl, for any l > 1. As seen in (C.2), the marginal rates of substitution between p and β, at a

given point in ∩l>1Pl, are ranked across the sets Pl and Pl′ . So, these two sets can cross only once. Hence,

knowing the value of Cl and Cl′ for any l′ > l > 1 pins down the unique pair, say (p∗, β∗) that can generate

the observable coefficients. This implies that

p = p′ = p∗ and β = β′ = β∗

We know from Lemma 5 (also used in the proof of Theorem 2-(iii)) that cross-sectional rates of convergence

of the policy coefficients are strictly increasing in α3, given β and p = α1

α1+α2
. Hence, we can read

(
c|a|+1,l

c|a|,l

)
by computing the ratio of two consecutive policy coefficients, at the cross-section. Thanks to Lemma 5,

there exists a unique value of α3 that generates that ratio value. Given that we can determine the value

of α3, we can also recover α1 = p (1 − 2α3) and α2 = (1 − p) (1 − 2α3). This establishes that the map

(α1, α3, β)→ (cb,l(α1, α3, β))l>1
b∈A is injective.

- Infinite Horizon: Let T =∞. Our objective is to demonstate that the map (α1, α3, β)→ (cb,1(α1, α3, β))b

is injective. It will be easier to use a change of variable, as in the finite horizon case. Namely, given that

p := α1

α1+α2
, we can write α2 = (1−p)(α1+α2) = α1

(
1−p
p

)
. We also use the normalization α1+α2+2α3 = 1

to write α3 = 1
2 (1− (α1 + α2)) =

(
p−α1

2p

)
. With this change of variable, our paramater vector of interest

becomes (α1, p, β).

We cannot use the identification power of the equilibrium dynamics across periods since we have access

only to the stationary policy coefficients. Therefore, instead of looking across periods, we need to look
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for variation across agents. To do that, we study more closely the equation system, derived from the first

order conditions of any agent a ∈ A, that generates the policy coefficients. Thanks to Lemma 2 and by

matching equilibrium coefficients c in (A.10), one obtains for any b ∈ A

0 = −γ0 c0 + α1 I{b=0} +
∑
b1 6=0

γb1 cb−b1 (C.3)

where γ0 := ∆∞ and γb1 is as we defined in (A.9): the total effect on agent a’s expected discounted

marginal utility, of a change in the first period choice, ya+b1,1 of an agent b1 distance away from agent a,

namely agent a+ b1.

For the rest of the proof, we will need the following lemma which we prove in Technical Appendix G.

Lemma 7 (Cross-sectional Variation) There exists a unique sequence (γ̄b) := (α−1
1 γb1) that satisfies

the system in (C.3). Moreover, (i) the map γb(α1, p, β(p))
α1

is continuously differentiable and the partial

derivatives satisfy ∂
∂p

γb(α1, p, β(p))
α1

> 0 and ∂
∂α1

γb(α1, p, β(p))
α1

< 0, for any (α1, p, β(p)); and (ii) there exist

agents b 6= b′ such that for any (α1, p, β(p)),

−
∂α−1

1 γb′
∂p

∂α−1
1 γb′
∂α1

∣∣∣∣∣
α−1

1 γb′ (α1,p,β(p))=γ̄′b

> −
∂α−1

1 γb
∂p

∂α−1
1 γb
∂α1

∣∣∣∣∣
α−1

1 γb(α1,p,β(p))=γ̄b

> 0. (C.4)

Let an observationally equivalent series of policy coefficients (cb(α1, p, β))b∈A and (cb(α
′
1, p
′, β′))b∈A be

given. Namely, for any b ∈ A

cb(α1, p, β) = cb(α
′
1, p
′, β′)

and thanks to Lemma 6 the sums should satisfy

C∞ =
∑
b∈A

cb(α1, p, β) =
p

1 + β p (1− C∞)
=

p′

1 + β′ p′ (1− C ′∞)
=
∑
b∈A

cb(α
′
1, p
′, β′) = C ′∞.

One can solve for the unique value of β given any value of p for any given level C∞.

β(p |C∞) =
p− C∞

pC∞(1− C∞)
(C.5)

which establishes a continuous, strictly monotonically increasing, and differentiable function β(p |C∞),

and identifies a set of observationally equivalent (p, β) pairs consistent with the observed levels of policy

coefficient sum C∞.

Given that we observe (cb), the system in (C.3) need to be solved in terms of (γb1) and α1. Stacking

the coefficients multiplying unknowns in each equation in (C.3) in a separate row vector forms a circulant

matrix.48 With this definition, as we state in Lemma 7, we can invert that matrix and obtain the unique

sequence (γ̄b1) := (α−1
1 γb1) that solves the system in (C.3). We cannot identify α1 separately since we

have just as many equations as the number of agents in (C.3). This unique solution sequence provides us

with |A| additional parameter restrictions, in addition to the one we obtained in (C.5).

48A circulant matrix is a special kind of Toeplitz matrix fully specified by one vector, which appears as one

of the rows of the matrix. Each other row vector of the matrix is shifted one element to the right relative to the

preceding row vector. See e.g. Davis (1970) for an in-depth discussion of circulant matrices.
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Next, we replace β by the expression in (C.5). Given that we know the structural form of the mappings

γb1(α1, p, β) from the definition in (A.9), these restrictions jointly identify the following sets of observa-

tionally equivalent (α1, p, β(p)) vectors for any b1 ∈ A,

Pb1 :=
{

(α′′1 , p
′′, β′′(p′′)) ∈ [0, 1]× [0, 1]× [0, 1) such that α−1

1 γb1(α′′1 , p
′′, β′′(p′′)) = γ̄b1

}
(C.6)

Thus, we have a total of |A| restrictions and two parameters (α1, p) to determine.

Thanks to Lemma 7(i), the Implicit Function Theorem (see e.g., Bartle (1976), p.384) states that,

for any b1 ∈ A, there exists a continuous and differentiable function α1(p | Pb1) that gives the unique

value of α1 for any value of p such that (α1, p, β(p)) ∈ Pb1 , the level set defined in (C.6). The slope

of α1(p | Pb1) is the marginal rate of substitution between α1 and p that sustain the same level for the

function α−1
1 γb1(α1, p, β(p)). Using once again the Implicit Function Theorem, we know that this slope is

computed as

dα1

dp

∣∣∣
Pb1

= −
∂α−1

1 γb1
∂p

∂α−1
1 γb1
∂α1

∣∣∣∣∣
Pb1

> 0

and is positive thanks to Lemma 7(i). Therefore, we also know that the implicit functions α1(p | Pb1) are

strictly increasing in p, for any b1 ∈ A. Finally, we know from Lemma 7(ii) that there exist agents b 6= b′

such that for any (α1, p, β(p)),

dα1

dp

∣∣∣
Pb′

= −
∂α−1

1 γb′
∂p

∂α−1
1 γb′
∂α1

∣∣∣∣∣
α−1

1 γb′ (α1,p,β(p))=γ̄′b

> −
∂α−1

1 γb
∂p

∂α−1
1 γb
∂α1

∣∣∣∣∣
α−1

1 γb(α1,p,β(p))=γ̄b

=
dα1

dp

∣∣∣
Pb
. (C.7)

So, α1(p | Pb′) is steeper than α1(p | Pb). Hence, α1(p | Pb′) and α1(p | Pb) can intersect at most once. More-

over, since the parameter vectors (α1, p, β) and (α′1, p
′, β′) generate the observable sequences of coefficients,

(α1, p, β(p)) ∈ Pb ∩Pb′ and (α′1, p
′, β(p′)) ∈ Pb ∩Pb′ . Since |Pb ∩Pb′ | = 1, there can only be a unique pair

(α∗1, p
∗) that is consistent with the above restrictions. Hence,

p = p′ = p∗, and α1 = α′1 = α∗1

This in turn yields the unique value of β∗ = β(p∗ |C∞) consistent with the observable level C∞. More-

over, we can also recover α∗2 =
(

1−p
p

)
α∗1 and α∗3 = 1

2 (1 − (α∗1 + α∗2)). This establishes that the map

(α1, α3, β)→ (cb(α1, α3, β))b∈A is injective.

- Proof of (ii) : As before, we give the arguments for the policy coefficients on history. Same arguments

apply to other coefficients as well. Let (α1, α3, β) and (α′1, α
′
3, β
′) be given. Assume as in the statement

of the theorem that p = α1

α1+α2
=

α′1
α′1+α′2

= p′ and β = β′, but α′3 > α3. We know from Lemma 6 that

C1 = α1

α1+α2
= p = p′ = α1

α1+α2
, which are independent of the level of α3 and α′3. Now assume, for

induction, that the sums are equal and independent of α3 and α′3 up to l = T − 1 > 0. By dividing the

numerator and the denominator of the right hand side of the continued fractions in Lemma 6 by (α1 +α2)

and (α′1 + α′2) respectively, we can write

Cl =
p

1 + β p (1− Cl−1)
=

p′

1 + β′ p′ (1− C ′l−1)
= C ′l
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This equation implies that since Cl−1 = C ′l−1 are independent of α3 and α′3, so are Cl and C ′l . Same

argument holds at the limit C∞ as well. Next, we show the mean preserving spread property. Pick any

l > 0. We use the symmetry of the policy coefficient sequences around zero to write

Cl(α
′
3) =

∑
b∈A

cb,l(α
′
3) = c0,l(α

′
3) + 2

∑
a≥1

c0,l(α
′
3)

a∏
s=1

rs,l(α
′
3)

= c0,l(α
′
3)

1 + 2
∑
a≥1

a∏
s=1

rs,l(α
′
3)


= c0,l(α3)

1 + 2
∑
a≥1

a∏
s=1

rs,l(α3)

 =
∑
b∈A

cb,l(α3) = Cl(α3)

Lemma 5 states that ra,l(α
′
3) > ra,l(α3) for all a 6= 0. This implies that

∑
a≥1

∏a
s=1 rs,l(α

′
3) >

∑
a≥1

∏a
s=1 rs,l(α3)

in the above equation system. Since the policy coefficient sums are equal, then it has to be the case that

c0,l(α
′
3) = Cl(α

′
3)

1 + 2
∑
a≥1

a∏
s=1

rs,l(α
′
3)

−1

< Cl(α3)

1 + 2
∑
a≥1

a∏
s=1

rs,l(α3)

−1

= c0,l(α3)

This shows that the mass at the center decreases as α3 increases. Now, we will show that the tails of the

distribution of coefficients lift up when α3 increases. We show the argument on the right hand side of

zero. Thanks to symmetry, it will hold on both sides. Let us first define ā := infa>0 {ca,l(α′3) > ca,l(α3)}.
This set should be nonempty. Otherwise, it would mean that ca,l(α

′
3) ≤ ca,l(α3) for all a and with strict

inequality for a = 0, as we showed above. This in turn would mean that Cl(α
′
3) =

∑
a ca,l(α

′
3) <∑

a ca,l(α3) = Cl(α3), which would be a contradiction. So, the claim is true and ā exists. But then, by

definition of ā, the following holds:

cā,l(α
′
3) = c0,l(α

′
3)

ā∏
s=1

rs,l(α
′
3)

> c0,l(α3)

ā∏
s=1

rs,l(α3)

Hence, for any a > ā,

ca,l(α
′
3) = c0,l(α

′
3)

ā∏
s=1

rs,l(α
′
3)

a∏
s1=ā+1

rs1,l(α
′
3)

> c0,l(α3)

ā∏
s=1

rs,l(α3)

a∏
s1=ā+1

rs1,l(α3)

= ca,l(α3)

The first line is by definition; the second is by the monotonicity of the rates in α3. So, we showed that for

all 0 ≤ a < ā, ca,l(α
′
3) ≤ ca,l(α3) with strict inequality for a = 0; and for all a ≥ ā, ca,l(α

′
3) > ca,l(α3).
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Thanks to symmetry around zero, this shows that seeing the policy coefficients as probability distributions

on A,
(
ca,l(α

′
3)

Cl(α′3)

)
a∈A

is a mean-preserving spread of
(
ca,l(α3)
Cl(α3)

)
a∈A

. This concludes the proof.

D Proof of Theorem 4: Ergodicity

Suppose that the process
(
(θat )∞t=−∞

)
a∈A is (s)-Markovian. Let π be the initial measure on the configuration

space Y which is the distribution of

y0 =

( ∞∑
m=1

∑
b1

· · ·
∑
bm

cb1 · · · cbm−1

[
dbm θa+b1+···+bm,1−m

+

∞∑
τ=1

ebm,τ E[θa+b1+...+bm,1−m+τ | θ1−m, . . . , θ1−m−s]
])

a∈A

(D.1)

(yt ∈ Y)∞t=0 is an equilibrium process generated by the symmetric Subgame Perfect equilibrium policy

function g∗. Hence, given y0, one obtains on the equilibrium path

ya,1 =
∑
b1

cb1 ya+b1,0 +
∑
b1

db1 θa+b1,1 +
∑
b1

∞∑
τ=1

eb1 E[θa+b1,1+τ | θ1, . . . , θ1−s]

=
∑
b1

cb1

( ∞∑
m=1

∑
b1

· · ·
∑
bm

cb1 · · · cbm−1

[
dbm θa+b1+···+bm,1−m

+

∞∑
τ=1

ebm,τ E[θa+b1+...+bm,1−m+τ | θ1−m, . . . , θ1−m−s]
])

+
∑
b1

db1 θa+b1,1 +
∑
b1

∞∑
τ=1

eb1 E[θa+b1,1+τ | θt, . . . , θt−s]

=

∞∑
m=1

∑
b1

· · ·
∑
bm

cb1 · · · cbm−1

[
dbm θa+b1+···+bm,2−m

+

∞∑
τ=1

ebm,τ E[θa+b1+...+bm,1−m+τ | θ2−m, . . . , θ2−m−s]
]

which has the same form as in (D.1). Since the process
(
(θat )∞t=−∞

)
a∈A is (s)-Markovian, ya,0 and ya,1 are

distributed identically when the initial measure is π. Since the choice of a was arbitrary, π is a stationary

distribution of the Markov process (yt)
∞
t=0. Moreover, iterative application of the stationary policy function

g∗ on any path (θ1, θ2, . . .) of the stochastic process yields

ya,t =
∑
b1

cb1 ya+b1,t−1 +
∑
b1

db1 θa+b1,t +
∑
b1

∞∑
τ=1

eb1 E[θa+b1,t+τ | θt, . . . , θt−s]

...

