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Abstract

We study the evolutionary properties of decision processes. We show that a popu-

lation of agents possessing decision architectures with hierarchically organized modules

will have a strictly higher asymptotic growth factor than a population of agents with

unitary decision architectures in which the modules are fully connected. Furthermore,

we show that internal con�ict within agents and behavioral heterogeneity across agents

are properties of evolutionary equilibrium. We interpret these results as supporting

economic models of multiple decision processes like e.g., planner-doer models.

1 Introduction

In this paper we investigate the evolutionary properties of two stylized architectures for

decision processes: i) a modular hierarchical (MH) architecture in which a motivational

module discriminates between the action recommendations of two separate advisory modules
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and ii) a unitary (U) architecture in which all three modules are directly connected with each

other so that one circuit always determines behavior.

Modular hierarchical decision processes are of interest as formal representations of mul-

tiple decision processes, like those recently studied by economists in choice environments

where rational decision making, arguably, fares poorly.1 In particular, this is the case for

choice under uncertainty and intertemporal choice in self-control environments, which has

lead economists to formulate decision making models characterized by the interaction of

multiple selves, with con�icting models of behavior.2

The main results of this paper are as follows. Under a stable environment, but in the

presence of deleterious mutations, we show that the MH has a strictly higher asymptotic

growth factor than the U architecture. The MH architecture will thus outperform the

unitary architecture in the long run starting from any initial condition. This is because

the modular architecture is more robust with respect to the harmful e¤ects of accumulating

mutations. The U architecture is fully connected: a mutation in any module of the circuit

will in�uence its overall performance level. TheMH architecture, on the other hand, is only

loosely connected: it will continue to operate nearly optimally in the presence of several

kinds of harmful mutations. And even though internal con�ict will be present in equilibrium

in a large part of the population, it will not lead to behavioral heterogeneity except for a

trivial fraction of the agents.

We also compare the performance of the two architectures in the presence of small

random �uctuations in the environment. Because of the di¤erent levels of connectedness,

the two architectures will typically face a complexity-e¢ ciency trade-o¤. In particular, a

unitary architecture might expend more energy while being able to respond more precisely

1See for instance the surveys in Rabin (1998), Lowewenstein and Prelec (1992), and Camerer (2009). On
the methodological issues involved in modeling decision processes rather than choices and preferences, see
Caplin and Schotter (2008).

2See Frederick, Loewenstein, and O�Donoghue (2002) for a survey of the empirical evidence. Some
examples of multiple selves models are Thaler and Shefrin (1981), Laibson (1997), Bernheim and Rangel
(2004), Benhabib and Bisin (2005), Fundenberg and Levine (2006), Loewenstein and O�Donoghue (2007),
and Brocas and Carrillo (2008).
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to �uctuations in the environment. Under these conditions, and in the presence of harmful

mutations, the relative performance of the hierarchical architecture will depend on its preci-

sion level. Speci�cally, we show that if the precision of aMH architecture is above a critical

level, it will outperform a unitary architecture with the same number of modules starting

from any initial condition. This is because the gain in �tness for the unitary architecture,

due to increased accuracy, is more than o¤set by the loss in �tness due to increased energy

consumption.

In addition, we show that under imperfect precision and random �uctuations in the

environment, both internal con�ict among advisory modules and heterogeneity in behavior

among agents in the population are integral parts of evolutionary equilibrium. Intuitively,

in the presence of undetectable �uctuations in the environmental state, the behavioral

heterogeneity induced by internal con�ict serves as a diversi�cation device. This is because

a completely redundant, correctly speci�ed model for the current state becomes a rigid,

misspeci�ed model in the event of an undetected environmental perturbation.

We interpret our results as providing an evolutionary justi�cation for the models of mul-

tiple decision processes explored by economists, and in particular for hierarchical models of

multiple selves such as in the work of Thaler and Shefrin (1981) and, more recently, Brocas

and Carrillo (2008) and others.3 Because the modular hierarchies we study are a type of

neural network and can serve as universal approximators, they can provide a common concep-

tual foundation for all multiple selves models, providing much needed theoretical restrictions

across decision problems to be identi�ed with decision theoretic and/or neurobiological data.

1.1 Related literature

This paper is related to indirect evolutionary theory, whose aim is to identify the fundamental

characteristics of agents� preferences as the result of evolutionary selection. Robson and

Samuelson (2009) comprehensively survey this literature. In this paper, however, we subject

3For a comprehensive review of the unitary vs. multiple decision systems debate within neuroeconomics
see Rustichini (2008).
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agents� decision processes, rather than their preferences, to the analysis of evolutionary

selection. Decision processes become a natural unit of analysis when agents�rationality is

relaxed to allow for behavioral decision making.4 In particular, as we discuss in Section 5,

several of the recent decision theoretic analyses of intertemporal choice (can be interpreted

to) develop explicit models of decision processes.

Three recent papers, Dasgupta and Maskin (2005), Samuelson and Swinkels (2006), and

Netzer (2009), are closely related to ours in that they also concentrate on the evolution of

multiple selves models. In Dasgupta and Maskin (2005) and Netzer (2009) multiple selves

arise in response to speci�c choice problems that are believed to have been encountered by

human populations during their evolutionary past. On the contrary, in our paper, hierar-

chical decision processes arise regardless of the choice problems the decision maker might

have encountered, suggesting that the properties of decision architectures might be relatively

robust across decision problems. In addition, in those two papers, no internal con�icts or be-

havioral heterogeneity arise in equilibrium so those which are observed in modern times are

explained as a remnant of our evolutionary past. In our paper, on the other hand, internal

con�icts and behavioral heterogeneity have a positive evolutionary value because they serve

as diversi�cation devices in the presence of undetectable �uctuations in the environment.

Internal con�icts also turn out to have a positive evolutionary value in Samuelson and

Swinkels (2006). However, Samuelson and Swinkels (2006)�s analysis crucially depends on

the imperfect observability of the environmental state due to cognitive limitations. In our

paper, on the other hand, internal con�icts might be present in equilibrium even if the evo-

lutionary environment is stable and thus perfectly observable (Proposition 1). Furthermore,

the internal con�icts derived by Samuelson and Swinkels do not lead to behavioral hetero-

geneity. In their environment, conditionally on being in the same situation, all agents will

make exactly the same choice.5 In our paper, instead, heterogeneity in behavioral responses

4See the papers by Rubinstein and Salant (2008) and Benhabib and Bisin (2008) in Caplin and Schotter
(2008).

5One can argue that response heterogeneity can be introduced in the model by endwoing agents with
di¤erent information-processing rules, say due to di¤erences in cognition. But then why wouldn�t only the
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is a crucial aspect of evolutionary selection (Proposition 3). In fact, internal con�icts have

a positive evolutionary value under imperfect observability precisely because they facilitate

behavioral heterogeneity, which in turn leads to demographic diversi�cation.

Our results are also related to the recent literature on kludges6�see Ely (2009) and Marcus

(2008). A kludge is a "marginal adaptation which compensates for, but does not eliminate

fundamental design ine¢ ciencies" in brain processes - from Ely (2009). In our framework,

internal con�ict and behavioral heterogeneity can be interpreted as such a kludge. This is

not due to a design ine¢ ciency, however. In our model, nothing prevents the further inte-

gration of modules into a unitary architecture. But for su¢ ciently advanced organisms, such

integration will not be evolutionary bene�cial and will thus be selected out of an evolutionary

equilibrium.

Finally, our decision model is supported by available evidence regarding the neurophysi-

ology of the brain and is based on biologically plausible mutation processes. However, it is

easier to discuss the biological foundations of our analysis, and to provide the appropriate

references, after having developed it. We report on biological foundations in Section 4.

