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Abstract
We present a survey of the emerging literature on the design of matching markets. We survey
the articles on discrete resource allocation problems, their solutions, and their applications in
three related domains. The first domain gives the theoretical background regarding the basic
models, namely “house allocation and exchange” problems. First, we investigate the allocation
and exchange problems separately, and then we combine them to present a real-life
application: on-campus housing at universities. As the second application domain, we extend
the basic allocation and exchange models to the “kidney exchange” problem and present
new theory and applications regarding this problem. We present proposed and adopted
mechanisms that take very specific institutional details into account. Then, we present the
school admissions problem in three subcategories: the “college admissions” model where
both schools and students are strategic agents, the “school placement” model where only
students are strategic agents and they induce an endogenous priority structure of schools
over students, and finally the “school choice” model for the US public school districts where
the students are the only strategic agents and the school priorities over the students are
exogenous. In the final chapter, we investigate the basic models of the axiomatic mechanism
design literature that present mechanisms that are generalizations of the mechanisms
designed for the specific market design problems discussed before.
JEL Codes: C78, D78
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INTRODUCTION

Matching theory, a name referring to several loosely related research areas concerning

matching, allocation, and exchange of indivisible resources, such as jobs, school seats,

houses, etc., lies at the intersection of game theory, social choice theory, and mecha-

nism design. Matching can involve the allocation or exchange of indivisible objects, such

as dormitory rooms, transplant organs, courses, summer houses, etc. Or matching can

involve two-sided matching, in markets with two sides, such as firms and workers,

students and schools, or men and women, that need to be matched with each other.

Auctions can be seen as special cases of matching models, in which there is a single

seller. Recently, matching theory and its application to market design have emerged

as one of the success stories of economic theory and applied mechanism design.

The seminal research paper on the subject was written by Gale and Shapley (1962),

who introduced the two-sided matching model and a suitable solution concept called

stability. They also showed that a stable matching always exists and proved this result

through a simple iterative algorithm known as the deferred acceptance algorithm. Gale

and Shapley were most likely unaware that this short note published in the American

Mathematical Monthly would spark a new literature in game theory, which is now com-

monly referred to as matching theory.

Shapley and Shubik (1972) and Kelso and Crawford (1982) introduced variants of

the two-sided matching model where monetary transfers are also possible between

matching sides. However, Gale and Shapley’s short note was almost forgotten until

1984, when Roth (1984) showed that the same algorithm was independently discovered

by the National Residency Matching Program (NRMP)1 in the United States (US),

and since the 1950s, it had been used in matching medical interns with hospital residency

positions (Roth 2008a also attributes the same discovery to David Gale). This discovery

marked the start of the convergence of matching theory and game-theoretical field appli-

cations. In 1980s, several papers were written on the two-sided matching model and its

variants exploring strategic and structural issues regarding stability.2 Recently, new links

between auctions, two-sided matching, and lattice theory were discovered (for example,
e http://www.nrmp.org, retrieved on 10/16/2008.

n excellent survey of these theoretical and practical developments from the 1950s to the 1990s is explored in

oth and Sotomayor (1990). Also see Gusfield and Irving (1989) on the complementary work in operations research

d computer science on algorithms regarding two-sided matching theory.

http://www.nepke.org
http://www.nepke.org
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see Hatfield and Milgrom 2005 for a summary of these discoveries and new results in a

general two-sided matching domain).3

In this survey, we will focus on the other branch of matching theory, allocation and

exchange of indivisible goods, which was also initiated by Shapley and (indirectly) Gale

together with Scarf (Shapley and Scarf 1974).4 The basic model, referred to as the hous-

ing market, consists of agents each of whom owns an object, e.g., a house. They have

preferences over all houses including their own. The agents are allowed to exchange

the houses in an exchange economy. Shapley and Scarf showed that such a

market always has a (strict) core matching, which is also a competitive equilibrium

allocation. They also noted that a simple algorithm suggested by David Gale, now

commonly referred to as Gale’s top trading cycles algorithm, also finds this particular core

outcome.