= Ct
∑
b1

· · ·
∑
bt

(cb1 · · · cbt
Ct

)
ya+b1+···+bt,0 +

t∑
m=1

∑
b1

. . .
∑
bm

cb1 . . . cbm−1
dbm θa+b1+...+bm,t+1−m

+

t∑
m=1

∑
b1

. . .
∑
bm

∞∑
τ=1

cb1 . . . cbm−1
ebm,τ E[θa+b1+...+bm,t+1−m+τ | θt+1−m, . . . , θt−s+1−m]
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Since the preference shock process is stationary (s)-Markov, the law for the sum of preference shocks and

expectations is identical to the law for its ‘t-translated-into-the-past’ version, i.e., that of

ya,t = Ct
∑
b1

· · ·
∑
bt

(cb1 · · · cbt
Ct

)
ya+b1+···+bt,0

+

t∑
m=1

∑
b1

. . .
∑
bm

cb1 . . . cbm−1dbm θa+b1+...+bm,1−m (D.2)

+

t∑
m=1

∑
b1

. . .
∑
bm

∞∑
τ=1

cb1 . . . cbm−1
ebm,τ E[θa+b1+...+bm,1−m+τ | θ1−m, . . . , θ1−m−s]

Ct → 0 as t → ∞ since C < 1 due to the fact that α1 + α2 > 0. The first term in the parentheses in

the summand is a convex combination of uniformly bounded terms. Hence, the first part of the above

expression goes to 0 as t → ∞. Since the equilibrium is symmetric, the convergence is uniform across

agents: yt → y = (ya) uniformly. Thus, for any given initial value y0, and a path (. . . , θ−1, θ0), the

pointwise limit of ya,t can be written as

ya =

∞∑
m=1

∑
b1

· · ·
∑
bm

cb1 · · · cbm−1

[
dbs θa+b1+···+bs,1−m

+

∞∑
τ=1

ebm,τ E[θa+b1+...+bm,1−m+τ | θ1−m, . . . , θ1−m−s]
]

(D.3)

Now, pick any f ∈ C(Y,R), the set of bounded, continuous, and measurable, real-valued functions from

Y into R. Let π0 be an arbitrary initial distribution for y0. We have

lim
t→∞

∫
f(yt)πt (dyt) = lim

t→∞

∫
f

((
Ct
∑
b1

· · ·
∑
bt

(
cb1 · · · cbt

Ct

)
ya+b1+···+bt,0

+

∞∑
m=1

∑
b1

· · ·
∑
bm

cb1 · · · cbm−1

[
dbs θa+b1+···+bs,1−m

+

∞∑
τ=1

ebm,τ E[θa+b1+...+bm,1−m+τ | θ1−m, . . . , θ1−m−s]
])

a∈A

)
P (dθ)π0(dy0)

=

∫
f

(( ∞∑
m=1

∑
b1

· · ·
∑
bm

cb1 · · · cbm−1

[
dbs θa+b1+···+bs,1−m (D.4)

+

∞∑
τ=1

ebm,τ E[θa+b1+...+bm,1−m+τ | θ1−m, . . . , θ1−m−s]
])

a∈A

)
P (dθ)π0(dy0)

=

∫
f (y)π (dy)

The first equality is from (D.2); the second is due to Lebesgue Dominated Convergence theorem (see

e.g. Aliprantis and Border (2006), p. 415); third is due to the continuity of f and the pointwise limit

of yt in (D.3). Thus, for any f ∈ C(Y,R), limt→∞
∫
fdπt =

∫
fdπ, meaning that the sequence of

equilibrium distributions πt generated by the probability measure P and the policy g∗ converges weakly

to the invariant distribution π. The choice of π0 was arbitrary. Hence, for any initial distribution, the
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induced equilibrium process converges weakly to the same invariant distribution π. Therefore, π is the

unique invariant distribution of the equilibrium process. Here is why: Suppose that π̂ is another invariant

distribution. This implies that the induced process starting with π0 = π̂ should satisfy πt = π̂, for all

t = 1, 2, . . .. From the above convergence argument πt → π weakly. Hence π̂ = π.

Finally, to show ergodicity, pick an f ∈ B(Y,R), the set of bounded, measurable, real-valued functions

from Y into R. The process starting with π is stationary, hence πt = π for all t = 0, 1, . . .. Since the

process yt is stationary, so is the process (f (yt)). We can then use Birkhoff’s Ergodic Theorem (see e.g.

Aliprantis and Border (2006), p. 659) on the process (f (yt)) to obtain

lim
T→∞

1

T

T∑
t=1

f(yt) =

∫
f(yt)π(dyt)

almost surely. Since the choice of f was arbitrary, the last expression holds for all f ∈ B(Y,R). Thus the

equilibrium process (yt ∈ Y)∞t=0 starting from initial distribution π is ergodic. This concludes the proof of

Theorem 4. �

E Identification

E.1 Proof of Theorem 6: Identification

Assume first that population size N is finite. From Theorem 1, we have that if T is finite,

ya,t =
∑
b∈A

cb,T−(t−1) ya+b,t−1 + γ
∑
b∈A

db,T−(t−1) xa+b,t

+γ

T∑
τ=t+1

∑
b∈A

eb,T−(t−1),τ−tE
[
xa+b,τ |xt

]
+ εa,t

εa,t =
∑
b∈A

db,T−(t−1) ua+b,t +

T∑
τ=t+1

∑
b∈A

eb,T−(t−1),τ−tE
[
ua+b,τ |ut

]
And if T is infinite,

ya,t =
∑
b∈A

cb ya+b,t−1 + γ
∑
b∈A

db xa+b,t

+γ

∞∑
τ=t+1

∑
b∈A

eb,τ−tE
[
xa+b,τ |xt

]
+ εa,t

εa,t =
∑
b∈A

db ua+b,t +

∞∑
τ=t+1

∑
b∈A

eb,τ−tE
[
ua+b,τ |ut

]
These are econometric equations with N endogenous variables on the right hand side. Consider the N

instruments (xa+b,t−1)b. These equations can be consistently estimated through instrumental regressions if

the following three sets of conditions are satisfied. (Remember that we maintain N fixed here and consider

an arbitrarily large number of replications of the economy).

(1) The instruments are not perfectly correlated, which is guaranteed by Assumption 3.
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(2) The appropriate exclusion restrictions are satisfied, i.e., E [εt|xt−1] = 0. Note that εt is a linear

function of two sets of variables: ut and E [uτ |ut], with τ ≥ t + 1. By Assumption 2, we have

E [ut|xt−1] = 0 and, since E [uτ |ut] is a function of ut, E [E [uτ |ut] |xt−1] = 0.

(3) The instruments have an impact on the endogenous variables, which is the case when γ 6= 0. If

α1 6= 0, then ya+b,t is affected by ya+b,s. If T ≥ 2, we recover at least (cb,1)b and (cb,2)b. If T is

infinite, we recover (cb)b.

Suppose next that T is infinite. We know from Theorem 3-(i) that (cb)b∈A is injective in α1, α3 and

β. This shows identification when N is finite. To conclude, suppose that N is infinite and denote by Ak
the set which includes agent 0 and his k closest neighbors on the left and on the right. If T is finite, write

the equilibrium characterization as follows

ya,t =
∑
b∈Ak

cb,T−(t−1) ya+b,t−1 + ua,t + εa,t

where εa,t is defined as above and ua,t =
∑
b∈A\Ak

cb,T−(t−1) ya+b,t−1 and similarly for T infinite. Consider

estimating these equations through instrumental regressions as above. Here, E(ut|ys) 6= 0. However,

cb,T−(t−1) is positive for any b ∈ A and converges to zero monotonically as |b| → ∞, and their sum is less

than 1. This implies that
(∑

b∈A\Ak
cb,T−(t−1)

)
→ 0 as k → ∞. Hence, for a given ε > 0, there exists

a k large enough s.t.
∑
b∈A\Ak

cb,T−(t−1) < ε
max{|y|,|ȳ|} , where ya+b,t−1 ∈ Y = [y, ȳ] for each b ∈ A.

Consequently,

ua,t =
∑

b∈A\Ak

cb,T−(t−1) ya+b,t−1

≤

 ∑
b∈A\Ak

cb,T−(t−1)

 max{|y|, |ȳ|}

< ε

Since the choice of ε is arbitrary, ua,t becomes arbitrarily small as k tends to infinity. This implies that the

difference between the estimated coefficients and their true values become arbitrarily small as k tends to

infinity. Thus, if (α′1, α
′
3, β
′) 6= (α1, α3, β), there exists k0 such that for any k ≥ k0 the previous procedure

is able to differentiate between outcomes generated by one set of structural coefficients vs the other. �

E.2 Proof of the First-order Conditions

The utility of agent a at T − 1 is equal to va,T−1 = ua,T−1 + βEua,T where the expectation is taken

conditional on θT−1 . The first-order condition is:

∂ua,T−1

∂ya,T−1
+ β

∂Eua,T
∂ya,T−1

= 0

Compute the derivative of va,T−1 with respect to ya,T−1. We get:

1

2

∂ua,T−1

∂ya,T−1
= −α1(ya,T−1− ya,T−2)−α2(ya,T−1− θa,T−1)−α3(ya,T−1− ya−1,T−1)−α3(ya,T−1− ya+1,T−1)
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And

1

2

∂Eua,T
∂ya,T−1

=
1

2
E

∂ua,T
∂ya,T−1

= E[−α1(ya,T − ya,T−1)(
∂ya,T
∂ya,T−1

− 1)− α2(ya,T − θa,T )
∂ya,T
∂ya,T−1

− α3(ya,T − ya−1,T )(
∂ya,T
∂ya,T−1

− ∂ya−1,T

∂ya,T−1
)− α3(ya,T − ya+1,T )(

∂ya,T
∂ya,T−1

− ∂ya+1,T

∂ya,T−1
)]

From Theorem 1, we know that
∂ya,T
∂ya,T−1

= c0,1 and
∂ya+1,T

∂ya,T−1
=

∂ya−1,T

∂ya,T−1
= c1,1. We also know from the

first-order conditions of the last period that

−α1(ya,T − ya,T−1)− α2(ya,T − θa,T )− α3(ya,T − ya−1,T )− α3(ya,T − ya+1,T ) = 0

This implies that

1

2

∂Eua,T
∂ya,T−1

= α1(Eya,T − ya,T−1) + α3c1,1(2Eya,T − Eya−1,T − Eya+1,T )

Regrouping terms, we get:

(α1 + α2 + 2α3 + βα1) ya,T−1 = α1 ya,T−2 + α2 θa,T−1 + α3 (ya−1,T−1 + ya+1,T−1)

+ β[(α1 + 2α3c1,1)Eya,T − α3c1,1(Eya−1,T + Eya+1,T )]

Next, replace the expected values by their realized counterparts. This means adding an error term equal

to the difference between the two. More precisely, introduce

νa,T−1 = β[(α1 + 2α3c1,1)(Eya,T − ya,T )− α3c1,1(Eya−1,T − ya−1,T + Eya+1,T − ya+1,T )]

Note that we have:

E(νa,T−1 | θT−1) = 0

and, through the law of iterated expectations,

E(νa,T−1 | θs) = 0

if s < T − 1. Then:

ya,T−1 =
α1

1 + βα1
ya,T−2 +

α3

1 + βα1
(ya−1,T−1 + ya+1,T−1)

+
β

1 + βα1
[(α1 + 2α3c1,1)ya,T − α3c1,1(ya−1,T + ya+1,T )]

+
α2

1 + βα1
θa,T−1 +

1

1 + βα1
νa,T−1

This is an econometric equation expressing ya,T−1 as a function of four endogenous variables: ya,T−2,

ya−1,T−1 + ya+1,T−1, ya,T and ya−1,T + ya+1,T . We can simplify this further. Recall that at T , we have:

(α1 + α2 + 2α3)ya,T = α1 ya,T−1 + α2θa,T + α3(ya−1,T + ya+1,T )

and hence

2α3ya,T − α3(ya−1,T + ya+1,T ) = α1ya,T−1 + α2θa,T − (α1 + α2)ya,T
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Substituting yields

(1 + βα1)ya,T−1 = α1ya,T−2 + α2θa,T−1 + α3(ya−1,T−1 + ya+1,T−1)

+ β[(α1 − c1,1(α1 + α2))ya,T + α1c1,1ya,T−1 + α2c1,1θa,T ] + νa,T−1

This yields:

(1 + βα1(1− c1,1))ya,T−1 = α1ya,T−2 + α2θa,T−1 + α3(ya−1,T−1 + ya+1,T−1)

+ β[α1 − c1,1(α1 + α2)]ya,T + βα2c1,1θa,T + νa,T−1

and

(1 + βα1(1− c1,1))ya,T−1 = α1ya,T−2 + α3(ya−1,T−1 + ya+1,T−1) + β[α1 − c1,1(1− 2α3)]ya,T

+ γα2xa,T−1 + γβα2c1,1xa,T + εa,T−1

where

εa,T−1 = α2ua,T−1 + βα2c1,1ua,T + νa,T−1

�
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F Lemmata used in the Existence and Uniqueness Proof

Lemma 1 (Convex Combination Form) For any history (yt−1, θt), the unique symmetric solution

depends solely on last period equilibrium choices and current preference shock realizations, i.e. y∗1(y0, θ1) =

g1(y0, θ1), for some g1 : Y × Θ → Y . Moreover, the policy function g1 has the convex combination form

as in the statement of the theorem.