2 Decision-making architectures

We consider decision-making architectures as embedded in an age-structured population of

agents with reproductive lives lasting n periods. We keep the standard practice in age-

structured models and treat a period of chronological time and an age class as equivalent.

Let s = [s(i)]ni=1 2 S denote the age pro�le of the states of the evolutionary environment. The

evolutionary environment could be deterministic or random, in which case s is a stochastic

process.7

A decision-making architecture (DA) executes an action a from a given set A; for any

agents with the best information-processing rule survive natural selection?
6Sometimes also referred to as kluges.
7Saving on notation, we simply mention that s is, formally, an element of some metric space S endowed

with a norm d.

5



Out[11]=

13

42

5

6

7

8

9

11

1012

MHA

1

3

4

2

5

6

7

8

9
11

10

12

UNITARY

Figure 1: Example of a modular hierarchy (MHA) vs unitary (UNITARY) decision architec-
ture. MHA can be obtained from UNITARY by deleting the direct connection 3 !7 between
the modules {1,2,3,4} and {5,6,7}.

state s:8 Formally, we think of an action as a map a :S ! A:

Let as denote the action pro�le with the lowest asymptotic �tness loss (relative to the

maximum), given s. Our goal is to examine the asymptotic growth factors of the two decision

architectures, unitary (U) and modular hierarchical (MH), in the presence of �tness reducing

mutations. In the U architecture, one single choice process determines the mapping between

S and A for each age. In the MH architecture, multiple, nearly decomposable, decision

modules interact to produce a map between S and A.

Figure 1 provides an illustration of the di¤erence between the two types of decision archi-

tectures. In both decision architectures there are three modules, de�ned as subgraphs with

densely connected nodes, which are sparsely interconnected.9 In the unitary architecture,

every module is connected to every other module and all three interact with each other in or-

der to produce a recommended response. More importantly, a change in a particular module,

8Note that the unit of analysis in our context is an architecture rather than an agent, a decision-making
architecture and not a decision maker.

9For the formal de�nition of a module in particular, based on local e¢ ciency in information transmission
(clustering), and "economic small-world" networks in general, see the paper by Latora and Marchiori (2003).
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ceteris paribus, will always in�uence the architecture�s overall response since that module

is connected to every other module. On the other hand, in the MH architecture modules

{1,2,3,4} and {5,6,7} are not directly connected with each other. Hence each of the two is

able to produce an independent response recommendation. Module {8,9,10,11,12}, however,

is directly connected with both advisory modules. It can thus serve as a motivational unit

that aggregates all information�input signals and the recommended policy by each advisory

module�and initiates the execution of one of the recommendations. The di¤erence here is

that there are direct connections among nodes within a module on a given level of the hi-

erarchy but not across modules on the same level�they interact through the higher level

motivational module. The MH architecture is thus nearly decomposable in the sense that

rewiring within a particular module, ceteris paribus, need not have global implications for

behavior.10

Next, we formally describe the decision process of each architecture.

Unitary Architecture. Let aU(s) denote the hereditarily acquired action of a unitary

architecture in environment s. In the long run, DAs that have the correct reference model,

as, for the environmental state s; will dominate the population.

Modular Hierarchical Architecture. Let a DA consist of two stage-one (advisory)

modules (modules 1 and 10) and one stage-two (motivational) module (module 2). Each

stage-one module has its own reference choice pro�le, namely a1(s) and a10(s). The same is

true for module 2, which has a reference pro�le given by a2(s).

Module 2 aggregates the information from the two advisory modules and executes the

recommendation of either module 1 or 10:We postulate that module 2 decides in favor of the

advisory module whose recommendation is closer to its own reference action. Formally, let

w : A� A! R denote a distance map between action pro�les. The action pro�le resulting

from the modular hierarchical architecture, denoted aMH(s), is de�ned by:

10For a thorough discussion of nearly decomposable architectures see Simon (1996).
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aMH(s) 2 arg max
a2fa1(s);a10 (s)g

�w(a; a2(s)):11

The asymptotic �tness loss will be minimal for any DA with aMH(s) = as. This is

achieved if:

(i) as = a1(s) = a10(s), for any feasible pro�le a2(s);

(ii) as = aj(s) and w(aj(s); a2(s)) � w(ak(s); a2(s)); for j = 1 or 10 and k 6= j:

Hence for the modular hierarchy to survive in a stable environment, it is needed that at

least one of the module 1 actions and the module 2 action be close to the �tness minimizing

action.

Any decision architectureK =MH;U might implicitly impose speci�c restrictions on the

set of action maps it can support. We shall consider in particular measurability restrictions,

so that a decision architecture K = MH;U is characterized by a measure of precision of

the actions it executes. Formally, for any two environmental states s; s0, let d(s; s0) denote a

measure of the distance between them. We then say that architecture K�s precision is 1
�K

if it can support an action map aK such that aK(s) 6= aK(s0) for any s; s0 2 S such that

d(s; s0) � �K :12

3 Evolutionary selection

In order to determine which architecture is more likely to be evolutionary successful, we

subject them to mutations. A mutation is a change in the connection weights of a node and

11Given that we do not impose any restrictions on the distance map w, the modeling of choice as based
on distance minimization is done solely for analytical convenience. In fact, the structure and behavior of the
MHA we investigate is isomorphic to the modular neural networks investigated in the arti�cial intelligence
literature�see Calabretta and Parisi (2005) for a review.
12Essentially, this is a measure of how well the organism can separate the fundamental change due to a

change in the environmental state from the noise generated by the idiosyncratic shocks at the individual
level.
We spare the reader the precise de�nition in terms of the measurability of the map aK :
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thus changes the reference action pro�le of the module in which it occurs. By construction,

any architecture subjected to no mutation executes the loss minimizing (�tness maximizing)

action as: But all nodes in an architecture are subject to a harmful mutation in each period

i with probability q > 0 and to a reversal (a mutation in the direction of the loss minimizing

action), with probability r > 0: Since mutations are rare events, we assume that q is su¢ -

ciently small so that multiple mutations per period can be ignored. In addition, since the

vast majority of mutations are harmful (there are many more ways to increase than decrease

the �tness loss), we assume r � q. Mutations are inherited and are generally associated with

a node, not a Decision Architecture. Let m = [m1;m10 ;m2] denote the vector of harmful

mutations accumulated by DA in the groups of nodes associated with MH modules 1, 10,

and 2. This distinction is important for the MH architecture but is irrelevant for the U

architecture where only the total number of mutations m1 + m10 + m2 matters. For ease

of comparability, however, we will also keep track of the distribution of mutations over the

groups in the U architecture, even though they are fully interconnected.

Some mutations are in�uential, i.e., they change the architecture�s action, while other

are neutral. The number of in�uential mutations will depend on the decision architecture. In

the U case, for instance, every mutation will be in�uential since modules are interconnected.

This will not be the case for theMH architecture, where the number of in�uential mutations

must be less than or equal to maxfm1;m10 ;m2g.