In the two-sided matching model, both sides of the market consist of agents,

whereas in a housing market only one side of the market consists of agents. Subsequent

research on the housing market showed that both competitive and core allocations are

unique when preferences are strict (Roth and Postlewaite 1977). Moreover, when the

core concept is used as a direct mechanism, it is strategy-proof (Roth 1982a). Subse-

quently, Ma (1994) showed that this is the only direct mechanism that is strategy-proof,

Pareto-efficient, and individually rational. Although the core as a mechanism is the

unique nice direct mechanism (unlike in most game-theoretical models including the

two-sided matching model), the research on housing market model remained limited

until recently with respect to the two sided-matching model. The links between the

two models were later discovered and explored by Balinski and Sönmez (1999), Ergin

(2002), Abdulkadiroğlu and Sönmez (2003a), Ehlers and Klaus (2006), and Kojima and

Manea (2007), among others.

The allocation model consists of objects and agents, each of whom has preferences

over the objects. These objects will be allocated to the agents. Monetary transfers

are not available. An exogenous control rights structure regarding the objects can

be given in the definition of the problem. For example, each agent can have objects

to begin with (as in the kidney exchange problem of Roth, Sönmez, and Ünver

2004, or the housing market), or some agents can have objects while others have

none (as in the house allocation problem with existing tenants of Abdulkadiroğlu

and Sönmez 1999). There can also be more complicated exogenous control rights
3 For surveys on market design of the US Federal Communications Commission (FCC) auctions (see http://wireless.

fcc.gov/auctions/default.htm?job¼auctions_home, retrieved on 10/16/2008), electricity markets (e.g., for California

market see http://www.caiso.com, retrieved on 10/16/2008), and other aspects of matching markets and their

links to game theory and more specifically to auction and matching theory see Milgrom (2000, 2004, 2007),

Klemperer (2004), Wilson (2002), and Roth (2002, 2008b), respectively.
4 Nevertheless, we will also give basic results regarding Gale and Shapley’s (1962) model and summarize important

market design contributions on the subject in Chapter 4 under the “College Admissions” heading.

http://www.nepke.org
http://www.nepke.org
http://www.nepke.org
http://www.paireddonation.org
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structures, as in the school choice problem, where each school prioritizes the students

(as defined by Abdulkadiroğlu and Sönmez 2003a). In the simplest of these models,

there are no initial property rights, and objects are socially endowed (as in the house

allocation problem of Hylland and Zeckhauser 1979). Almost all of these models have

real-life applications. In all of these applications, there exists a central planner (such as

the housing office of a college allocating dorm rooms to students, a central health

authority deciding which patients will receive kidneys, or a school board for assigning

students to schools) that implements a direct mechanism by collecting preference

information from the agents. The central authority uses a well-defined procedure

that we will simply refer to as a mechanism. In this survey, we inspect properties of

different mechanisms proposed in the literature for these allocation problems. Most

of the mechanisms we will introduce will be implemented by intuitive iterative

algorithms.

In the models with initial property rights, various fairness and individual rights

protection properties should be respected by any plausible mechanism for normative,

institutional, or economic reasons. Some examples are as follows:

Normatively, one would expect there to be equal chances of assigning an object to

agents who have identical rights over objects. In a school choice problem, students are

the agents. Students who have the same priority at a school may be given the same

chances of admission. Thus, from a fairness point of view, an even lottery can be used

to order such students for tie-breaking purposes. On the other hand, if there exists a

student who prefers a school to her assigned school and this more preferred school

has admitted a student who has lower priority than her, then she has justified envy

toward this student. Besides following certain normative criteria for institutional and

legal reasons, adopted school choice mechanisms are expected to eliminate justified

envy. For example, if there is justified envy regarding a student, her family can poten-

tially take legal action against the school district.

In a kidney exchange problem, if a kidney transplant patient is not assigned a

kidney as good as her live paired-donor’s, she will not participate in the exchange in

the first place. Under incomplete information, such possibilities may cause unnecessary

efficiency loss. Thus, individual rationality is important for the kidney exchange

problem.