Proof: Let

G :=



g : Y ×Θs → Y s.t.

g(y0, θ
1) =

∑
a∈A ca ya,0 +

∑
a∈A da θa,1 +

∑T
τ=t+1

∑
a∈A ea,τ−tE

[
θa,τ |θ1

]
with

(i) ca, da, ea ≥ 0 and
∑
a∈A

(
ca + da +

∑T
τ=t+1 ea,τ−t

)
= 1

(ii) ( 1
2 )ca+1 + ( 1

2 )ca−1 ≥ ca,∀a 6= 0

(iii) cb ≤ ca,∀a, b ∈ A with |b| > |a|.
(iv) ca = c−a, ∀a ∈ A

and properties (ii), (iii), and (iv) also holding for the d and e sequences.


(F.1)

be the class of functions that are convex combinations (i) of one-period before history, current and expected

future preference shocks, having the (ii) ‘convexity’, (iii) ‘monotonicity’, and (iv) ‘symmetry’ properties.

Let g ∈ G be such that after any history (y0, θ1) = (y−(s−1), θ−(s−2), . . . , Y−1, θ0, y0, θ1)

y1(y0, θ1) = g(y0, θ1)

and let (c, d, e) be the coefficient sequence associated with g. Applying L1 to y1 (hence to g), we get

(L1y1)
(
y0, θ1

)
= ∆−1

1

(
α1 y0,0 + α2 θ0,1 + α3 g

(
R−1y0, R

−1θ1

)
+ α3 g (Ry0, R θ1)

)
= ∆−1

1

[
α1 y0,0 + α2 θ0,1 + α3

(∑
a∈A

ca ya−1,0 +
∑
a∈A

da θa−1,1

)

+α3

(∑
a∈A

ca ya+1,0 +
∑
a∈A

da θa+1,1

)]
(F.2)

By the definition of G in (F.1), the coefficient sequences are positive and absolutely summable; the choices

and shocks are elements of a compact set. Hence, we can rearrange the series to obtain

= ∆−1
1

(
(α1 + α3 c−1 + α3 c1︸ ︷︷ ︸

∆1c′0

) y0,0 + (α2 + α3 d−1 + α3 d1︸ ︷︷ ︸
∆1d′0

) θ0,1

+
∑
a 6=0

(α3 ca−1 + α3 ca+1︸ ︷︷ ︸
∆1c′a

) ya,0 +
∑
a6=0

(α3 da−1 + α3 da+1︸ ︷︷ ︸
∆1d′a

θa,1

)
(F.3)

This last expression is linear in y0, and θ1. So, L1y1 preserves the same linear form. By definition of the

new coefficient sequence (c′, d′) in (F.3), each element of the sequence is nonnegative since each element

of the original one was so. New coefficients sum up to 1 since convex combination form of g makes the

sum of the coefficients inside the two parentheses on the right hand side of (F.2) equal to 1. Thus, the
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total sum of coefficients on the right hand side of (F.2) is ∆−1
1 (α1 +α2 + 2α3) = 1, which proves property

(i). The final form in (F.3) is just a regrouping of elements in (F.2). Let (c′a)a∈A be the new coefficient

sequence associated with L1yT as defined in equation (F.3). Pick a 6= 0 in A,

c′a+1 + c′a−1 ≥
(
α3

∆1

)
(ca + ca+2) +

(
α3

∆1

)
(ca−2 + ca)

≥
(
α3

∆1

)
(2ca+1 + 2ca−1)

= 2

(
α3

∆1

)
(ca+1 + ca−1)

= 2c′a

By definition of c′ in (F.3), first inequality is strict if |a| = 1, is an equality otherwise; second inequality

is by property (ii) on c; last equality is once again by definition of c′ in (F.3). Therefore, for any a 6= 0,

ca+1 + c′a−1 ≥ 2c′a, which is property (ii). Now, pick any a, b ∈ A with |a| < |b|.

c′a =

(
α3

∆1

)
ca−1 +

(
α3

∆1

)
ca+1 =

(
α3

∆1

)
c|a|−1 +

(
α3

∆1

)
c|a|+1

≥
(
α3

∆1

)
c|b|−1 +

(
α3

∆1

)
c|b|+1 =

(
α3

∆1

)
cb−1 +

(
α3

∆1

)
cb+1

= c′b

First equality is from (F.3); second by property (iv) of G in (F.1); the inequality is property (iii) of G in

(F.1); next equality is due to property (iv) of G again; and finally the last equality is by (F.3). Hence,

property (iii) in (F.1) holds for the new sequence. We next show that c′ satisfies (iv) in (F.1).

c′a =

(
α3

∆1

)
ca−1 +

(
α3

∆1

)
ca+1

=

(
α3

∆1

)
c−a−1 +

(
α3

∆1

)
c−a+1

= c′−a

where first equality is by (F.3); the second is due to (iv) of G in (F.1); finally the last is again by (F.3).

Thus, the restriction of L1 to the subspace (call it BG) of bounded measurable functions that agree

with an element of G after any history, maps elements of BG into itself. Moreover, endowed with the sup

norm, BG is a closed subset of B ((Y ×Θ)s, Y ) since it is defined by equality and inequality constraints,

hence a complete metric space in its own right. Since L1 is a contraction on this latter as we just showed,

it is so on BG as well and the unique fixed point y∗1 in B ((Y ×Θ)s, Y ) must lie in BG. Since the choice

of t was arbitrary, the unique symmetric equilibrium in a one-period (continuation) economy, after any

length history must assume the convex combination form stated in the theorem. This concludes the proof

of Lemma 1. �

Lemma 2 (Interiority) Let T ≥ 2. The unique optimizer ya,1 is almost surely in the interior of Y =

[y, ȳ], and equation (A.5) can be written as

0 = −ya,1 ∆T + α1 ya,0 + α2 θa,1 +
∑
b 6=0

γb,T ya+b,1 +
∑
b∈A

T∑
τ=2

µb,τ,T E
[
θa+b,τ |θt

]
(F.4)
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where ∆T := α1+α2+
∑
b6=0 γb,T+

∑
b∈A

∑T
τ=2 µb,τ,T , and the coefficients α1, α2, (γb,T )b 6=0, and (µb,τ,T )τ≥2

b∈A
are non-negative.

Proof: In order to prove interiority, we let

τ := inf
{
t > 0 : g(yt−1, θ

t) = y
}

and yt := g(yt−1, θ
t).

It suffices to show that Prob[τ < T ] = 0. Let us assume to the contrary that Prob[τ < T ] > 0. In such a

situation, yτ = y is optimal and a necessary condition for optimality is

−α1(y − ya,τ−1)2 − α2(y − θa,τ )2 − α3(y − ya−1,τ )2 − α3(y − ya+1,τ )2 − βα1E[(y − ya,τ+1)2 | θτ ]

≥ −α1(y − ya,τ−1)2 − α2(y − θa,τ )2 − α3(y − ya−1,τ )2 − α3(y − ya+1,τ )2 − βα1E[(y − ya,τ+1)2 | θτ ]

for all y ∈ Y , since otherwise yτ < y would lead to a higher payoff. This, however, requires θa,τ = ya,τ−1 =

ya,τ+1 = y. This shows that ya,t = y = θa,t for all t ≤ T . This, of course, contradicts E[θa,t | θt−1] ∈ (y, ȳ).

Thus, Prob[τ < T ] = 0.

Moreover, thanks to the linearity of the first order condition in the choice variables, the preference

shocks, and the expected future preference shocks, one can write the first order condition in equation (A.5)

as a function only of contemporaneous choices, and expected future shocks, through iterative application

of the policy functions for future period equilibrium choices, as we demonstrated in (A.7). Finally, since

the unique optimizer ya,1 is almost surely interior, the coefficients multiplying these are necessarily non-

negative. Finally, since all values inside the brackets are uniformly bounded and the finite horizon equilibria

converge to the infinite horizon equilibrium uniformly, all statements hold for T = ∞ as well. This

concludes the proof of the Lemma. �

Lemma 3 (Compactness) Lβ and G endowed with the supnorm are compact metric spaces.

Proof: Let (βTn)n be a sequence lying in Lβ that converges to y = (yt) ∈ [0, 1]∞. This means that

βTn,t → yt, for all t ≥ 1, which in turn means that yt ∈ {0, βt} by the construction of Lβ . Moreover, if

yt = 0 for some t, yt+τ = 0 for all τ ≥ 1 since the terms βTn are geometric (finite or infinite) sequences.

There are two possibilities: either y = (1, β, . . . , βT , 0, 0, . . .) or y = βt for all t ≥ 1. Both lie in Lβ which

means that the limit of any convergent sequence in Lβ lies in Lβ . This establishes that Lβ is closed.

Given any ε > 0, choose a natural number N ≥ 1 s.t. βN < ε. It is easy to see that any element in

Lβ lies in the ε-neighborhood (with respect to the sup metric) of one of the elements in the finite set

{β1, β2, . . . , βN} ⊂ Lβ . This establishes that Lβ is totally bounded. Therefore, Lβ is compact. We next

show that G endowed with the sup norm is compact.

LetH :=
{
y = (ya)a∈A | ya ≤

(
1
2a

)
, for all a ∈ A

}
. Defined by inequality constraints, this set is closed

under the sup norm. We will show that it is also totally bounded. For a given ε > 0, one can find an

N ≥ 1 s.t. 1
2N < ε. Pick a sequence ȳ ∈ H. For any a ∈ A s.t. |a| ≥ N , [0, (2N)−1] ⊂ B∞(ya, ε), the ε-ball

around ya with respect to the sup norm. For |a| ≤ N , let Y (a) :=
{

0, ε, 2ε, . . . , kaε, (2a)−1
}

, where ka is

the greatest integer s.t. kaε ≤ (2a)−1. The sety ∈ H | ya = ȳa, for |a| ≥ N, and (y−(N−1), . . . , y0, . . . , yN−1) ∈
∏
|a|≤N

Y (a), for |a| ≤ N
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is a finite set of elements of H. Moreover, it is dense in H by construction. This establishes that H is

totally bounded. Thus, H is compact under the sup norm.

Each g ∈ G is associated with coefficients ((ca, da, ea)a). Clearly, for any sequence of policies in

G, gn → g in sup norm if and only if the associated coefficients ((ca,n, da,n, ea,n)a) → ((ca, da, ea)a)

in sup norm. We know from (A.3) that c satisfies properties (i), (ii) and (iii). Thus, for any a ∈ A,

c0 > c1 > . . . > c|a|, ca = c−a and
∑
|b|≤|a| cb < 1. Combining all these, we have 2|a|ca <

∑
|b|≤|a| cb < 1

which in turn implies that ca <
1

2|a| , for all a ∈ A. Same bounds hold for the d and e = (eb,τ )τ≥1
b∈A sequence.

But then, the space of associated coefficient sequences, call it LG, can be seen as a closed subset of H,

a compact metric. Consequently, LG is compact, thus sequentially compact. Pick a sequence (gn) ∈ G
and let (cn, dn, en) be the associated coefficient sequence lying in LG. Since LG is sequentially compact,

there exists a subsequence (cmn , dmn , emn) → (c, d, e) ∈ LG. The latter, being an admissible coefficient

sequence, is associated with the policy g(y, θs) :=
∑
a caya+

∑
a daθa,s+

∑
a

∑
τ≥1 ea,τ E [θa,s+τ |θs]. Thus,

the respective policy subsequence gmn → g ∈ G. This establishes that G is sequentially compact hence

compact. This concludes the proof of Lemma 3. �

Lemma 4 (Continuity) For any given (βT , g) ∈ Lβ × G∞, U(·; βT , g) is continuous on Γ(βT , g) with

respect to the product topology.

Proof: Since G endowed with the sup norm is a compact metric space due to Lemma 3, the metric

d(g, g′) :=
∑∞
t=1 2−t||gt − g′t||∞ induces the product topology on G∞ (see e.g., Aliprantis and Border

(2006), p. 90), where || · ||∞ is the supnorm as before. Let (βT , g) ∈ Lβ × G∞ and ε > 0 be given. Set

ε′ := ( 1−β
1−βT+1 ) ε. The period utility u is uniformly continuous since Y is compact. Thus, one can choose a

δ′ > 0 such that for any t, |x0,t − y0,t| < δ′ implies∣∣u (x0,t−1, x0,t, {xb,t(g)}b∈{−1,1}, θ0,t

)
− u

(
y0,t−1, y0,t, {xb,t(g)}b∈{−1,1}, θ0,t

)∣∣ < ε′.

Set δ = 2−T δ′. Pick g0, g′0 ∈ Γ(βT , g) such that d(g0, g′0) < δ. This implies that for all t ≤ T , ||g0
t −

g′0t ||∞ < 2T δ = δ′ hence |y0,t(g
0) − y0,t(g

′0)| < δ. Uniform continuity of u then implies that the period

utility levels are uniformly bounded above by ε′ for all periods t ≤ T . The claim therefore follows from

|U(g0 ; βT , g)− U(g′0 ; βT , g)| <
1− βT+1

1− β
ε′ = ε

�
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G Convergence Properties of Policy Coefficient Sequences

In this section, we study the dynamic and cross-sectional properties of the equilibrium coefficient sequences

in some detail. Throughout the section, we present equilibrium arguments using cT . Arguments for dT

and eT are identical. To do that, we index coefficients by the length T of the economy, i.e., cT = (ca,T )a∈A
is the vector of policy coefficients on “history” for the optimal choice in the first period of an economy

with T periods. For T =∞, we drop the time index and simply write c = (ca)a∈A.

We first present the statements of the three Lemmas we will prove in this section. Lemma 5 is used in

the proof of Theorem 2. Lemma 6 is used in the proofs of Theorem 2 and Theorem 3. Finally, Lemma 7

is used in the proof of Theorem 3. We then provide the proofs of these results in the subsection G.1 that

follows.