In this context we study the evolutionary selection of unitary vs. modular hierarchi-

cal architectures i) under a stable environment and ii) in the presence of small random

�uctuations in the environment. The architecture which has higher �tness, that is higher

asymptotic growth factor, under these conditions will be more likely to prevail in the long

run. Each architecture�s asymptotic growth factor will depend on the agent�s associated

survival probability and fertility rate. An architecture�s asymptotic growth factor will also

depend on its precision, that is, its ability to recognize and react to di¤erent environmental

states.
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More precisely, consider an agent of age i with decision architecture K = U;MH in

environmental state s = [s(i)]ni=1. We can now de�ne the fundamental concepts of the evo-

lutionary analysis:

i) �K(m) is an in�uence function that determines the number of mutations in the vector m

that are in�uential (NOT neutral) for the DA�s survival and procreation.

ii) PKi (�
K(m); s) denotes the survival probability of an agent of age i with decision ar-

chitecture K = U;MH with m accumulated harmful mutations in state s: Consis-

tently, we require that PKn (�
K(m); s) = 0. We also assume a DA can accumulate at

most W harmful mutations, as W + 1 mutations are lethal: PKi (�
K(m); s) = 0; for

m1 +m10 +m2 � W + 1:

iii) GKi (�
K(m); s) denotes the expected number of surviving o¤springs from an agent of age

i with decision architecture K = U;MH with m accumulated harmful mutations in

state s.13

Furthermore, recall that

iv) 1
�K
denotes the precision of architecture K; that is, its ability to support an action map

aK such that aK(s) 6= aK(s0) for any s; s0 2 S such that d(s; s0) � �K :

Assumption 1. In�uential mutations are harmful :

PKi (�; s) and G
K
i (�; s) are strictly decreasing in �;

while

�K(m) is weakly increasing in (each element of) m:

13The expectation here is taken over some distribution of idiosyncratic individual shocks which average
out in a su¢ ciently large population.
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Furthermore, the following complexity-e¢ ciency trade-o¤ determines each architecture�s

relative �tness properties: the MH architecture is more energy e¢ cient

GMH
i (�; s) � GUi (�; s) and PMH

i (�; s) � PUi (�; s); for any i; �, and s;

while, on the other hand, the U architecture is more precise

1

�U
� 1

�MH
:14

To ignore the complicating e¤ects of sexual reproduction, we assume:

Assumption 2. Mating is assortative in the sense that like types match with each other

in order to reproduce.15

3.1 Stable environment

We are now ready to study evolutionary selection of the two architectures. We �rst perform

the exercise in a stable environment. We shall study random and cyclical variations of the

environmental state in the following section.

Assumption 3-s. The evolutionary environment is stable, that is s(i) does not vary

over the lifetime i = 1; :::n of any agent:

s(i) = s; 8i:

We can then drop reference to the environmental state s in the notation of this section,

without loss of generality. Consider �rst the MH architecture. Recall that such an archi-

tecture is composed of three modules, 1; 10; and 2. Let N j;k;l
i;t denote the size at time t of the

subpopulation of processes of age i characterized by a total of j+ k+ l mutations, with j, k,

14We say the the complexity-e¢ ciency trade-o¤ is non-trivial if the inequalities hold strictly.
15Assortative mating may be violated, especially among types which do not exhibit any variation in

behavior. In the appendix, we consider the opposite extreme assumption: random mating.
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and l mutations, respectively, in module 1; 10; and 2. The distribution of mutations across

modules is important: for example, a mutation in module 1 or 10 might have no e¤ect on the

action executed. The age and mutations pro�le of the population at the beginning of period

t is given by

Nt =
h
N j;k;l
i;t

i
i;j;k;l

:16

Let

GK(j; k; l) = [GK1 (�
K(j; k; l)); :::;GKn (�

K(j; k; l))]

and de�ne PKi (j; k; l) =P
K
i (�

K(j; k; l)). The dynamics of the population of K processes

are governed by the linear system

Nt+1 = A
KNt;

where the generic entry of AK is constructed as follows:

For m = (j; k; l) 6= 0 and j + k + l < W , the in�ow from Nt into N
j;k;l
1;t+1 is

given by the following row of AK

[0:::0; qGK(j � 1; k; l);qGK(j; k � 1; l);qGK(j; k; l � 1);(1� q � r)GK(j; k; l);

rGK(j + 1; k; l);rGK(j; k + 1; l);rGK(j; k; l + 1);0:::0];

while for i > 1, the in�ow from Nt into N
j;k;l
i;t+1 is given by the row

[0:::0; qPKi�1(j � 1; k; l);qPKi�1(j; k � 1; l);qPKi�1(j; k; l � 1);(1� q � r)PKi (j; k; l);

rPKi�1(j + 1; k; l);rP
K
i�1(j; k + 1; l);rP

K
i�1(j; k; l + 1);0:::0]:

16E.g., in the case of two age classes (two period life), and two maximum mutations (n =W = 2):

Nt = [N
0;0;0
1;t ; N0;0;0

2;t ; N1;0;0
1;t ; N1;0;0

2;t ; N1;1;0
1;t ; N1;1;0

2;t ; N2;0;0
1;t ; N2;0;0

2;t ]T
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For m = 0 and j + k + l = W , the entries are slightly di¤erent but the basic idea is the

same. The interested reader is referred to the Appendix where the entire matrices AMH and

AU are explicitly constructed for the case n = W = 2:Note that in a stable environment, the

advantage of the U architecture in terms of precision (Assumption 1) has no e¤ect on �tness

and hence on the dynamics of Nt. The MH architecture, therefore, cannot do any worse

than the U architecture. In fact it does strictly better, as summarized in Proposition 1.

Proposition 1. In a stable environment (Assumption 3-s), the MH architecture has a

strictly higher asymptotic population growth factor than the U architecture, starting from any

non-zero initial condition. Furthermore, this is the case even if MH has no energy advantage

GMH
i (�) = GUi (�) = Gi(�) and P

MH
i (�) = PUi (�) = Pi(�):

Sketch of the proof: Consider without loss of generality the case in which GMH
i (�) =

GUi (�) = Gi(�) and PMH
i (�) = PUi (�) = Pi(�), where again � denotes the number of

in�uential mutations. The dynamics of the two populations, U and MH, are governed,

respectively by Nt+1 = A
UNt and Nt+1 = A

MHNt. The Perron-Frobenius theorem for non-

negative matrices implies that the asymptotic growth factor of each population is governed

by the spectral radius of, respectively, the matrix AU , and AMH : The spectral radius, �K ,

is given by the dominant root of the associated characteristic equation. We show in the

Appendix that the spectral radius of AMH is larger than the spectral radius of AU . �

The intuition behind Proposition 1 is quite straightforward. Comparing AMH and AU

we can see that every entry in AMH is greater than or equal to the corresponding entry in

AU . This is not surprising as every mutation reduces �tness in the U architecture, which

is not the case for the MH architecture. The unitary architecture is fully interconnected.

Hence the accumulation of mutations in any part of the decision architecture will in�uence

the DA�s overall course of action. This is not true for the modular hierarchy. The low level

modules, for instance, are not connected to each other so a change in policy for just one of

13



those will not a¤ect the DA�s course of action. Thus for signi�cant �tness loss to occur, we

need multiple changes in the MH architecture to take place simultaneously, an essentially

zero probability event which can be ignored. The MH architecture thus survives under a

stable environment because it is more robust to the accumulation of deleterious mutations

over a DA�s evolutionary dynamics.

3.2 Randomly �uctuating environment

In this section, we consider small but non-trivial �uctuations in the environment. The only

interesting environment is one where the precisions of the K = U;MH architectures, 1=�K ;

are restricted to be such that the U architecture can adjust its action pro�le in response to

the �uctuating environment while the MH cannot. We proceed with studying this case.

Assumption 3-f. The environmental state switches from s to s0 and from s0 to s

according to some ergodic process, where �U � d(s; s0) = �MH � �: Furthermore, these

�uctuations are non-trivial in the sense that GKi (�; s) and P
K
i (�; s) are not constant in s

for some i and m.

Consistently with the complexity-e¢ ciency trade-o¤ (Assumption 1), we assume that

continuing to execute the loss-minimizing action under state s when the environmental state

is s0 (and vice versa) reduces o¤springs and survival.