We know from Theorem 1 that the policy coefficients form non-negative, bounded, absolutely summable

sequences. More specifically, for any T ≥ 1, any a ∈ A, the coefficients cb,T satisfy

lim
|b|→∞

ca+b,T = 0

The impact of an agent a+ b on agent a tends to zero as |b| → ∞. Furthermore, equilibrium policy func-

tions are non-stationary in the finite economy, as rational forward-looking agents change their behaviour

optimally through time. Finally, the finite-horizon parameters converge (uniformly) to the infinite-horizon

stationary policy parameters,

lim
T→∞

cT = c

To study these convergence properties precisely, we define the cross-sectional rates of convergence as

r|a|+1,T :=
c|a|+1

c|a|,T
, for any a ∈ A

From Lemma 2, the first order condition (A.5) characterizing any agent a’s optimal T -period choice can

be written in a more concise way as in (A.10). So, by matching equilibrium coefficients cT on both sides

of (A.10), one obtains for any agent a ∈ A

ca,T = ∆−1
T

α1 I{a=0} +
∑
b6=0

γb,T ca−b,T

 (G.1)

where γb,T is the quantified impact on expected discounted marginal utility of agent a, of a change in

individual a + b’s first period choice, ya+b,1, as defined in (A.9) in the proof of Lemma 2 Formally, the

expression
∑
b6=0 γb,T ca−b,T inside the brackets in equation (G.1) is the discrete convolution of the policy

coefficient sequence cT = (ca,T )a∈A and the coefficient sequence γb,T = (γb,T )b6=0 , where a acts as the shift

parameter.

Our first result characterizes the monotonicity of the cross-sectional convergence rates in the parameter

α3 and in social distance.

Lemma 5 (Monotone Increasing Cross-Sectional Rates) For any T ≥ 2, the following hold:

(i) The rates at which the policy coefficients converge to zero at the cross-section are strictly monoton-

ically increasing in |a|, i.e., for any a ∈ A

r|a|+1,T =
c|a|+1,T

c|a|,T
<

c|a|+2,T

c|a|+1,T
= r|a|+2,T (G.2)
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(ii) Given β and α1

α1+α2
, the cross-sectional rates are strictly increasing in α3, i.e.,

ra,T (α′3) > ra,T (α3), for any a 6= 0. (G.3)

The analogous results hold for for dT and eT .

Our next result characterizes the behaviour of the sums of policy coefficients across periods. We

rely on these results in the identification proofs. In order to demonstrate it formally, we first define the

sum of policy coefficients on “history”, “current shocks” (own effect), and on “expectations” respectively

as

CT :=
∑
b

cb,T

DT :=
∑
b

db,T

ET :=

T∑
τ=t+1

∑
b

eb,T,τ−t

where CT +DT + ET = 1. The result we will present is interesting also in the sense that the sums follow

a particular recursive structure well-known and extremely useful in mathematics and dynamic systems:

They behave as continued fractions. A continued fraction is an expression obtained through an iterative

process of representing a number as the sum of its integer part and the reciprocal of another number, then

writing this other number as the sum of its integer part and another reciprocal, and so on. In a finite

continued fraction, the iteration/recursion is terminated after finitely many steps. In contrast, an infinite

continued fraction is an infinite expression. In either case, all integers in the sequence, other than the

first, must be positive. The integers are called the coefficients or terms of the continued fraction (see e.g.

Pettofrezzo and Byrkit (1970)). In our environment, they take the following form

CT =
α1

(α1 + α2 + α1β)− β
α1

(α1 + α2 + α1β)− β
α1

(α1 + α2 + α1β)− β
α1

· · ·

and the next Lemma characterizes their recursive properties and their limit behaviour as the number of

periods, T , increases arbitrarily.

Lemma 6 (Policy Coefficient Sums) For a T -period dynamic conformity economy with T > 1, the

policy coefficient sums for l = 2, . . . , T are given by the following recursive system of continued fractions

Cl =
α1

α1 + α2 + α1β (1− Cl−1)

Dl =
α2

α1 + α2 + α1β (1− Cl−1)
(G.4)

El =
α1β (1− Cl−1)

α1 + α2 + α1β (1− Cl−1)
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where C1 = α1

α1+α2
, D1 = α2

α1+α2
, and E1 = 0. Moreover, Cl ↓ C∞ and Dl ↓ D∞ are monotonically

decreasing (hence El ↑ E∞) sequences where C∞, D∞, and E∞ are the fixed points of the respective

equations in the recursive system (G.4).

Finally, our final lemma, Lemma 7, shows that there are at least two agents, b and b′, for whom the

marginal rates of substitution between α1 and p, MRSbα1,p and MRSb
′

α1,p, that maintain the same level for

the maps γb(α1, p, β(p))
α1

and γb′ (α1, p, β(p))
α1

, are different at the true parameter pair (where the level curves

intersect). This variation in the responsiveness of the level sets of γb(α1, p, β(p))
α1

to changes in α1 and p, as

b spans the cross-section, helps us identify the true parameter pair (α1, p) consistent with observed levels

for the policy coefficients (ca)a∈A.

Lemma 7 (Single Crossing - Cross-section) There exists a unique sequence (γ̄b) := (α−1
1 γb1) that

satisfies the system in (C.3). Moreover, (i) the map γb(α1, p, β(p))
α1

is continuously differentiable and the

partial derivatives satisfy ∂
∂p

γb(α1, p, β(p))
α1

> 0 and ∂
∂α1

γb(α1, p, β(p))
α1

< 0, for any (α1, p, β(p)); and (ii)

there exist agents b 6= b′ such that for any (α1, p, β(p)),

−
∂α−1

1 γb′
∂p

∂α−1
1 γb′
∂α1

∣∣∣∣∣
α−1

1 γb′ (α1,p,β(p))=γ̄′b

> −
∂α−1

1 γb
∂p

∂α−1
1 γb
∂α1

∣∣∣∣∣
α−1

1 γb(α1,p,β(p))=γ̄b

> 0. (G.5)

G.1 Proofs of Lemmata

Proof of Lemma 5: We know from Theorem 1 that there exists a unique coefficient sequence satisfying

equation (G.1) and which lies in the space G of policy coefficient sequences having the desired equilibrium

properties of convexity, symmetry, and monotonicity, as defined in (A.3) in the proof of Theorem 1. The

right hand side of equation (G.1) maps sequences (cb) into sequences (c′b). We would like to show that it

maps the closed subset Gm ⊂ G into itself, where elements of Gm possess the nice properties stated in the

Lemma. This would in turn imply that the policy coefficients of the unique equilibrium should lie in Gm,

and should possess the properties associated with Gm.

Proof of the first part. Let Gm ⊂ G be defined as Gm := {(ca) ∈ G | c|a|+1

c|a|
is weakly increasing in |a|.}.

We want to show that for any (ca,T ) ∈ Gm, (c′a,T ) ∈ Gm as well, where (c′a,T ) is defined, using the right

hand side of (G.1), as

c′a,T := ∆−1
T

α1 I{a∈{−1,1}} +
∑
b6=0

γb,T ca−b,T

 (G.6)

Gm being defined by inequality constraints, is a closed subset of G. The map on the right hand side of

(G.6) is a contraction, as we demonstrated in the proof of Theorem 1. The rest of the proof is by induction

on the number of periods T .
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- Assume that T = 2. We know from (A.9) in the proof of Theorem 1 that γb,T is defined for any b 6= 0 as

γb,T = α3 I{b∈{−1,1}}

−
T∑
τ=2

βτ−1

(
α1

∂

∂ya+b,1
(ya,τ−1 − ya,τ )

∂

∂ya,1
(ya,τ−1 − ya,τ ) + α2

∂

∂ya+b,1
ya,τ

∂

∂ya,1
ya,τ (G.7)

+ α3
∂

∂ya+b,1
(ya−1,τ − ya,τ )

∂

∂ya,1
(ya−1,τ − ya,τ ) + α3

∂

∂ya+b,1
(ya+1,τ − ya,τ )

∂

∂ya,1
(ya+1,τ − ya,τ )

)
Each γb,T > 0 and

∑
b6=0

γb,T
∆T

< 1, which makes the right hand side of (G.6) a contraction mapping. Using

the definition in (G.7) for T = 2 and substituting the policy function for future choices, one obtains

γb,2 = α3 I{b∈{−1,1}} − β (α1 (−cb,1) (1− c0,1) + α2 cb,1 c0,1

+ α3 (cb+1,1 − cb,1) (c1,1 − c0,1) + α3 (cb−1,1 − cb,1) (c−1,1 − c0,1))

= α3 I{b∈{−1,1}} + β cb,1

(
α1 (1− c0,1)− α2 c0,1 − (1− 2α3) (c1,1 − c0,1)

)
= α3 I{b∈{−1,1}} + β cb,1

(
α1 − (α1 + α2) c0,1 r1

)
(G.8)

where the final equality uses the structure of the coefficients for l = 1, which we proved in Theorem 2-(ii)

(see also footnote 19), and the symmetry of c1 around zero. Remember that r1 is the rate of convergence

of the exponentially declining policy sequence for l = 1. We will need the convergence rates of γl sequences

as well in the convolution. So, we define analogously, for any l ≥ 1,

rγ|b|+1,l :=
γ|b|+1,l

γ|b|,l
, for any b 6= 0

Now, for b 6= 0, using (G.8)

rγ|b|+1,2 =


β c2,1

(
α1−(α1+α2)c0,1 r1

)
α3+β c1,1

(
α1−(α1+α2)c0,1 r1

) < r1, if b ∈ {−1, 1}

r1, otherwise.

(G.9)

Hence, rγ|b|+1,2 ≥ rγ|b|,2, for any b 6= 0, meaning that rγ|b|,2 is weakly monotonically increasing in |b|. Now,

pick a > 0 wlog (the proof for a < 0 is identical thanks to the symmetry of the environment). From (G.1)

∆2 c
′
a+1,2 =

∑
b6=0

γb,2 ca+1−b,2

= [γ2,2ca−1,2 + γ3,2ca−2,2 + . . .] + [γ1,2ca,2 + γ−1,2ca+2,2 + γ−2,2ca+3,2 + . . .]

=

[
(γ1,2ca−1,2)

(
γ2,2

γ1,2

)
+ (γ2,2ca−2,2)

(
γ3,2

γ2,2

)
+ . . .

]
+ [(γ1,2ca−1,2)

(
ca,2
ca−1,2

)
+ (γ−1,2ca+1,2)

(
ca+2,2

ca+1,2

)
+ (γ−2,2ca+2,2)

(
ca+3,2

ca+2,2

)
+ . . .]

=
[
(γ1,2ca−1,2) rγ2,2 + (γ2,2ca−2,2) rγ3,2 + . . .

]
(G.10)

+ [(γ1,2ca−1,2) ra,2 + (γ−1,2ca+1,2) ra+2,2 + (γ−2,2ca+2,2) ra+3,2 + . . .]

= r′a+1,2

∑
b 6=0

γb,2 ca−b,2

= ∆2 r
′
a+1,2 c

′
a,2
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where r′a+1,2 is the probability-weighted average rate of decline, if one interprets
(

γb,2 ca−b,2∑
b 6=0 γb,2 ca−b,2

)
b∈A

as a

probability distribution on convergence rates. Similar argument for c′a+2,2 would yield

∆2 c
′
a+2,2 =

∑
b 6=0

γb,2 ca+2−b,2

= [γ3,2ca−1,2 + γ4,2ca−2,2 + . . .] + γ2,2ca,2 + [γ1,2ca+1,2 + γ−1,2ca+3,2 + γ−2,2ca+4,2 + . . .]

=
[
(γ2,2ca−1,2) rγ3,1 + (γ3,2ca−2,2) rγ4,2 + . . .

]
+ γ2,2ca,2 (G.11)

+ [(γ1,2ca,2) ra+1,2 + (γ−1,2ca+2,2) ra+3,2 + (γ−2,2ca+3,2) ra+4,2 + . . .]

= r′a+2,2

∑
b6=0

γb,2 ca+1−b,2

= ∆2 r
′
a+2,2 c

′
a+1,2

where r′a+2,2 is the probability-weighted average rate of decline, if one interprets
(

γb,2 ca+1−b,2∑
b 6=0 γb,2 ca+1−b,2

)
b∈A

as

a probability distribution on convergence rates. Now, comparing the first brackets of the expressions in

(G.10) and (G.11), we see that(
γ2,2ca−1,2∑

b 6=0 γb,2 ca+1−b,2

)
(

γ1,2ca−1,2∑
b6=0 γb,2 ca−b,2

) ≤

(
γ3,2ca−2,2∑

b 6=0 γb,2 ca+1−b,2

)
(

γ2,2ca−2,2∑
b 6=0 γb,2 ca−b,2

) ≤ . . . (G.12)

due to the monotonicity of the convergence rates for γ2, i.e., rγ2,2 =
γ2,2
γ1,2
≤ γ3,2

γ2,2
= rγ3,2 ≤ . . .. This means

that the likelihood associated with a + 1 in (G.11) puts relatively more weight on the left tail, towards

higher convergence rates for γ2, than does the likelihood associated with a in (G.10). Similar argument

applied to the expressions in the second brackets in (G.10) and (G.11) yields(
γ1,2ca,2∑

b 6=0 γb,2 ca+1−b,2

)
(

γ1,2ca−1,2∑
b 6=0 γb,2 ca−b,2

) ≤

(
γ−1,2ca+2,2∑

b 6=0 γb,2 ca+1−b,2

)
(

γ−1,2ca+1,2∑
b 6=0 γb,2 ca−b,2

) ≤

(
γ−2,2ca+3,2∑

b 6=0 γb,2 ca+1−b,2

)
(

γ−2,2ca+2,2∑
b 6=0 γb,2 ca−b,2

) ≤ . . . (G.13)

due to the monotonicity of the convergence rates for c2, by hypothesis, i.e., ra,2 =
ca,2
ca−1,2

≤ ca+2,2

ca+1,2
=

ra+2,2 ≤ ca+3,2

ca+2,2
= ra+3,2 ≤ . . .. This means that the likelihood associated with a + 1 puts relatively

more weight on the right tail, towards higher convergence rates for c2, than does the likelihood associated

with a. Moreover, each element of the likelihood sequence inside the first brackets in (G.11) multiplies a

higher convergence rate than the associated member of the likelihood sequence inside the first brackets in

(G.10), since rγa+1,2 ≥ rγa,2 for any a 6= 0. Similarly, each element of the likelihood sequence inside the

second brackets in (G.11) multiplies a higher convergence rate than the associated member of the likelihood

sequence inside the second brackets in (G.10), since ra+1,2 ≥ ra,2 for any a 6= 0. These facts combined with

the monotone likelihood ratio property on each tail for the two distributions that we demonstrated above

in (G.12) and (G.13) imply that the average convergence rate, r′a+2,2, computed under the distribution(
γb,2 ca+1−b,2∑
b 6=0 γb,2 ca+1−b,2

)
b∈A

is higher than the average convergence rate, r′a+1,2, computed under the distribution(
γb,2 ca−b,2∑
b 6=0 γb,2 ca−b,2

)
b∈A

. Furthermore, the expression in (G.11) contains an extra non-zero term, γ2,2ca,2,

which means that the ordering is strict, i.e., r′a+2,2 > r′a+1,2.

So far, we established that for T = 2, c2 sequence satisfies the monotone increasing cross-sectional

rates property; and that γ2 satisfies this property weakly.
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- Induction Step. Now, assume for induction that (γl)
T−1
l=2 satisfies the weak version and (cl)

T−1
l=2 satisfies

the strict version up to a period T > 2.

Let u(t) := u
(
y0,t−1, y0,t, {yb,t}b∈{−1,1}, θ0,t

)
where u represents the conformity preferences in As-

sumption 1, with . Let u0(t) := ∂
∂y0,1

u(t). From its definition in (G.7), γb,T can be written parsimoniously

as

γb,T := α3 I{b∈{−1,1}}

+

T∑
τ=2

βτ−1

[(
∂y0,τ−1

∂yb,1

)
∂

∂y0,τ−1
u0(τ) +

(
∂y0,τ

∂yb,1

)
∂

∂y0,τ
u0(τ) (G.14)

+

(
∂y−1,τ

∂yb,1

)
∂

∂y−1,τ
u0(τ) +

(
∂y1,τ

∂yb,1

)
∂

∂y1,τ
u0(τ)

]
We will present the argument for one of the terms inside the summand. As it will be apparent, the method

of proof applies to the remaining terms straightforwardly. Assume w.l.o.g. that a ≥ 0.(
∂y0,τ

∂yb,1

)
∂

∂y0,τ
u0(τ) =

∑
s∈A

(
∂ys,2
∂yb,1

)(
∂y0,τ

∂ys,2

)
∂

∂y0,τ
u0(τ)

=
∂

∂y0,τ
u0(τ)

∑
s∈A

cb−s,T−1

(
∂y0,τ

∂ys,2

)
(G.15)

and the corresponding term for γb+1,T is

∂

∂y0,τ
u0(τ)

∑
s∈A

cb+1−s,T−1

(
∂y0,τ

∂ys,2

)
(G.16)

Using the recursive structure in (G.15), the sequence
(
∂y0,τ
∂ys,2

)
s∈A

of elements in that summation is a τ -times

iterated convolution of the policy sequences cT−2, . . . , cT−τ+1 where

∂y0,τ

∂ys,2
=

∑
b1

· · ·
∑
bt−1

cb1,T−(τ−1) · · · cs−(b1+···+bt−1),T−2 (G.17)

and hence is an absolutely convergent and monotonically decreasing (on both sides of zero) sequence (see

also the iterative derivation in (A.7) in the proof of Theorem 1). Moreover, the same convolution argument

we used in (G.10) and (G.11) applied to the sequences in (G.15) and (G.16) yields that the rate at which

they converge to zero is an increasing function of |b|. Consequently, since the monotonicity argument holds

for each element in the summand, it also holds for the discounted sum in (G.14), i.e., for any b 6= 0

rγ|b|+1 =

(
γ|b|+1,T

γ|b|,T

)
≤
(
γ|b|+2,T

γ|b|,T

)
= rγ|b|+2

establishing the weak monotonicity of the cross-sectional rates for γT .

Given this property, to show that cT satisfies the strict monotonicity of the cross-sectional rates, one

uses the exact same deconstruction we used in equations (G.10) and (G.11) followed by monotone likeli-

hood arguments. So, we leave it to the reader. Therefore, this concludes the proof of the statement in the

first part of Lemma 5.
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Proof of the second part. Let Gm ⊂ G be as defined in the first part, namely, Gm := {(ca) ∈ G |
c|a|+1

c|a|
is weakly increasing in |a|}. We know from the first part that the right hand side of (G.18) is a

self-map on Gm and that it maps any (ca,T ) ∈ Gm to (c′a,T (α3)) ∈ Gm as defined

c′a,T (α3) := ∆−1
T

α1 I{a∈{−1,1}} +
∑
b6=0

γb,T (α3) ca−b,T

 (G.18)

We are making the dependence on α3 explicit to be able to do the comparative statics exercise across

different values for α3. Our objective is to show that given α′3 > α3, ra,T (α′3) > ra,T (α3), for any a 6= 0.

To accomplish that, it will suffice to show that the right hand side of (G.18) maps any element of Gm

to a sequence with higher convergence rates uniformly across agents under α′3 than under α3. Since the

unique equilibrium sequence lies in Gm, this would show that the equilibrium sequence would possess the

monotonicity property relative to α3 as well. The proof is once again by induction on the number of

periods T .

For T = 2, we know from (G.9) that

rγ|b|+1,2 =

(
γ|b|+1,T

γ|b|,T

)
= r1

and from Theorem 2-(ii) (see also footnote 19) that r1 is strictly increasing in α3, where r1 =
(

1
2α3

)
−√(

1
2α3

)2

− 1. Using once again the deconstruction in (G.10), for any (ca,2)a∈A ∈ Gm

∆2 c
′
a+1,2 =

[
(γ1,2ca−1,2) rγ2,2 + (γ2,2ca−2,2) rγ3,2 + . . .

]
(G.19)

+[(γ1,2ca−1,2) ra,2 + (γ−1,2ca+1,2) ra+2,2 + (γ−2,2ca+2,2) ra+3,2 + . . .]

= ra+1,2

∑
b 6=0

γb,2 ca−b,2

= ∆2 r
′
a+1,2 c

′
a,2

r′a+1,2 is strictly increasing in α3 since rγb+1,2 is strictly increasing in α3, for any b ≥ 2, inside the first

brackets in the first line, and rγ|b|,2 is increasing in |b| as we showed in the first part. So, in equilibrium,

r|a|+1,2 =
c|a|+1,2

c|a|,2
is necessarily strictly increasing in α3 as well.

Now, assume for induction that (γl)
T−1
l=2 and (cl)

T−1
l=2 are strictly increasing in α3. Using the same

convolution argument in (G.15) and (G.16), the convergence rate for γT would be strictly increasing in α3

since all future period convergence rates (cl)
T−1
l=2 are strictly increasing in α3. Namely, for α′3 > α3,

rγb,T (α′3) > rγb,T (α3), for any b 6= 0. (G.20)

Using one last time the deconstruction we used in (G.19) in equilibrium for T

∆T ca+1,T =
[
(γ1,T ca−1,T ) rγ2,T + (γ2,T ca−2,T ) rγ3,T + . . .

]
+[(γ1,T ca−1,T ) ra,T + (γ−1,T ca+1,T ) ra+2,T + (γ−2,T ca+2,T ) ra+3,T + . . .]

= ra+1,T

∑
b 6=0

γb,T ca−b,T

= ∆T ra+1,T ca,T
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r′a+1,T is strictly increasing in α3 since rγb+1,T is strictly increasing in α3, for any b ≥ 2, inside the first

brackets in the first line, and rγ|b|,T is increasing in |b| as we showed in the first part. So, in equilibrium,

r|a|+1,T =
c|a|+1,T

c|a|,T
is necessarily strictly increasing in α3 as well. This concludes the proof. �

Proof of Lemma 6: Our the environment being symmetric, it suffices to study the first order condition

of a single agent, agent zero, in a T−period problem

0 = α1 (y0,0 − y0,1) + α2 (θ0,1 − y0,1) + α3 (y−1,1 − y0,1) + α3 (y1,1 − y0,1)

+E

[
T∑
τ=2

βτ−1

(
−α1 (y0,τ−1 − y0,τ )

∂

∂y0,1
(y0,τ−1 − y0,τ ) + α2 (θ0,τ − y0,τ )

∂

∂y0,1
y0,τ (G.21)

− α3 (y−1,τ − y0,τ )
∂

∂y0,1
(y−1,τ − y0,τ )− α3 (y1,τ − y0,τ )

∂

∂y0,1
(y1,τ − y0,τ )

) ∣∣∣∣∣ (yt−1, θt
) ]

For T = 1, using the first order condition and substituting for the policy coefficients multiplying ya,0, we

obtain

α1

(
I{a=0} − ca,1

)
− α2 ca,1 + α3 (ca+1,1 + ca−1,1 − 2ca,1) = 0

Summing both sides over a yields

α1 − (α1 + α2)C1 = 0

hence

C1 =
α1

α1 + α2

Since the structural equations are the same, by using the same arguments, we also get D1 = α2

α1+α2
.

For T = 2, using the first-order condition and substituting for the policy coefficients multiplying ya,0,

we obtain once again

0 = α1 (1{a = 0} − ca,2)− α2 ca,2 + α3 (ca+1,2 + ca−1,2 − 2ca,2)

+β

[
− α1(1− c0,1)(ca,2 −

∑
b1

cb1,1 ca−b1,2)− α2 c0,1
∑
b1

cb1,1 ca−b1,2

−α3(c−1,1 − c0,1)
∑
b1

(cb1+1,1 − cb1,1) ca−b1,2 − α3(c1,1 − c0,1)
∑
b1

(cb1−1,1 − cb1,1) ca−b1,2

]

Since all sequences are absolutely summable, summing over a and using the fact that C1 = α1

α1+α2

0 = α1 (1− C2)− α2 C2 + C2β

[
− α1(1− c0,1)(1− C1)− α2 c0,1 C1

]

= α1 − C2 (α1 + α2) + β C2

[
− α1(1− C1) + c0,1 (α1 − C1 (α1 + α2))

]
= α1 − C2 (α1 + α2)− β C2 α1 (1− C1)

Hence, solving for C2 yields

C2 =
α1

α1 + α2 + α1β(1− C1)
<

α1

α1 + α2
= C1

70



Assume now that the result is true up to T − 1. To show that it holds for T as well, we use the

first-order condition and substitute for the policy coefficients multiplying ya,0. Now, consider only the last

period (t = T ) terms inside the brackets in the summation in (G.21), namely

βT−1

[
− α1

∂

∂y0,1
(y0,T−1 − y0,T )×∑

b2

· · ·
∑
bT−2

cb2,2 · · · cbT−2,T−1 ca−(b2+...+bT−2),T −
∑
b1

· · ·
∑
bT−1

cb1,1 · · · cbT−1,T−1 ca−(b1+...+bT−1),T


−α2

∂y0,T

∂y0,1

∑
b1

· · ·
∑
bT−1

cb1,1 · · · cbT−1,T−1 ca−(b1+...+bT−1),T

−α3
∂

∂y0,1
(y−1,T − y0,T )×∑

b1

· · ·
∑
bT−1

cb1,1 · · · cbT−1,T−1 ca+1−(b1+...+bT−1),T −
∑
b1

· · ·
∑
bT−1

cb1,1 · · · cbT−1,T−1 ca−(b1+...+bT−1),T


−α3

∂

∂y0,1
(y1,T − y0,T )×∑

b1

· · ·
∑
bT−1

cb1,1 · · · cbT−1,T−1 ca−1−(b1+...+bT−1),T −
∑
b1

· · ·
∑
bT−1

cb1,1 · · · cbT−1,T−1 ca−(b1+...+bT−1),T

]

and summing over a yields

βT−1

[
− α1

∂

∂y0,1
(y0,T−1 − y0,T ) (C2 · · ·CT − C1C2 · · ·CT )− α2

∂y0,T

∂y0,1
C1 · · ·CT

]

= C2 · · ·CT βT−1

[
− α1

∂

∂y0,1
(y0,T−1 − y0,T ) (1− C1)− α2

∂y0,T

∂y0,1
C1

]

= C2 · · ·CT βT−1

[
− α1

∂y0,T−1

∂y0,1
(1− C1) +

∂y0,T

∂y0,1
(α1(1− C1)− α2 C1)

]

= C2 · · ·CT βT−1

[
− α1

∂y0,T−1

∂y0,1
(1− C1)

]
(G.22)

where we use the fact that C1 = α1

α1+α2
in the third line. The sum of terms multiplied by α3 cancel out.
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Applying the same method to the period T − 1 term and adding the period T term in (G.22) to it yields

βT−2

[
− α1

∂

∂y0,1
(y0,T−2 − y0,T−1) (C3 · · ·CT − C2C3 · · ·CT )− α2

∂y0,T−1

∂y0,1
C2 · · ·CT

]

+C2 · · ·CT βT−1

[
− α1

∂y0,T−1

∂y0,1
(1− C1)

]

= C3 · · ·CT βT−2

[
− α1

∂

∂y0,1
(y0,T−2 − y0,T−1) (1− C2)− α2

∂y0,T−1

∂y0,1
C2 − α1 β

∂y0,T−1

∂y0,1
(1− C1)C2

]

= C3 · · ·CT βT−2

[
− α1

∂y0,T−2

∂y0,1
(1− C2) +

∂y0,T−1

∂y0,1
(α1(1− C2) − α2C2 − α1β (1− C1)C2)

]

= C3 · · ·CT βT−2

[
− α1

∂y0,T−2

∂y0,1
(1− C2) +

∂y0,T−1

∂y0,1
(α1 − C2 (α1 + α2 + α1β(1− C1)))

]

= C3 · · ·CT βT−2

[
− α1

∂y0,T−2

∂y0,1
(1− C2)