Let GKi (�; s
0 j s) denote the number of o¤springs as a result of an action recommended

by a process with � in�uential mutations relative to the optimal action under s; when the

actual state is s0. Also, let PKi (�; s
0 j s) denote the survival probability as a result of such

an action. More precisely, a modular DA executing action a(s) under state s0 will feature

GMH
i (�; s0 j s) = G�

�
1

�MH

�
GMH
i (�; s0) and PMH

i (�; s0 j s) = P�
�

1

�MH

�
PMH
i (�; s0);

where PMH
i (�; s0), for instance, is the survival probability as a result of a recommendation

by a process with � in�uential mutations relative to the optimum under s0. The functions
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J�(1=x) are continuous, non-increasing in x and bounded in the interval [0; 1] with 
J
�(0) = 0

and limx#d(s;s0) 
J
�(1=x) = 1 for J = G;P and � = 1; 2; :::;W . The condition that J�(1=x)

are non-increasing in x corresponds to the assumption that ignoring larger �uctuations in

the environment leads to proportionately larger reductions in o¤springs and survival. For

instance, as 1=�MH �! 0, the MH architecture will fail to adjust its behavior to arbitrarily

large �uctuations in the environment, which we assume will have disastrous consequences

for o¤springs and survival.

Because of its greater complexity, a Unitary DA su¤ers no reduction in �tness as a result

of the environmental �uctuations, while a MH does. The unitary DA, however, consumes

more energy. This is a strict version of the complexity-e¢ ciency trade-o¤ introduced in

Assumption 1. In this environment, it is ambiguous which of the two architectures is selected.

It turns out however that we can still classify the comparative advantage of each architecture.

Proposition 2. In a randomly �uctuating environment (Assumption 3-f), if the preci-

sion 1
�MH of the MH architecture is greater than a critical value, then the MH architecture

has a strictly higher asymptotic population growth factor than the corresponding unitary ar-

chitecture under any ergodic process and starting from any non-zero initial condition. On

the other hand, if the MH architecture is su¢ ciently imprecise, 1
�MH ! 0, the conclusion is

reversed and the U architecture has a higher asymptotic population growth factor.

Proof: In a random environment, the asymptotic growth of a dynamical system is de-

termined by its dominant Lyapunov exponent. Instead of spectral radii we thus have to

compare the Lyapunov exponents of the two choice architectures. The proof uses the strong

law of large numbers for products of non-negative random matrices derived by Hennion

(1997). Hennion shows that the sequence of spectral radii generated by the product ma-

trices of a sequence of states converges, in the limit, to the dominant Lyapunov exponent

almost surely. We then show that if 1=�MH is above a critical value, for any sequence of

environmental states, the associated spectral radii for the products ofMH projection matri-

ces are greater than the spectral radii for the products of the U projection matrices. Hence
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the MH architecture must have a larger Lyapunov exponent than the U system. See the

Appendix for the formal argument. �

Intuitively, for any given loss-minimizing action pro�le as, the unitary architecture is

less energy e¢ cient, GUi < GMH
i and PUi < PMH

i : There is thus some space for the MH

architecture to be less e¢ cient than the unitary on the precision dimension while still winning

the evolutionary race. Therefore, for relatively precise MH architectures, the marginal

bene�t of further increasing precision by moving to a unitary architecture is outweighed by

the marginal cost of increased energy consumption and increased susceptibility to the e¤ects

of mutations. For relatively imprecise MH architectures, the opposite obtains.17

Remark 1 As part of the proof of Proposition 2 we show that the same result as in Proposi-

tion 2 also applies to a deterministic but cyclically �uctuating environment. More precisely,

it applies to an environment in which the state switches from s to s0 and from s0 to s after

every P � 1 and P 0 � 1 periods respectively.

3.2.1 Random �uctuations and equilibrium heterogeneity in action pro�les

Under a stable environment, the population will be dominated by DAs that minimize the

loss of �tness. Evolutionary selection, therefore, will not lead to the heterogeneity in actual

behavior we arguably observe. Hence our next step is to investigate a setup which might

induce such outcomes as an evolutionary equilibrium.

Propositions 1 and 2 ignore the possibility of mutations being bene�cial. In a randomly

�uctuating environment however, under our assumptions the MH architecture chooses the

action which is optimal for state s even when the environmental state is s0. Bene�cial

mutations can in principle exist for this architecture, which will reduce the costs associated

17Proposition 2 suggests that modular decision architectures should be observed later in evolutionary
history, assuming encephalization increases with time. This is consistent with evidence from neurobiology.
For example, Allman et al. (2002) and Hof et al. (2001) report the presence of two distinct types of
large neurons in the anterior cingulate cortex that are unique to apes and humans. These neurons facilitate
information transfer and their volume is positively correlated with encephalization. This supports the notion
that the ACC is a recent evolutionary specialization of the cortex that probably originated in the common
ancestor of humans and great apes to monitor and facilitate the interaction between emotion and cognition.
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with the lack of precision. We expect such mutations to occur with a non-zero probability

less than or equal to q.

Assumption 4. Suppose for some i and W � �� > 0, we have GMH
i (��; s0 j s) >

GMH
i (0; s0 j s) and PMH

i (��; s0 j s) > PMH
i (0; s0 j s), while GMH

i (��; s) < GMH
i (0; s) and

PMH
i (��; s) < PMH

i (0; s).

The �tness of a DA will then depend on the distribution of mutations over its modules.

Proposition 3. In a randomly �uctuating environment (Assumption 3-f), and in the

presence of bene�cial mutations (Assumption 4), evolutionary selection induces (i) a non-

trivial fraction of the population with advisory modules that have con�icting models of optimal

behavior and (ii) a non-trivial number of DAs that choose actions which are suboptimal with

respect to the current environmental state.

Proof: Clearly now the relative number of DAs with advisory processes with �� mu-

tations relative to the optimum under state s will grow when the environment switches to

s0. On the other hand, when the environment switches back to s, the relative number of

DAs with advisory processes that recommend the optimal action under s will grow. Thus as

long as the environment continues to �uctuate, no single type will completely dominate the

asymptotic population distribution of MHAs. �

The intuition behind Proposition 3 is that when precision is imperfect, con�ict among

the reference policies of modules has a positive value from an evolutionary standpoint. This

is because a redundant, correctly speci�ed model for the current state becomes a rigid, mis-

speci�ed model in the event of an undetected environmental perturbation. It turns out that

the degree of behavioral heterogeneity present in equilibrium depends on the persistence of

the process determining the environmental state. The more persistent the environmental

state is, the smaller the role that behavioral heterogeneity plays in an evolutionary equilib-

rium. We illustrate the importance of the environmental process with the following simple

example.
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Numerical example Consider aMH architecture with precision 1=� whose reproductive

life lasts one period. We consider two extreme scenarios as far as the persistence of the

environmental state is concerned. In the �rst scenario, the environment start in state s and

stays there forever. In the other scenario, we consider the case of no persistence. Speci�cally,

we start in environmental state s but after every generation, the state switches between s

and s0 and vice versa with probability 1. Let d(s; s0) < �. Let as denote the optimal action

in environmental state s and suppose a DA can carry on at most 4 deleterious mutations

relative to as. A DA with 5 mutations leaves no o¤spring in either state of nature18. Assume

that a mutation or its reversal happen with probability q = r = 0:0001 per generation. The

set of possible actions is given by fas; aI ; as0 ; a3g, where we have ordered the sequence by the

number of in�uential deleterious mutations relative to as �0; 1; 2; and 3 respectively. That

is, mutations which occur in the module whose recommendation is executed.

Let w(a; a0) denote the distance map across actions.19 Assume that: (i) w(aI ; as
0
) <

w(aI ; as) < w(aI ; a3) < w(as; a3); (ii) G(�; s) = ��g; while G(�; s0 j s) = �2��g for � = 0; 1; 2

with � = 0:98 and g = 1:03: Condition (i) insures that a3 will never be executed and a

supervisor with reference action aI or as
0
will execute a recommended action of aI or as

0

rather than as. Condition (ii) says that mutations initially push the action in the direction

of as
0
, which is the optimal action under s0. One push results in the action aI which has

values for o¤spring of Ga
I
(s) = Ga

I
(s0) = �g. Two pushes are su¢ cient to change the action

from as to as
0
and vice versa. Hence in a modular DA, two pushes require at least four

mutations, two at any two of the three modules.

For the cyclically �uctuating environment, we have the following law of motion, where

the unit of account c is a cycle that lasts two generations,

Nc+1 = [A(s
0)A(s)]Nc:

18All of the the assumptions in the example are made for tractability, since the complexity of the problem
increases very quickly with n and W .
19That is, a component of w(a;a0), the distance map across action pro�les.
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Figure 2: Asymptotic distribution of the population over the possible actions fas; aI ; as0g
under two environments. CONF gives the equilibrium fraction of the population that faces
internal con�icts.

The population structure vector is of dimension 13 since we have to take into account how

the distribution of mutations across the modules of a given type of DA in�uences its current

action and the transition probabilities to other types. Similarly, the projection matrices are

13� 13. A more detailed description of the setup and results can be found in the appendix.

It is well known (e.g., Seneta (1981), Theorem 1.2) that the asymptotic distribution of

the population for a projection matrix A is given by the positive, normalized left eigenvector

u associated with the spectral radius �(A), that is u0A = �(A)u0 with
P13

i=1 ui = 1. Figure

2 shows the asymptotic distribution of the population over the possible actions fas; aI ; as0g

under the two scenarios: (i) a stable environment at s and (ii) a generational cycle between

s and s0. As expected, under scenario (i), the asymptotic distribution is totally dominated

by types that select the optimal course of action for the stable environment. Even though

there is heterogeneity in reference policies among modules for almost 2/3 of population,

such internal con�icts do not translate into behavioral heterogeneity. This is because only

mutations that are �tness neutral are allowed to accumulate in the long run.

Under a �uctuating environment, on the other hand, we have heterogeneity in both
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reference models and actual behavior.20 In every generation, between 45 and 90 percent of

the population choose a suboptimal course of action. Even more interestingly, there are DAs�

such as the type with three total mutations distributed across two modules�which possess

the correct reference policies for each state, yet the internal con�ict leads to the suboptimal

course of action aI being chosen under both s and s0. Intuitively, under imperfect precision

and �uctuating environment, it pays for the population to diversify by having types which

face internal con�ict or exhibit suboptimal behavior. This is because it will be easier for

the population to respond to the �uctuations�the types with internal con�ict or suboptimal

behavior will either already be behaving optimally or will require fewer mutations to start

doing so when the environmental state changes.

4 Neurobiological foundations

Our model has a structure that is explicitly based on the neurophysiology of the brain and

a mutation process that is biologically plausible. By subjecting decision processes to evolu-

tionary selection, we emphasize local e¤ects of heritable mutations. But are mutations really

that important for the evolution of cognitive and behavioral processes in humans? Rather

than surveying the nature-nurture question, we simply note that an a¢ rmative answer is

consistent with the fact that many cognitive and behavioral disorders have a prominent

heritable component and that several disorders, in addition to being strongly heritable, are

also associated with explicit structural and functional changes in certain brain regions.21

The interested reader should refer to chapters 7 and 16 in Breedlove, et al. (2007) for an

introduction to the subject.

In addition, it is important for our analysis that there exist heritable mutations whose

20The distribution is asymmetric because of our assumption that a DP can carry on at most 4 mutations.
In order to have an architecture with a completely redundant reference policy at as

0
; we require 6 mutations,

which is ruled out a priori. Hence our example is inherently biased against the presence of types that execute
the action as

0
.

21Down, fragile X, autism, Asperger�s, and Tourette�s Syndrome, for instance, all have explicit genetic
basis. The same is true for disorders like schizophrenia, panic, and depression.
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e¤ects are localized only in certain regions of the brain. This is consistent with recent work

in neurogenetics. First, there are heritable conditions such as synesthesia22 that manifest

in increased connectivity only in certain regions of the brain, such as the fusiform gyrus

for grapheme-color synesthesia, as opposed to globally. Second, there is growing evidence

that gene expression�the translation of the genetic blueprint into a functional product�

varies signi�cantly across brain regions and is controlled by other genes23. Our mutation

process can thus be interpreted as modeling heritable mutations in the genes regulating the

expression and hence the contribution to the reference action pro�le of the genes located

in the various modules of the brain. Finally, our assumption that multiple mutations per

period can be ignored is consistent with the standard model of Luria and Delbrueck (1943)

where mutations are spontaneous rare events independent of the environment.

Our interpretation of the MH architecture as a model of the brain is rooted in theory and

evidence from the neurosciences,24 including the view that the human brain is a modular

hierarchy organized�using the terminology of Latora and Marchiori (2003)�as an "economic

small-world" network.25 For example, modular hierarchies can represent the interaction

between decision units that are based on emotion versus cognition and a motivational unit

that monitors and discriminates among their recommendations. In a series of articles�Allman

22Synesthesia is a condition where stimulation of one sensory or cognitive pathway leads to automatic,
involuntary experiences in a second sensory or cognitive pathway. In the most common type, grapheme-color
synesthesia, individuals perceive letters and numbers as inherently colored. For an investigation into the
neural basis of synesthesia, see Ramachandran and Hubbard (2001).
23Nadler et al. (2006) show that there are large di¤erences in gene expression among di¤erent brain

regions in various strains of inbred mice, while Monks et al. (2004) show that there is signi�cant genetic
inheritance of gene expression in human cell lines. More importantly, Meyer-Lindenberg (2009) shows that
variation in genes responsible for serotonin transportation and serotonin catabolism in�uence the risk of
anxiety/depression and impulsive behavior respectively, through the in�uence these genes have on the neural
connectivity among three particular regions�the ventromedial prefrontal cortex, the cingulate cortex, and
the amygdala.
24See Glimcher (2003) and Camerer, Loewenstein, and Prelec (2005) for general surveys of the �eld.
25These are networks which are energy e¢ cient (relative to the ideal, fully connected, small-world network)

yet have relatively high local and global e¢ ciency in transmitting information. See Bassett and Bullmore
(2006) for a recent review of "small-world" brain networks. Anatomical evidence on the "small-world"
modular hierarchical organization of the human brain is presented in He, Chen, and Evans (2007), Chen et
al. (2008), and Bassett et al. (2008).
A formal de�nition of a module, based on local e¢ ciency in information transmission (clustering), is in

Latora and Marchiori (2003).
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et al (2001, 2002)�Allman, Hakeem, and colleagues have argued that the anterior cingulate

cortex (ACC) may play such a monitoring and motivational role as the primary interface

between emotion and cognition. Citing evidence from EEG, PET, fMRI, and lesion studies,

they argue that the ACC is a recent evolutionary specialization crucial for many aspects

of intelligent behavior, including but not limited to aggregating information, monitoring

cognitive con�ict, focusing attention, discriminating among con�icting informational cues,

and initiating the desire to act.26

In the context of intertemporal choice, evidence for decision processes based on the in-

teraction of multiple neural systems is presented by McClure, Laibson, Loewenstein, and

Cohen (2004)27 and Peters and Buchel (2009). In the context of choice under uncertainty,

De Martino et al. (2006) conduct a fMRI experiment designed to measure the neural basis

of prospect theory. Their results suggest that many of the components of prospect theory�

framing e¤ects, loss aversion, and the propensity to be risk-loving in the loss domain�are

due to the interaction of partly separable neural systems�an "analytic" system based on the

orbitofrontal cortex and an "emotional" system based on the amygdala�in which con�ict is

mediated by the anterior cingulate cortex. Although their hypothesis has been contested by