]
where, in the line before the last one, we used the fact that C2 = α1

α1+α2+α1β(1−C1) . One can use induction

by iterating this argument across period T − 2, . . . , 2 brackets and apply recursively the hypothesis that

Cτ = α1

α1+α2+α1β(1−Cτ−1) for τ < T . This way, the first-order condition in (G.21) can be rolled back to

0 = α1(1− CT )− α2CT

+CT β

[
−α1

(
1− ∂y0,2

∂y0,1

)
(1− CT−1)− α2

∂y0,2

∂y0,1
CT−1 − α1β

∂y0,2

∂y0,1
CT−1(1− CT−2)

]
= α1(1− CT )− α2CT

+CT β

[
−α1(1− CT−1) +

∂y0,2

∂y0,1
[α1(1− CT−1)− α2CT−1 − α1βCT−1(1− CT−2)]

]
and applying once again the hypothesis that, for T − 1, CT−1 = α1

α1+α2+α1β(1−CT−2) , we obtain

0 = α1(1− CT )− α2 CT + CT β [−α1(1− CT−1)]

and solving for CT gives

CT =
α1

α1 + α2 + α1β(1− CT−1)

Moreover, since by hypothesis

C1 > . . . > CT−1

we also get

CT =
α1

α1 + α2 + α1β(1− CT−1)
<

α1

α1 + α2 + α1β(1− CT−2)
= CT−1

as claimed in the statement. Finally, (CT )∞T=1 formed by the above construction is a monotone decreasing,

bounded sequence of real numbers. Therefore, by the Monotone Convergence Theorem (see e.g. Bartle

(1976), p.105), CT → C∞, which solves

C∞ =
α1

α1 + α2 + α1β(1− C∞)
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The arguments are identical for DT and D∞. This concludes the proof. �

Proof of Lemma 7: -Uniqueness of the solution to the system (G.1). We will first argue that

knowing the values of c = (cb)b∈A, there exists a unique solution to the system in (G.1). Let Ak represent

the finite truncation of the set of agents which includes agent 0 and his k closest neighbors on the left and

on the right. For T =∞, we rewrite the system in (G.1) as: for any a ∈ Ak and with γ0 := ∆∞,

−α1 I{a=0} = −γ0 ca +
∑

b∈Ak\{0}

γb ca−b

which can be written equivalently as

I{a=0} = −γ0 α
−1
1 ca +

∑
b∈Ak\{0}

γb α
−1
1 ca−b (G.23)

under the assumption that α1 6= 0, as assumed in Theorem 3.

Consider now the circulant matrix52 Mk whose first row is given by the transpose of the column vector

c = (cb)b∈Ak and each of its rows is a once right-shifted version of the previous one, i.e. Mk(i + 1, j) =

Mk(i, j − 1).53 With this definition, the system in (G.23) can be written as

e = −α−1
1 Mk γk (G.24)

where e := (1, 0, . . . , 0) and the vector γk is such that γkb = γb for b ∈ Ak \ {0} and γk0 = −γ0. We

know from Lemma 1.1 (vi) in Carmona et al. (2015) that a circulant matrix Mk is invertible if e is in its

column space. As equation (G.24) shows, e is indeed in the column space of Mk and the unique vector of

weights −α−1
1 γk combining the columns of Mk generates it. This shows that, for any k > 1, Mk identifies

the vector −α−1
1 γk associated with the policy coefficient sequence c = (cb)b∈Ak . Next, we show that this

continues to hold for the whole set of agents A as well.

The policy coefficient sequences c = (cb)b∈A are positive and absolutely convergent sequences. So, the

infinite circulant matrix M is bounded as
∑
j |M(i, j)| =

∑
i |M(i, j)| = C < 1, and M γ is convergent

for any γ ∈ [0, 1]A. Hence, the sequence −α−1
1 γ is the unique solution of (G.24) with Ak = A, thanks to

the result 3.2 in Cooke (1950). This shows that for any k ∈ {1, 2, . . .} ∪ {∞}, the sequence c = (cb)b∈Ak
identifies the sequence −α−1

1 γ in the sense that the latter is the unique solution of (G.24).

-γb is increasing in β for b 6= 0. Let β′ > β. Using its definition in (A.6), γ0 can be written as

γ0 = ∆∞ := α1 + α2 + 2α3 +

∞∑
t=2

βt−1

(
α1

(
∂

∂ya,1
(ya,t−1 − ya,t)

)2

+ α2

(
∂

∂ya,1
ya,t

)2

+ α3

(
∂

∂ya,1
(ya−1,t − ya,t)

)2

+ α3

(
∂

∂ya,1
(ya+1,t − ya,t)

)2
)

> 0 (G.25)

52A circulant matrix is a special kind of Toeplitz matrix fully specified by one vector, which appears as one

of the rows of the matrix. Each other row vector of the matrix is shifted one element to the right relative to the

preceding row vector. See e.g. Davis (1970) for an in-depth discussion of circulant matrices.
53The operations of addition and subtraction are legitimate for Ak represented by a circle, defined modularly.
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Since for any t > 1 and for a ∈ A

∂ya,t
∂ya+b,1

=
∑
b1

· · ·
∑
bt−1

cb1 · · · cb−(b1+···+bt−1), (G.26)

all terms after βt−1 are constant positive terms that are functions of the policy coefficients. Hence,

increasing β would increase the sum. Moreover, from the first part of the lemma, we know we can

identify the sequence (α−1
1 γb)b∈A. So, the relative ratios of the terms across agents should be constant,

i.e., observational equivalence requires that

γb(β)

γ0(β)
=

γb(β
′)

γ0(β′)

Hence, γb should be increasing in β, for any b 6= 0.

-γb(α1, p, β(p))
α1

is continuously differentiable and ∂
∂p

γb(α1, p, β(p))
α1

> 0 and ∂
∂α1

γb(α1, p, β(p))
α1

< 0, for any

(α1, p, β(p)). Using the definition in (A.9), we can write for b 6= 0

γb(α1, p, β(p))

α1
=

(
p− α1

2α1p

)
I{b=−1,1}

+

∞∑
t=2

βt−1

[(
∂ya,t−1

∂ya,1
− ∂ya,t
∂ya,1

)(
∂ya,t
∂ya+b,1

− ∂ya,t−1

∂ya+b,1

)
−
(

1− p
p

)
∂ya,t
∂ya,1

∂ya,t
∂ya+b,1

(G.27)

+

(
p− α1

2α1p

) (
∂ya,t
∂ya,1

− ∂ya−1,t

∂ya,1

)(
∂ya−1,t

∂ya+b,1
+
∂ya+1,t

∂ya+b,1
− 2

∂ya,t
∂ya+b,1

)]

where, given that p := α1

α1+α2
, we substitute α2

α1
= (1− p) (α1+α2)

α1
=
(

1−p
p

)
; we also use the normalization

α1 + α2 + 2α3 = 1 to write α3

α1
= 1

2 (1 − (α1 + α2)) =
(
p−α1

2α1p

)
; finally we also use the symmetry of the

policy coefficients around zero for the last line. We know that the expression in the last parenthesis in the

last line is positive since

∂

∂ya+b,1
(ya−1,t + ya+1,t − 2ya,t) =

∂

∂ya+b,1

∑
b∈A

cb (ya−1+b,t−1 + ya+1+b,t−1 − 2ya+b,t−1)

=
∂

∂ya+b,1

∑
b∈A

[
cb+1 ya+b,t−1 + cb−1 ya+b,t−1 − 2cb ya+b,t−1

]
=

∑
b∈A

[
cb+1 + cb−1 − 2cb

]∂ya+b,t−1

∂ya+b,1

> 0.

The first line is by applying the policy function; second line is by a change of variable thanks to the

symmetry of the policy function across agents; the inequality is thanks to the convexity property of the

policy coefficients in (ii) in (A.3), which in turn makes the expression inside the brackets positive.
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The partial derivative of γb(α1, p, β(p))
α1

with respect to p is well-defined and continuous since α1 6= 0

(hence p 6= 0)

∂

∂p

γb(α1, p, β(p))

α1
=

(
1

2p2

)
I{b=−1,1}

+

∞∑
t=2

βt−1

[(
1

p2

)
∂ya,t
∂ya,1

∂ya,t
∂ya+b,1

(G.28)

+

(
1

2p2

) (
∂ya,t
∂ya,1

− ∂ya−1,t

∂ya,1

)(
∂ya−1,t

∂ya+b,1
+
∂ya+1,t

∂ya+b,1
− 2

∂ya,t
∂ya+b,1

)]

+

(
∂β

∂p

) ∞∑
t=2

(t− 1)βt−2

[(
∂ya,t−1

∂ya,1
− ∂ya,t
∂ya,1

)(
∂ya,t
∂ya+b,1

− ∂ya,t−1

∂ya+b,1

)
−
(

1− p
p

)
∂ya,t
∂ya,1

∂ya,t
∂ya+b,1

+

(
p− α1

2α1p

) (
∂ya,t
∂ya,1

− ∂ya−1,t

∂ya,1

)(
∂ya−1,t

∂ya+b,1
+
∂ya+1,t

∂ya+b,1
− 2

∂ya,t
∂ya+b,1

)]
> 0

The first three lines yield the direct effect of the differential change in p whose sum is positive. The

last three lines yield the indirect effect of the differential change in p through β using the chain rule

and the expression β(p |C∞) = p−C∞
pC∞(1−C∞) from (C.5), whose sum is positive as well. This is because

∂β
∂p = 1

p2(1−C∞) > 0; and the sum of all other expressions in the last three lines is the partial derivative of
γb(α1, p, β(p))

α1
with respect to β; this latter is positive as we proved above that γb(α1, p, β(p))

α1
is increasing in

β. Similarly, the partial derivative of γb(α1, p, β(p))
α1

with respect to α1 is well-defined

∂

∂α1

γb(α1, p, β(p))

α1
=

(
− 1

2α2
1

)
I{b=−1,1} (G.29)

+

∞∑
t=2

βt−1

(
− 1

2α2
1

) (
∂ya,t
∂ya,1

− ∂ya−1,t

∂ya,1

)(
∂ya−1,t

∂ya+b,1
+
∂ya+1,t

∂ya+b,1
− 2

∂ya,t
∂ya+b,1

)
< 0

continuous, and strictly negative at any (α1, p, β(p)).

So far, we have proved that the partial derivatives are well-defined and continuous everywhere in the

admissible domain. Therefore, the map γb(α1, p, β(p))
α1

is continuously differentiable (see e.g., Theorem 41.2

on Class C1 on p. 376 in Bartle (1976)). We have also shown that the the partial derivatives satisfy
∂
∂p

γb(α1, p, β(p))
α1

> 0 and ∂
∂α1

γb(α1, p, β(p))
α1

< 0, for any (α1, p, β(p)). This concludes the proof of Lemma

7(i).

-There exist agents b 6= b′ such that for any (α1, p, β(p)),

−
∂α−1

1 γb′
∂p

∂α−1
1 γb′
∂α1

∣∣∣∣∣
α−1

1 γb′ (α1,p,β(p))=γ̄′b

> −
∂α−1

1 γb
∂p

∂α−1
1 γb
∂α1

∣∣∣∣∣
α−1

1 γb(α1,p,β(p))=γ̄b

> 0. (G.30)
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This result studies more closely the marginal rate of substitution (MRS) between α1 and p that

maintain the same levels for the maps

γb(α1, p, β(p))

α1
− γ̄b = 0, for b ∈ A. (G.31)

Thanks to Lemma 7(i), the Implicit Function Theorem (see e.g., Bartle (1976), p.384) states that, for any

b1 ∈ A, there exists a continuous and differentiable function α1(p | Pb1) that gives the unique value of α1

for any value of p such that (α1, p, β(p)) ∈ Pb1 , the level set defined in (C.6). The slope of α1(p | Pb1) is

the marginal rate of substitution between α1 and p that sustain the level in (G.31). Since by Lemma 7(i),
∂
∂α1

γb(α1, p, β(p))
α1

< 0, the total derivative of the implicit function gives

∂α−1
1 γb
∂α1

dα1 +
∂α−1

1 γb
∂p

dp = 0

or equivalently, the MRS between α1 and p on the same level curve yields

MRSbα1,p =
dα1

dp
= −

∂α−1
1 γb1
∂p

∂α−1
1 γb1
∂α1

∣∣∣∣∣
Pb1

> 0. (G.32)

is positive thanks to Lemma 7(i), which we proved above. We have an overdetermined system with a

total of |A| restrictions thanks to the implicit functions in (G.31) and two parameters (α1, p) to determine.

In particular, we will be interested in its behavior across agents as |b| gets large. For b 6= 0, the partial

derivative ∂
∂α1

γb(α1, p, β(p))
α1

we computed in (G.29) is

∂

∂α1

γb(α1, p, β(p))

α1
= − 1

2α2
1

[
I{b=−1,1} (G.33)

+

∞∑
t=2

βt−1

(
∂ya,t
∂ya,1

− ∂ya−1,t

∂ya,1

)(
∂ya−1,t

∂ya+b,1
+
∂ya+1,t

∂ya+b,1
− 2

∂ya,t
∂ya+b,1

)]
and the partial derivative ∂

∂α1

γb(α1, p, β(p))
α1

we computed in (G.28) is

∂

∂p

γb(α1, p, β(p))

α1
=

1

p2

((
1

2

)
I{b=−1,1} +

∞∑
t=2

βt−1

[
∂ya,t
∂ya,1

∂ya,t
∂ya+b,1

+

(
1

2

) (
∂ya,t
∂ya,1

− ∂ya−1,t

∂ya,1

)(
∂ya−1,t

∂ya+b,1
+
∂ya+1,t

∂ya+b,1
− 2

∂ya,t
∂ya+b,1

)])

+

(
∂β

∂p

) ∞∑
t=2

(t− 1)βt−2

[(
∂ya,t−1

∂ya,1
− ∂ya,t
∂ya,1

)(
∂ya,t
∂ya+b,1

− ∂ya,t−1

∂ya+b,1

)
−
(

1− p
p

)
∂ya,t
∂ya,1

∂ya,t
∂ya+b,1

+

(
p− α1

2α1p

) (
∂ya,t
∂ya,1

− ∂ya−1,t

∂ya,1

)(
∂ya−1,t

∂ya+b,1
+
∂ya+1,t

∂ya+b,1
− 2

∂ya,t
∂ya+b,1

)]
Since for any t > 1 and for a ∈ A

∂ya,t
∂ya+b,1

=
∑
b1

· · ·
∑
bt−1

cb1 · · · cb−(b1+···+bt−1), (G.34)
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in all three expressions, the terms inside the brackets involving
∂ya,t−1

∂ya,1
,
∂ya,t
∂ya,1

, and
∂ya−1,t

∂ya,1
are iterated

convolution of the policy sequence (cb)b∈A, basically constant coefficients that do not change as b changes.

The terms that change are the ones involving
∂ya,t−1

∂ya+b,1
,
∂ya,t
∂ya+b,1

,
∂ya−1,t

∂ya+b,1
, and

∂ya+1,t

∂ya+b,1
, as |b| gets larger.

We know from Lemma 5 that the rate at which the policy coefficients converge to zero forms a conver-

gent sequence that is monotonically increasing in |b|. Moreover, the same convolution argument we used

in (G.10) and (G.11) in the proof of Lemma 5 can be used for the expression in (G.34) to show that the

rate at which they converge to zero forms a convergent sequence that is monotonically increasing in |b|.

Hence, thanks to symmetry of the policy function, letting ry(b, t) :=

∂ya,t
∂ya+b,1
∂ya,t

∂ya+b−1,1

, one can write the terms

inside the second parenthesis in (G.33) as

∂ya−1,t

∂ya+b,1
+
∂ya+1,t

∂ya+b,1
− 2

∂ya,t
∂ya+b,1

=
∂ya,t
∂ya+b,1

(
ry(b+ 1, t) +

1

ry(b− 1, t)
− 2

)
(G.35)

to show how their convergence rates are related to that of
∂ya,t
∂ya+b,1

. We will give the argument for b > 0

wlog since the one for b < 0 is identical. The expression inside the parenthesis is positive but decreasing

in b. So, for any b > 0

∂ya,t
∂ya+b+1,1

(
ry(b+ 2, t) + 1

ry(b,t) − 2
)

∂ya,t
∂ya+b,1

(
ry(b+ 1, t) + 1

ry(b−1,t) − 2
) <

∂ya,t
∂ya+b+1,1

∂ya,t
∂ya+b,1

= ry(b+ 1, t)

which means that the rate of convergence for two consecutive such terms is less than ry(b + 1, t), the

convergence rate of
∂ya,t
∂ya+b,1

terms.

The denominator in the definition of MRSbα1,p in (G.32) consists only of the discounted sum of such

terms in (G.35) for all periods t ≥ 2, which decline at a rate lower than ry(b + 1, t). The numerator also

incorporates these terms as well as others that converge at rates higher than ry(b+ 1, t). Based on these

facts, applying to the discounted sums above, tedious but straightforward modifications of the monotone

convergence arguments we used in (G.10) and (G.11) in the proof of Lemma 5 yields that the overall

convergence rate of the numerator is higher than the overall convergence rate of the denominator at any

given b 6= 0. This in turn implies that the MRSbα1,p is increasing in |b|, which means that the rate at which

p is substituted for α1 to make the levels in (G.31) intact can be ranked across agents b. Therefore, there

exist b and b′ for which the statement in Lemma 7(ii) is true. This concludes the proof. �

H Social Welfare

We provide here the formal welfare arguments for finite economies with i.i.d. preference shocks for the

clarity of the intuition delivered. The extension of the line of proof to more general processes and to the

infinite-horizon is tedious but straightforward. We first write the planning problem recursively. For any

agent a ∈ A, for all t = 1, . . . , T , and all (yT−1, θ
t) ∈ Y ×Θt, let the value of using the choice rule h in

the continuation be defined as
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V h,T−(t−1) (Ra yT−1, R
a θt) = −α1

(
ya,t−1 − hT−(t−1)(R

a yt−1, R
a θt)

)2
−α2

(
θa,t − hT−(t−1)(R

a yt−1, R
a θt)

)2
−α3

(
hT−(t−1)(R

a−1 yt−1, R
a−1 θt)− hT−(t−1)(R

a yt−1, R
a θt)

)2
−α3

(
hT−(t−1)(R

a+1 yt−1, R
a+1 θt)− hT−(t−1)(R

a yt−1, R
a θt)

)2
+β

∫
V h,T−t

(
Ra

{
ht(R

b yt−1, R
b θt)

}
b∈A , R

a θt+1

)
P (dθt+1)

which leads us to the following definition

Definition 4 (Recursive Planning Problem) Let a T -period linear economy with social interactions

and conformity preferences be given. Let π0 be an absolutely continuous distribution on the initial choice

profiles with a positive density. A symmetric Markovian choice function g : Y ×Θ × {1, . . . , T} → Y is

said to be efficient if it is a solution, for all a ∈ A, and for all t = 1, . . . , T , to

arg max
{h∈CB(Y×Θ,Y )}

∫ [
− α1

(
y0,t−1 − hT−(t−1)(R

a yt−1, R
a θt)

)2
−α2

(
θa,t − hT−(t−1)(R

a yt−1, R
a θt)

)2
−α3

(
hT−(t−1)(R

a−1 yt−1, R
a−1 θt)− hT−(t−1)(R

a yt−1, R
a θt)

)2
−α3

(
hT−(t−1)(R

a+1 yt−1, R
a+1 θt)− hT−(t−1)(R

a yt−1, R
a θt)

)2
+β V h,T−t

(
Ra

{
h(Rb yt−1, R

b θt)
}
b∈A , R

a θt+1

)]
P (dθt)P (dθt+1)πt (dyt−1)

where πt is the distribution of the t-th period choice profiles induced by π0 and the planner’s choice rule h.

We will use continuity arguments so endow the underlying space Y×Θ with the product topology. Product

topology is metrizable, say by metric d54. In the final period of this finite horizon economy, with absolutely

continuous distribution πT−1 on the space of choice profiles yT−1
55 with a positive density, the planner

maximizes ex-ante (before the realization of θT ) the expected utility of a given agent, say of agent 0 ∈ A, by

choosing a symmetric policy function h ∈ CB(Y×Θ, Y ), the space of bounded, continuous, and Y -valued

measurable functions. 56 The space Y×Θ is compact with respect to the product topology since Y and Θ

are compact. Since the utility function is continuous and strictly concave in all arguments, the maximizer

exists and it is unique. The necessary condition for optimality is summarized in the following lemma.

54Let | · | be the usual Euclidean norm. For any (y, θ), (y′, θ′) ∈ Y ×Θ, let

d
(
(y, θ) ,

(
y′, θ′

))
:=
∑
a∈A

2−a
(
|ya − y′a|+ |θa − θ′a|

)
Since Y = Θ = [y, ȳ] is a compact interval, this is a well-defined metric that metrizes the product topology on

Y ×Θ. See also Aliprantis and Border (2006), p. 90.
55Starting with an initial π0 which is absolutely continuous, the MPE policy function and the absolutely contin-

uous preference shocks induce a sequence (πt) of absolutely continuous distributions on t-period equilibrium choice

profiles.
56Since the planner’s choice rule is symmetric, the choice of agent 0 rather than another agent is inconsequential.
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Lemma 8 For any (yT−1, θT ) ∈ Y ×Θ,

0 = α1 (y0,T−1 − h(yT−1, θT )) + α2 (θ0,T − h(yT−1, θT ))

+α3

(
h(R−1 yT−1, R

−1 θT )− h(yT−1, θT )
)

+ α3 (h(RyT−1, R θT )− h(yT−1, θT ))

−α3 (h(yT−1, θT )− h(RyT−1, R θT ))− α3

(
h(yT−1, θT )− h(R−1 yT−1, R

−1 θT )
)

Proof: The proof uses an extension of the usual calculus of variation techniques to our symmetric strategic

environment. We prove it for the class of bounded, continuous, and measurable, real-valued functions on

Y × Θ. Then, we use the restriction of the result to a subset of it, the space of bounded, continuous,

and measurable, Y -valued functions. Suppose that the function h provides the maximum for the planner’s

problem. For any other admissible function h′, define k = h′ − h. Consider now the expected utility from

a one-parameter deviation from the optimal policy h, i.e.,

J(a) :=

∫
u
(
y0,T−1, (h+ ak)(yT−1, θT ), (h+ ak)(R−1 yT−1, R

−1 θT ),

(h+ ak)(RyT−1, R θT ), θ0,T ) P (dθT )πT−1 (dyT−1)

where a is an arbitrary real number and u represents the conformity preferences in Assumption 1. Since h

maximizes the planner’s problem, the function J must assume its maximum at a = 0. Leibnitz’s rule for

differentiation under an integral along with the chain rule for differentiation gives us

J ′(a) :=

∫ (
u2 k + u3 k ◦R−1 + u4 k ◦R

)
dP dπT−1

where ui is the partial derivative of u with respect to the i-th argument. For J to assume its maximum at

a = 0, it must satisfy

J ′(0) :=

∫ [
u2

(
y0,T−1, h(yT−1, θT ), h(R−1 yT−1, R

−1 θT ), h(RyT−1, R θT ), θ0,T

)
k(yT−1, θT )

+u3

(
y0,T−1, h(yT−1, θT ), h(R−1 yT−1, R

−1 θT ), h(RyT−1, R θT ), θ0,T

)
k(R−1yT−1, R

−1θT )

+u4

(
y0,T−1, h(yT−1, θT ), h(R−1 yT−1, R

−1 θT ), h(RyT−1, R θT ), θ0,T

)
k(RyT−1, RθT )

]
×P (dθT )πT−1 (dyT−1) = 0

for any arbitrary admissible deviation k. Suppose that the statement of the lemma is not true. This

implies that there is an element (ŷ, θ̂) ∈ Y ×Θ such that

0 6= u2

(
ŷ0, h(ŷ, θ̂), h(R−1 ŷ, R−1 θ̂), h(R ŷ,R θ̂), θ̂0

)
+u3

(
ŷ1, h(R ŷ,R θ̂), h(ŷ, θ̂), h(R2 ŷ, R2 θ̂), θ̂1

)
+u4

(
ŷ−1, h(R−1 ŷ, R−1 θ̂), h(R−2 ŷ, R−2 θ̂), h(ŷ, θ̂), θ̂−1

)
(H.1)

Assume w.l.o.g. that the above expression takes a positive value (the proof for the case with a negative

value is identical). Since the utility function, its partials, and the deviation functions are all continuous

with respect to the product topology, and that the measures π and P have positive densities, there exists

a (π × P)-positive measure neigborhood A ⊂ Y ×Θ around (ŷ, θ̂) such that the above expression stays
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positive for all (yT−1, θT ) ∈ A.57 Assume that a1 = (ŷ, θ̂), a2 = (R ŷ,R θ̂), and a3 = (R−1 ŷ, R−1 θ̂) are

distinct points. Otherwise, since the underlying space Y is a real interval and the maps R and R−1 are

right and left shift maps, one can always pick a point in A that has that property.

Now choose ε > 0 small enough so that the ε-balls Bε (a1), Bε (a2), and Bε (a3) are disjoint. R and

R−1 being both continuous are homeomorphisms. So, one can find ε > δ1 > 0 and ε > δ2 > 0 such that

R (Bδ1 (a1)) ⊂ Bε (a2) and R−1 (Bδ2 (a1)) ⊂ Bε (a3). Let δ = min{δ1, δ2} and A1 := Bδ (a1). We next

define a particular deviation k. Let the function k be defined as

k(y, θ) = k(Ry,R θ) = k(R−1 y,R−1 θ) =

{
γ [δ − d((y, θ), a1)] , if (y, θ) ∈ A1

0, otherwise.
(H.2)

where γ > 0 is a scalable constant. This is possible because A1, R(A1) and R−1(A1) are disjoint sets.

Constructed this way, k is a bounded, continuous, and measurable function58. Substitute k into equation

(H.1). By construction, the only set on which k is positive is the set A1 which is itself a subset of

A, the set of elements of Y × Θ for which the expression (H.1) is positive. Hence, evaluated with the

constructed deviation function k, J ′(0) > 0, a contradiction to the fact that the policy function h was

optimal. Therefore the statement of the lemma must be true. This concludes the proof. �

This implies that

h(yT−1, θT ) = (α1 + α2 + 4α3)
−1
(
α1 y0,T−1 + α2 θ0,T−1 (H.3)

+2α3 h(R−1 yT−1, R
−1 θT ) + 2α3 h(RyT−1, R θT )

)
As in the proof of existence, the operator induced by (H.3) is a contraction on the Banach space of bounded,

continuous, measurable functions with the supnorm, whose unique fixed point is in G, defined in (A.3).