Tom et al. (2007), recent results from genetic, Roiser et al. (2009), neurochemical, Zhong et

al. (2009), and lesion studies, De Martino, Camerer, and Adolphs (2010), provide compelling

further evidence in support of their hypothesis.28

We model the interaction of such partly separable systems with a nearly decomposable

26Bush, Luu, and Posner (2000) provide a comprehensive review, circa 2000, of the anatomical and func-
tional properties of ACC. Speci�cally, for the striking role ACC plays in volition see Damasio and Van Hoesen
(1983), while for the case of monitoring cognitive con�ict see Kerns, Cohen, MacDonald III, Cho, Stenger,
and Carter (2004).
27But see Glimcher, Kable, and Louie (2007) for a skeptical view of these results.
28De Martino, Camerer, and Adolphs (2010), for instance, present behavioral evidence from a study

involving two subjects with extensive lesions to the amygdala, each paired with 6 control subjects. The
authors report that aside from problems with processing fear, the subjects with amygdala lesions have largely
normal cognition and IQ. In an experiment involving choices over 50-50 gambles with di¤erent amounts of
gains and losses, each control group exhibits signi�cant degree of loss aversion. On the contrary, the subjects
with damage to the amygdala do not. They do respond adversely to increases in the variance of gambles,
however, which suggests that the neural mechanisms responsible for risk aversion are still intact. This leads
the authors to the same conclusion as De Martino et al. (2006), namely that risk and loss aversion are
probably expressions of partly separable neural systems.

22



modular architecture, and restrict our analysis to the simplest modular hierarchy, consisting

of two advisory and one motivational process. In our set-up, each advisory process recom-

mends a feasible reference course of action. The motivational module then processes both

feasible actions and chooses one of the two. This particular class of decision-making archi-

tectures often arises in arti�cial life simulations, see for instance Cangelosi, Parisi, and Nol�

(1994), where a motivational unit evolves to monitor internal and external states and execute

one of the actions recommended by the advisory processes.29 The results in this literature

are numerical in nature as they are derived through simulations. We thus contribute to this

literature by providing an analytical foundation for why the MH type of choice architecture

tends to survive in arti�cial life simulations.

Finally, our assumptions regarding the implications of the di¤erent levels of connected-

ness for survival and precision are consistent with the evidence in the literature on energy

budgeting of the human brain.30 Consider for instance our assumption that the unitary ar-

chitecture is more precise. This is consistent with the universal approximation results by

Hornik, Stinchcombe, and White (1989, 1990), since, by construction, the unitary architec-

ture allows for a greater number of nonlinear transformations of any input and hence has

the ability to approximate more precisely the loss minimizing policy with respect to small

perturbations in the environmental state. On the other hand, the assumption that, given

the same action pro�le and the same initial amount of resources, the unitary architecture

will consume more energy is consistent with Attwell and Laughlin (2001), who estimate that

over 3/4 of the brain�s energy consumption is used for signalling among neurons. For a given

number of modules in a network, an architecture like U with a large number of intercon-

29In Cangelosi, Parisi, and Nol��s simulations, in order to survive, organisms have to ingest food when
hungry and water when thirsty. The architecture of the decision network is allowed to evolve as an adaptation
to the environment. The organism�s genotype speci�es the initial spatial location of each network node, the
growth parameters of each potential edge, and the potential connection weights if a neural connection between
two nodes is made. A population with randomly generated initial genotypes is then subjected to a genetic
algorithm based on certain mutation-selection parameters. Cangelosi, Parisi, and Nol� show that the best
adapted network architectures are modular hierarchies. They contain a motivational module which activates
either a food or a water module depending on the particular internal and external stimuli.
30For a summary of recent studies on the energy budget of the human brain see Raichle and Gusnard

(2002) and the references therein.
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nections among those modules will need to generate and maintain a large number of signals

and will thus consume more energy than a sparsely connected architecture with the same

number of modules.

5 Hierarchical decision processes in economics

Our results provide an evolutionary justi�cation for the models of multiple selves recently

explored by economists and neuroeconomists. For instance, our result (Proposition 3) that

evolutionary selection would favor hierarchical modules characterized by con�icting models

of optimal behavior, and even by choices which are suboptimal with respect to the current

environmental state, could explain the "puzzles" observed in laboratory and �eld studies of

choice under uncertainty and intertemporal choice in self-control environments. Frederick,

Loewenstein, and O�Donoghue (2002) comprehensively survey this evidence. To illustrate this

point, we translate into our framework the �rst multiple selves model, developed by Thaler

and Shefrin (1981), that studies self-control and attempts to explain these intertemporal

choice "puzzles".31

This model is formulated in terms of the strategic interaction between two "actors", a

farsighted "planner" and a myopic "doer". The two actors are explicitly interconnected in

the sense that actions by one agent directly in�uence the objectives of the other. In this

sense, it does not immediately appear that a modular hierarchical decision architecture could

represent an individual decision maker in Thaler and Shefrin. It turns out however that when

the objective functions are properly de�ned, the policy function of a given MH architecture

corresponds to a discrete choice approximation of the policy function of their model.

In Thaler and Shefrin�s model, the farsighted planner and the myopic doer are distinct

in the utility functions with which they evaluate consumption plans. Speci�cally, the doer

cares only about current consumption, which is represented by some concave utility function

Zt(ct; �t); with Zt(ct; 0) strictly increasing, and where �t � 0 is a parameter which in�uences
31See also Fundenberg and Levine (2006) and Loewenstein andO�Donoghue (2007) for recent extensions.
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the value of ct at which Zt reaches a maximum. The planner, on the other hand, cares about

lifetime utility represented by some strictly increasing function V (Z1; Z2; :::; ZT ).

Given that the preferences of the two actors di¤er, there will typically be a con�ict

between them. Thaler and Shefrin assume that the planner can modify the doer�s behavior

at time t by adjusting the preference parameter �t. The value of �t thus represents the

modi�cation the planner exerts on the doer at time t, where �t = 0 means no modi�cation.

In�uencing the doer is costly, however, in the sense that @Zt=@�t < 0. In addition, it

is assumed that d�t=dct(Zt = Z) < 0: the lower the desired value of ct, the bigger the

modi�cation and hence the cost that is required to adjust behavior.

Let ct(�t) denote the policy of a doer with utility function Zt(ct; �t). Given a lifetime

income stream with present value y, an individual consisting of a planner and a doer will

behave as if solving

max
(�1;:::;�T )�0

V (Z1(c1(�1); �1); :::; ZT (cT (�T ); �T ))

s.t.
X
t

ct(�t) � y.

We now map a two-period version of this model into our setup and show that the modular

hierarchy considered in our paper provides a discrete choice approximation to the above

framework. Consider an individual with endowment y who has to choose how to allocate

consumption between two periods. Suppose the individual behaves according to a modular

hierarchical decision process in which each of the two level 1 modules are de�ned by the

vector (�i; 0); for i = 1; 10.32 That is, for each advisory module, the objective Z(c; 0) is strictly

increasing in consumption in the second (last) period in life. Module i then recommends

consumption for period 1 given by

32A natural interpretation of this formulation of the level 1 modules is that they represent di¤erent self-
control levels.
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c(�i) = argmax
c2[0;y]

Z(c; �i).

On the other hand, the reference policy of the level 2 module (the supervisor), is given by

c2 = argmax
c(�)2[0;y]

V [Z(c(�); �); Z(y � c(�); 0)];

where c(�) is the policy associated with the objective Z(c; �). Then the DA will behave

according to c� given by

c� = argmax
c2fc(�1);c(�10 )g

� [c� c2]2:

Note that if the parameter space in Thaler and Shefrin (1981) is reduced to the set

f0; �1; �10g, the policy of the MH architecture described above will correspond exactly to

the optimal policy of the decision maker in their model. Hence theMH architecture produces

a discrete choice approximation to the behavior described by Thaler and Shefrin�s self-control

model.

Recently, Bernheim and Rangel (2004), Benhabib and Bisin (2005), and Brocas and

Carrillo (2008) have developed models of multiple decision processes that have explicit neu-

roscienti�c basis. They �t into the MH architecture exactly rather than as approximations.

The crucial di¤erence is that in these models there are multiple level 1 modules with in-

dependent objectives. Each level 1 module recommends a course of action and control is

allocated to one of the modules based on the particular circumstances. This last step corre-

sponds precisely to the level 2 of a MH architecture where one of the policies recommended

by the �rst stage modules is executed. A detailed MH description for each of these models

is available from the authors upon request.
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6 Conclusion

We have shown that modular hierarchical architectures of decision processes can be evolu-

tionary selected. This is because aMH architecture saves energy while providing robustness

against the e¤ects of harmful mutations. In addition, we have shown that under a ran-

domly �uctuating environment, con�ict among decision modules appears to have a positive

evolutionary value, as it is a source of diversi�cation against the in�uences of undetectable

�uctuations in the environment.

It should be noted that we have analyzed only one potential bene�t of modular hierarchi-

cal architectures. In fact, MH architectures may confer many other bene�ts to the decision

makers that possess them. Some promising directions include the possibility for greater

adaptability in response to observable changes in the environment, the ability to process in-

formation in parallel fashion, and the ability for certain modules to specialize in the analysis

of certain behaviors. We believe exploring any of these will improve our understanding of

decision processes and the behavior of decision makers who possess them.
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Appendix
The matrices AMH and AU when n = W = 2:

The dynamics of the population of K = MH;U processes are governed by the linear

system

Nt+1 = A
KNt:

Assuming each module is equally likely to mutate, in this case, AMH is the 8�8 nonnegative

projection matrix given by

AMH =

2666666666666666666664

(1� q)G1(0) (1� q)G2(0) rG1(0) rG2(0)

(1� q)P1(0) 0 rP1(0) 0

qG1(0) qG2(0) (1� q � r)G1(0) (1� q � r)G2(0)

qP1(0) 0 (1� q � r)P1(0) 0

0 0 (2q
3
)G1(1) (2q

3
)G2(1)

0 0 (2q
3
)P1(1) 0

0 0 ( q
3
)G1(0) ( q

3
)G2(0)

0 0 ( q
3
)P1(0) 0

0 0 0 0

0 0 0 0

rG1(0) rG2(0) rG1(0) rG2(0)

rP1(0) 0 rP1(0) 0

(1� q � r)G1(1) (1� q � r)G2(1) 0 0

(1� q � r)P1(1) 0 0 0

0 0 (1� q � r)G1(0) (1� q � r)G1(0)

0 0 (1� q � r)P1(0) 0

3777777777777777777775

:

where the apex K = MH is dropped for notational simplicity and the value of � in Gi(�)
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and Pi(�) re�ects the number of in�uential mutations.

Consider for example the elements of row 5, which represent the in�ow during period t

into the type N1;1;0
1 . A fraction q of the processes of type N1;0;0

i mutate during period t. For

2/3 of these, the second mutation happens in a di¤erent module. As a result, these processes

select a suboptimal action and leave surviving o¤springs of Gi(1). Next consider processes of

type N1;1;0
i . During period t, a fraction q develop a third harmful mutation and die without

leaving any o¤spring. In addition, for a fraction r, one of the harmful mutations is reversed

and they become type N1;0;0
i . The remainder, (1� q � r)N1;1;0

i , do not undergo any change

and produce a number of descendents given by Gi(1). Finally, since the probability of more

than one mutation per period is essentially zero, there is no direct in�ow from any other

type of process.

The projection matrix, AU ; assuming the values under the optimal action are still denoted

by Gi(0) and Pi(0), is given by
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AU =

2666666666666666666664

(1� q)G1(0) (1� q)G2(0) rG1(0) rG2(0)

(1� q)P1(0) 0 rP1(0) 0

qG1(1) qG2(1) (1� q � r)G1(1) (1� q � r)G2(1)

qP1(1) 0 (1� q � r)P1(1) 0

0 0 (2q
3
)G1(2) (2q

3
)G2(2)

0 0 (2q
3
)P1(2) 0

0 0 ( q
3
)G1(2) ( q

3
)G2(2)

0 0 ( q
3
)P1(2) 0

0 0 0 0

0 0 0 0

rG1(1) rG2(1) rG1(1) rG2(1)

rP1(1) 0 rP1(1) 0

(1� q � r)G1(2) (1� q � r)G2(2) 0 0

(1� q � r)P1(2) 0 0 0

0 0 (1� q � r)G1(2) (1� q � r)G1(2)

0 0 (1� q � r)P1(2) 0

3777777777777777777775

:

Proof of Proposition 1:

In the general case with n age groups and W maximum total mutations, the population

structure vector will enumerate (i) all types with di¤erent total mutation loads and (ii) for

a given total number of mutations, all possible distributions of mutations across the nodes

in the given decision architecture. We can then compare the two projection matrices AU

and AMH entry by entry. Consider the matrix row associated with type N j;k;l
i , where we

have m = [j; k; l] with M = j + k + l � W and i � n. Each element in that row will be

a product of the transition probability between the two particular types and the value for
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the number of surviving o¤spring or the survival probability of type N j;k;l
i . The transition

probabilities are the same in both matrices since the mutation process is exactly the same

in both decision architectures.

Now consider the values for surviving o¤spring and survival probability for type N j;k;l
i .

For the unitary architecture, regardless of the distribution of mutations across the circuit, all

mutations a¤ect the executive process. Hence we have �U(m) = M . On the other hand, in

the MH architecture, we know that �MH(m) � maxfj; k; lg �M , where the �rst inequality

is strict if maxfj; k; lg = M . Speci�cally, the �rst equality will hold in the situation where

maxfj; k; lg < M , the number of mutations occurring in an advisory module is maxfj; k; lg,

and the number of mutations in the motivational module brings its reference policy closer to

the action associated with maxfj; k; lg mutations than to the reference action of the other

advisory module. We thus have Gi(�MH(m)) > Gi(�
U(m)) and Pi(�MH(m)) > Pi(�

U(m)).

But then, the projection matrix AMH can be obtained from AU by increasing each of its

entries by either 0 or some positive amount. But since AU is a nonnegative irreducible

matrix, the Perron-Frobenius theorem [see for instance Thm 2.7. in Varga (2000)] implies

that we must have �MH > �U . �

Proof of Proposition 2:

Consider the threshold value �� de�ned by

�� = arg max
x�d(s;s0)

fxg

s.t. G� (1=x)G
MH
i (�MH(m); s0) � GUi (�

U(m); s0) 8(i;m);

P� (1=x)P
MH
i (�MH(m); s0) � PUi (�

U(m); s0) 8(i;m):

Clearly, given that limx#d(s;s0) 
J
�(1=x) = 1 and 

J
�(0) = 0, a solution to the above program

will always exist. Moreover, given that GMH
i (�; s0) > GUi (�; s

0) and PMH
i (�; s0) > PUi (�; s

0),
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we know that �� > d(s; s0). But then for a MH architecture of coarseness �MH 2 [d(s; s0); ��),

GMH
i (�MH(m); s0 j s) > G� (1=��)GMH

i (�MH(m); s0) � GUi (�U(m); s0)

and

PMH
i (�MH(m); s0 j s) > P� (1=��)PMH

i (�MH(m); s0) � PUi (�U(m); s0):

The above inequalities say that for precision levels of the modular architecture above 1=��,

the bene�t of increasing precision further by going to a unitary architecture is outweighed

by the increased energy consumption and mutation vulnerability of that architecture.