Therefore, one can fit the following solution

h(yT−1, θT ) =
∑
a

cPa ya,T−1 +
∑
a

dPa θa,T

substituting, we get∑
a

cPa ya,T−1 +
∑
a

dPa θa,T = (α1 + α2 + 4α3)
−1

[
α1 y0,T−1 + α2 θ0,T

+2α3

(∑
a

cPa ya−1,T−1 +
∑
a

dPa θa−1,T

)
+ 2α3

(∑
a

cPa ya+1,T−1 +
∑
a

dPa θa+1,T

)]
By matching coefficients, we get for all a ∈ A

cPa = (α1 + α2 + 4α3)
−1

[
2α3 c

P
a−1 + 2α3 c

P
a+1 + α11{a=0}

]

dPa = (α1 + α2 + 4α3)
−1

[
2α3 d

P
a−1 + 2α3 d

P
a+1 + α21{a=0}

]
57Endowed with the product topology, the space Y×Θ is metrizable by the metric d. See footnote 54. Product

topology and the associated metric allows us to choose positive measure proper subsets of Y for choices of nearby

agents and the whole sets Y and Θ for far away agents, staying at the same time in the close vicinity of the point

(ŷ, θ̂).
58We endow the range space, the real line, with the Borel σ-field hence any continuous function into the real line

is automatically measurable.
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The same method as in the proof of Theorem 2 yields for any a ∈ A,

cPa = r
|a|
P

(
α1

α1 + α2

)(
1− r
1 + r

)
and dPa = r

|a|
P

(
α2

α1 + α2

)(
1− r
1 + r

)
(H.4)

rP =

(
∆P

4α3

)
−

√(
∆P

4α3

)2

− 1 with ∆P = α1 + α2 + 4α3. (H.5)

We next compare the equilibrium policy sequence in Theorem 2 (see also footnote 19) with the planner’s

optimal choice coefficient sequence. Notice that(
∆P

4α3

)
=

α1 + α2 + 4α3

4α3
<

α1 + α2 + 2α3

2α3
=

(
∆1

2α3

)
which implies that rP > r1 since rP is decreasing in ∆P

4α3
by (H.5). Thus, the planner’s optimal policy

coefficient sequence converges to zero slower than the equilibrium policy coefficient sequence. Moreover,

the equilibrium policy cannot satisfy the FOC of the planner’s problem. Therefore, the equilibrium is

inefficient for finite-horizon economies.
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I Extensions

General Neighborhood Network Structures: Section 2.3.1

The analogue for the expression (A.2) implied by the FOC in the final period of the economy with a

general network structure is

ya,1 = ∆−1
a,1

αa,1 ya,0 + αa,2 θa,1 +
∑

b∈N(a)

αa,b yb,1

 (I.1)

where ∆a,1 := αa,1 + αa,2 +
∑
b∈N(a) αa,b > 0. Hence, the best-response for agent a, BRa1 : GA\{a} → G,

is uniformly continuous for all a ∈ A, which implies that so is the induced best-response profile BR1 =

(BRa1) : GA → GA. The convex set GA is also compact thanks to Lemma 3. Hence a fixed point exists (not

necessarily unique). Thus, an equilibrium exists for a one-period economy. If the uniform boundedness

condition (in footnote 31) holds, the rate at which each one of the maps in (I.1) contracts is uniformly

bounded. Hence, BR1 becomes a contraction operator on GA implying uniqueness of the equilibrium for

a one-period economy. For a T <∞ period economy, one mimicks the induction arguments of the general

existence proof to obtain the analogue of the expression (A.10) in Lemma 2, i.e.,

0 = −ya,1 ∆a,T + αa,1 ya,0 + αa,2 θa,1 +
∑
b6=a

γa,b,T yb,1 +
∑
b∈A

T∑
τ=2

µb,τ,T E
[
θa+b,τ |θ1

]
(I.2)

where ∆a,T := αa,1 +αa,2 +
∑
b 6=a γa,b,T +

∑
b∈A

∑T
τ=2 µb,τ,T . Applying the above arguments to the system

of equations (I.2) for each a gives existence of an equilibrium for a T < ∞ period economy. Since γa,b,T

is the total effect of a change in yb,1 (b 6= a) on the expected discounted marginal utility of agent a (as

in expression (A.9)), the sum of these effects is uniformly bounded across agents if the peer effects are

uniformly bounded across agents. Hence, once again, the best-response profile for a T -period economy,

BRT , becomes a contraction on GA, implying uniqueness of equilibrium. Moreover, using the same argu-

ments in the third step of the general existence proof in Appendix A, the sequence of unique equilibria

approximates a stationary equilibrium as the horizon length becomes arbitrarily large. �

Global Interactions in Section 2.3.3

The proof uses straightforward modifications of the arguments in Section 5 of Bisin, Horst, and Özgür

(2006) to our environment. Interested reader should consult that work. �

Social Accumulation of Habits in Section 2.3.2 a Similar to the arguments employed in General

Neighborhood Network Structures, the expressions (A.2) and (A.10) change this time to

ya,1 = ∆−1
a,1

αa,1 ra,1 + αa,2 θa,1 +
∑

b∈N(a)

αa,b yb,1

 (I.3)

and

0 = −ya,1 ∆a,T + αa,1 ra,1 + αa,2 θa,1 +
∑
b6=a

γa,b,T yb,1 +
∑
b∈A

T∑
τ=2

µb,τ,T E
[
θa+b,τ |θ1

]
(I.4)
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respectively. The rest is a direct application of the arguments used above in the Section General Neigh-

borhood Network Structures, because the coefficients in the new system of maps above are the same as

those in (I.1) and (I.2). �

J Details of Simulations

The core engine behind the simulations is a Matlab code, g.m, which computes the equilibrium policy

weights recursively. The code is posted on Onur Özgür’s webpage:

https://sites.google.com/site/onurozgurresearch/research,

and contains also detailed explanations. It uses as input parameters values of the preference parameters

αi, i = 1, 2, 3, the discount factor β, the horizon for the economy T , and the number of agents m on each

side of a given agent so the total number of agents is |A| = 2m+ 1.

Given this engine, we build an artificial economy that consists of a large number of agents ( |A| =

1300, 2500, and 5000, depending on the treatment) distributed on the one-dimensional integer lattice. At

both ends, “buffer” agents that act randomly are added to smooth boundary effects. Depending on the

treatment, we start the economy with the following initial configuration of choices: (i) the highest action

for all agents; (ii) the lowest action for all agents, (iii) the action equal to the mean shock for all agents. For

the limit distribution results, once g.m computes the policy weights, we let the computer draw (θa,t)
|A|
a=1

from the interval [−D,D] according to the uniform distribution (this is for simplicity since all results in

the paper are distribution-free).

J.1 Details of the Monte Carlo Experiment

For this section, we assume that finite number of agents A = {1, . . . , N} are placed on a circle. As seen in

(9), for each a ∈ A, the first-order condition of agent a’s optimization problem admits the following simple

expression:

ya,T = α1ya,T−1 + α3(ya−1,T + ya+1,T ) + α2γxa,T + εa,T (J.1)

where εa,T = α2ua,T . Since the correlation of regressors with the error term leads to inconsistency

of least-squares methods, this equation can be consistently estimated, under assumptions 2 and 3, by

using as instruments, for instance, own past observed shock xa,T−1 and friends’ current observed shocks

(xa−1,T + xa+1,T ). The ‘exclusion restrictions’ hold due to Assumption 2 and they yield the following

population moment conditions, for any a ∈ A

E [εa,T | xa,T−1] = 0

E [εa,T | (xa−1,T + xa+1,T )] = 0

which can then be expressed simply, thanks to the Law of Iterated Expectations, as

E [xa,T−1 εa,T ] = 0

E [(xa−1,T + xa+1,T ) εa,T ] = 0
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This yields a total of 2N moment conditions for t = T and 2 parameters, α1, and α3 to estimate. Similarly,

the first-order condition at T − 1, equation (10), is equivalent to the following econometric equation

[1 + βα1(1− c1,1)]ya,T−1 = α1ya,T−2 + α3(ya−1,T−1 + ya+1,T−1) + β(α1 − c1,1(1− 2α3))ya,T

+γα2xa,T−1 + γβα2c1,1xa,T + εa,T−1 (J.2)

where εa,T−1 includes preference shocks as well as differences between expected and realized outcomes at

T . Three valid instruments are enough to provide consistent estimates. When α3 6= 0, these instruments

could be, for instance, xa,T−2, (xa−1,T−1 +xa+1,T−1), and (xa−2,T−1 +xa+2,T−1). Formally, the population

moment conditions are, for any a ∈ A

E [εa,T−1 | xa,T−2] = 0

E [εa,T−1 | (xa−1,T−1 + xa+1,T−1)] = 0,

E [εa,T−1 | (xa−2,T−1 + xa+2,T−1)] = 0

which can be written, for any a, b ∈ A, thanks to the Law of Iterated Expectations, unconditionally as

E [xa,T−2 εa,T−1] = 0

E [(xa−1,T−1 + xa+1,T−1) εa,T−1] = 0

E [(xa−2,T−1 + xa+2,T−1) εa,T−1] = 0

If we use all such possible combinations, we have 3N moment conditions for t = T − 1 and 3 parameters,

α1, α3, and β to estimate.

Given these 5N population moment conditions, nonlinear in the 3 parameters of interest, λ :=

(α1, α3, β), the model is overidentified, and it is not possible to solve the system of analogous sample

moment conditions for a unique value of the parameter vector. Instead, the structural coefficients can be

estimated using the Generalized Method of Moments (GMM)59.

Define the adjacency matrix G by

Gij =

{
1, if j = i− 1, i+ 1

0, otherwise

With G summarizing the overall interaction structure concisely, we can represent the instrument

vectors as

- Friends’ observable covariates (xa−1,T + xa+1,T )a∈A and (xa−1,T−1 + xa+1,T−1)a∈A, at time T and

T − 1, can be represented by GxT and GxT−1, respectively.

- Friends’s friends’ observable covariates (excluding agent a himself) at time T−1, namely (xa−2,T−1+

xa+2,T−1)a∈A, can be represented by
(
G2 − 2I

)
xT−1.

59We follow closely the setup of Section 6.5 of Cameron and Trivedi (2005) on nonlinear instrumental variables.
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Finally, let’s define the 5N × 2N instruments matrix Z and the 2N × 1 error vector ε as

Z :=


diag(xT−1) 0

diag(GxT ) 0

0 diag(xT−2)

0 diag(GxT−1)

0 diag((G2 − 2I)xT−1)


︸ ︷︷ ︸

5N×2N

and ε : =

(
εT

εT−1

)
︸ ︷︷ ︸

2N×1

(J.3)

where diag (x) is the N ×N diagonal matrix whose only non-zero entries on the diagonal are the elements

of the vector x, i.e.

diag (x) :=



x1

. . .

xa
. . .

xN


︸ ︷︷ ︸

N×N

(J.4)

This way, we can write the 5N × 1 system of population moment conditions as

E [ Zε ] = 0︸︷︷︸
5N×1

(J.5)

Using the analogy principle for finite samples, the corresponding sample moment can be written as

1

M

M∑
m=1

Zmεm = 0 (J.6)

where M is the sample size, i.e., the number of replica economies that we draw i.i.d. in each simple random

sample. Since the number of moments is greater than the number of parameters, the model is overidentified

and (J.6) has no solution for λ̂. Instead, we choose λ̂ so that a quadratic form in M−1
∑M
m=1 Zmεm is as

close to zero as possible. Hence, the GMM estimator λ̂GMM minimizes

QM (λ) =

[
1

M

M∑
m=1

Zmεm

]′
WM

[
1

M

M∑
m=1

Zmεm

]
(J.7)

where the 5N × 5N weighting matrix WM is symmetric positive definite, and does not depend on λ.

Solving for the optimal λ̂ requires differentiating QM (λ) in (J.7) with respect to λ to obtain the GMM

first-order conditions [
1

M

M∑
m=1

Zm
∂εm
∂λ

∣∣∣∣∣
λ=λ̂

]′
WM

[
1

M

M∑
m=1

Zε

]
= 0︸︷︷︸

3×1

(J.8)

where we have multiplied by the scaling factor 1/2 and where

∂ε

∂λ

∣∣∣∣
λ=λ̂

(J.9)
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is the 2N×3 Jacobian matrix for ε evaluated at the minimizer λ̂, and where the Jacobian matrix of partial

derivatives of ε := (εT , εT−1) with respect to the parameter vector λ = (α1, α3, β) is

∂ε

∂λ
=

[
∂εT
∂α1

∂εT
∂α3

∂εT
∂β

∂εT−1

∂α1

∂εT−1

∂α3

∂εT−1

∂β

]
(J.10)

such that

∂εT
∂α1

= −yT−1 + γ xT

∂εT
∂α3

= −GyT + 2 γ xT (J.11)

∂εT
∂β

= 0

and

∂εT−1

∂α1
= η

[
β

(
(1− c11)− α1

∂c11

∂α1

)
(yT−1 − εT−1)− yT−2 − β

(
1− (1− 2α3)

∂c11

∂α1

)
yT

+γxT−1 − γβ
(
α2
∂c11

∂α1
− c11

)
xT

]
∂εT−1

∂α3
= η

[
α1β

∂c11

∂α3
(εT−1 − yT−1)−GyT−1 + β

(
∂c11

∂α3
(1− 2α3)− 2c11

)
yT + 2γxT−1

−γβ
(
α2
∂c11

∂α3
− 2c11

)
xT

]
(J.12)

∂εT−1

∂β
= η [α1 (1− c11) (yT−1 − εT−1)− (α1 − c11 (1− 2α3)) yT + γα2c11xT ]

and α2 = (1−α1− 2α3), η := (1 +βα1(1− c11))−1, r1 = (2α3)−1−
√

(2α3)−2 − 1; ∂c11∂α1
= r1

1−2α3

1−r1
1+r1

, and

∂c11
∂α3

= 2(1− 2α3)−1c11 + c11

(
∂r1
∂α3

)
1−2r1−r21
r1(1−r1)2 where

(
∂r1
∂α3

)
= 1

4 a33
√

1
4 a3

2−1
− 1

2 a32 .

We know from Cameron and Trivedi (2005) Proposition 6.1 that the GMM estimator λ̂GMM , defined

to be a root of the first-order conditions in (J.8), is consistent for λ0, and is asymptotically normally

distributed as
√
N
(
λ̂GMM − λ0

)
d→ N(0,V), a result due to Hansen (1982). We use a simple GMM

estimator where the weight matrix WM = I5N . Since our replica economies are independent over m, we

obtain the estimate Ŝ using as an obvious estimator

Ŝ =
1

M

M∑
m=1

Zmεm (Zmεm)
′

(J.13)

hence the GMM estimator λ̂GMM is asymptotically normally distributed with mean λ0 and with estimated

asymptotic variance

V̂ =
(
D̂′Ŝ−1D̂

)−1

(J.14)

where

D̂ =
1

M

M∑
m=1

Zm
∂εm
∂λ

∣∣∣∣∣
λ=λ̂GMM

. (J.15)
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