Now consider a sequence S(n)(!) of n � 1 realizations of the random process taking values

in fs; s0g. Following the reasoning of Proposition 1, we know that AMH(s) is an increasing

transformation of AU(s) and hence �MH(s) > �U(s). The above inequalities imply that

AMH(s0) is again an increasing transformation of AU(s0) which implies �MH(s0) > �U(s0).

Note that when the environmental state changes, the unitary DA switches to the newly

optimal pro�le. On the other hand, the modular DA continues to operate according to the

old pro�le. Even though the modular DA behaves suboptimally, for � small, its superior

energy e¢ ciency and mutation resistance allow it to outperform the unitary DA even under

the new environment.

Now let AK(n)(!) denote the random product of projection matrices for type K associated

with the environmental sequence S(n)(!). We are particularly interested in the associated

spectral radii �K(n)(!) since by a theorem of Hennion33,

lim
n!1

1

n
ln �K(n) = �

K almost surely,

where �K is the dominant Lyapunov exponent governing the asymptotic long-run growth

of the system of type K. We will now show that �MH
(n) (!) > �

U
(n)(!) for any n, so theMH will

33Theorem 2 in Hennion (1997).

38



asymptotically outperform the U architecture starting from any non-zero initial condition.

The proof is done by induction. We already know that �MH(s0) > �U(s0) and �MH(s) >

�U(s). But we also know that AMH(s) and AMH(s0) are increasing transformations of AU(s)

and AU(s0). And since all of these matrices are nonnegative, the products AMH
(2) (!) must be

increasing transformations of AU(2)(!). This is because each element of the product matrices is

a dot product of two nonnegative vectors. For instance, letAKij (s; s
0) be the (row i)-(column j)

element of AK(s)AK(s0). Clearly, AKij (s; s
0) =

P
j A

K
ij (s)A

K
ji (s

0). But since AMH
ij (s) � AUij(s)

and AMH
ij (s0) � AUij(s

0) for any i and j and all matrices are nonnegative, we must have

AMH
ij (s; s0) � AUij(s; s0) with the inequality strict for at least one pair ij. But then, by Thm

2.7. in Varga (2000), �MH
(2) (s; s

0) > �U(2)(s; s
0).

Proceeding in the same fashion, we know that AMH
(n�1)(!) � AU(n�1)(!) and with the

inequality strict for at least one element ij. But AK(n)(!) = AK(sn)A
K
(n�1)(!) and since

AMH(sn) is an increasing transformation of AU(sn) for sn equal to s or s0, AMH
(n) (!) must be

an increasing transformation of AU(n)(!). Thus �
MH
(n) (!) > �

U
(n)(!) for any n � 1 and any !.

But then using the above law of large numbers, we obtain �MH > �U :

For the �nal statement in the proposition, note that lim(1=x)!0 
J
�(1=x)J

MH
i (�MH(m); s0) =

0 < JUi (�
U(m); s0) for J = G;P . Hence lim(1=x)!0A

MH(s0) = 0 and any unitary DA with

positive precision will have a higher asymptotic growth factor under any sequence.�

Sexual Reproduction with Random Mating:

When mating is random, the projection matrix for each sex will re�ect the �ows across

types for that particular sex. Moreover, the entries in each projection matrix will depend

on the frequency distribution of types from the other sex. When agents from di¤erent

types mate, only the type of one of the parents will be inherited. Hence the daughter of a

particular female agent will be of the same type m as her mother only with probability hm;m.

Nevertheless, for any steady state MH population distribution, we can provide a su¢ cient

condition under which all of our results hold locally around that steady state for random

mating and any steady state U distribution.
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Proposition 4: Let (f 0j )
q
j=1 be a steady state vector of frequencies of MH males or

reproductive age j with 0 total deleterious mutations, so that
P

j;m f
m
j = 1. If

(
X
j

f 0j )G
MH
i (�MH(m); s) > GUi (�

U(m); s) for any i; m; and s;

Propositions 1, 2, and 3 hold locally around this steady state.

Proof: To see why the above condition is su¢ cient, note that the survival probabilities

do not depend on the mating process so nothing changes as far as the rows of the projection

matrices determined by Pi are concerned. On the other hand, the expected number of

o¤springs of each type does depend on the mating process. The best case scenario for the U

population is when in a steady state it is dominated by males with 0 deleterious mutations.

In that case any o¤-diagonal entry of the female projection matrix can have a positive entry.

In particular, hm;0 of the daughters produced by a mother of a given type m will have the

type (0; 0; 0) of their father. On the other hand, for the MH population that will be true

only for hm;0 �(
P

j f
0
j ) < h

m;0 of the daughters. Hence as long as (
P

j f
0
j )G

MH
i (�MH(m); s) >

GUi (�
U(m); s), any entry in the �rst row of AMH will be greater than the corresponding entry

in AU . Moreover, since the U population is dominated by males of type (0; 0; 0) while the

MH population is not, the entries for any other row in AMH will be greater than or equal

to the corresponding entries in AU since there will be no �ows, except for mutations, across

other types in the U population. But then AMH is a nondecreasing transformation of AU .

We thus must have �MH > �U and all of our previous conclusions carry through. �

Numerical Example:

Under the speci�ed assumptions, we have to distinguish among 13 types of DAs: (1)

no mutations, (2) one mutation, (3) two mutations in the same module, (4) two mutations

in di¤erent modules, (5) three mutations in the same module, (6) three mutations in two

modules with either zero or two mutations in the motivational unit, (7) three mutations

in two modules with one mutation in the motivational unit, (8) three mutations in three
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modules, (9) four mutations in the same module, (10) four mutations occurring two by

two, (11) four mutations occurring three by one with either zero or three mutations in the

motivational unit, (12) four mutations occurring three by one with one mutation in the

motivational unit, and (13) four mutations in three modules. The types di¤er according to

the action that they execute and the probability with which they transition to other types.

Speci�cally, types 1, 2, 3, 5, 9, and 12 always execute action as, types 4, 6, 8, 11, and 13

always execute action aI , and types 7 and 10 always execute action as
0
.

The projection matrices A(s) and A(s0) are simple but tedious to represent fully. Since

the population structure vectorNt is of dimension 13, the projection matrices A(s) and A(s0)

are 13� 13. To illustrate, the 3rd rows of A(s) and A(s0) represent the in�ow of DAs into a

DA with two mutations in the same module. Speci�cally, we have

A3(s) =

�
0 rg=3 (1� 2r)g 0 rg rg=3 rg=3 0 0 0 0 0 0

�
and

A3(s) =

�
0 rg�2=3 (1� 2r)�2g 0 rg�2 rg�2=3 rg�2=3 0 0 0 0 0 0

�
;

where we have assumed that mutations are independent, occur with the same probability,

and occur in each module with probability 1/3.

The asymptotic distribution for a stable environment at s turns out to be given by

u(s)T =

�
0:367 0:252 0:173 0:001 0:119 0 0 0 0:07 0 0 0:018 0

�
;

where the row may not sum to 1 due to rounding o¤. The population is clearly dominated by

DAs executing action as with only 0:001 of the DAs behaving according to aI . Even though
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there is con�ict among modules for over 60 percent of the population, that con�ict does not

translate into behavioral heterogeneity.

Under generational cycles between s and s0, we have the projection matrix A(s0)A(s)

with associated left eigenvector,

u(s0; s)T =

�
0:143 0:131 0:109 0:108 0:078 0:077 0:076

0:077 0:041 0:04 0:04 0:041 0:04

�
;

which clearly demonstrates heterogeneity in both reference models and behavior.
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