Moreover, if possible, we would like the mechanisms to be incentive compatible:

decision makers such as students, patients, and doctors should not be able to manipulate

these systems by misreporting their preferences. This will be important not only in

achieving allocations that satisfy the properties of the mechanisms under true prefer-

ences, but also for fairness reasons. For example, not all students are sophisticated

enough to manipulate a mechanism successfully (see Pathak and Sönmez 2008 and also

Vickrey 1961 for similar arguments in auction design). Moreover, one can expect that
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implementing a strategy-proof mechanism will minimize the informational burden of

the agents. They will only need to form their (expected) preference ordering correctly

and will not need to guess the preferences of other agents before submitting their pre-

ferences. Hence, in this survey, besides introducing several plausible mechanisms, we

will explore what properties make these mechanisms plausible.

The survey will consist of four main chapters: In Chapter 2, we will introduce the

house allocation problem and the housing market and explore mechanisms in this domain.

As the market design application of these models, we will introduce one additional

model and mechanism, inspired by dormitory room allocation at colleges. In Chapter

3, we will introduce the kidney exchange models under various institutional and model-

ing restrictions. We will draw parallels between some of these models and the house

allocation and exchange models. We will also inspect real-life mechanisms designed

by economists for these problems. In Chapter 4, we will explore the school admissions

problem, and plausible mechanisms under different institutional restrictions. We will

explore school admissions under three different models, the college admissions problem,

the student placement problem, and the school choice problem. In Chapter 5, we will intro-

duce general classes of mechanisms that can be used to characterize desirable house

allocation mechanisms.
2. HOUSE ALLOCATION AND EXCHANGE MODELS

2.1 House allocation
The simplest of the indivisible goods allocation models is known as the house allocation

problem and is due to Hylland and Zeckhauser (1979). In this problem, there is a group

of agents and houses (representing indivisible objects). Each agent shall be allocated a

house by a central planner using her preferences over the houses. All houses are social

endowments. Formally, a triple ðA;H ;�Þ is a house allocation problem if

• A ¼ {a1, a2, . . ., an} is a set of agents,

• H ¼ {h1, h2, . . ., hn} is a set of houses,

• �¼ ð�aÞa2A is a strict preference profile such that for each agent a 2 A;�a is a

strict preference relation over houses.1 The induced weak preference relation

of agent a is denoted by ≿a and for any h; g 2 H ; h ≿a g , h �a g or h ¼ g (i.e., a

binary relation, which is a linear order).2
1 For any subset of agents B, we will use ��B to denote ð�aÞa2AnB and �B to denote ð�aÞa2B.
2 A binary relation b defined on a set X is a linear order if
– it is complete, i.e., for all x, y 2 X, either xby or ybx,
– it is reflexive, i.e., for all x 2 X, xbx,
– it is transitive, i.e., for all x, y, z 2 X, xby and ybz imply xbz, and
– it is anti-symmetric, i.e., for all x, y 2 X, xby and ybx imply x ¼ y.
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There are various applications of the house allocation problem, such as organ

allocation for transplant patients waiting for deceased donor organs, dormitory room

allocation at universities, and parking space and office allocation at workplaces.

Throughout this subsection, we will fix A and H. A problem is denoted only

through the preference profile �.

The outcome of a house allocation problem is a matching, which is a one-to-one

and onto function m : A ! H such that house m(a) is the assigned house of agent a

under matching m. Let M be the set of matchings.

We will inspect several desirable properties of matchings. A matching m is Pareto-

efficient if there is no other matching n such that nðaÞ ≿a mðaÞ for all a 2 A and

nðaÞ �a mðaÞ for some agent a 2 A.

A (deterministic direct) mechanism is a procedure that assigns a matching for

each house allocation problem. For any problem �, let f½�� 2 M refer to the match-

ing outcome of f for problem �.

Next, we discuss several desirable properties of mechanisms. A mechanism f
is strategy-proof if for any problem �, any agent a 2 A and any preference

relation ��
a

f½�a;��a�ðaÞ ≿a f½��
a ;��a�ðaÞ:

That is, in a game induced by the direct mechanism f, when agents reveal their

preferences and the central planner implements a matching using f according to the

revealed preference profile, it is a weakly dominant strategy for each agent to truthfully

report her preferences.

A mechanism is Pareto-efficient if it assigns a Pareto-efficient matching for each

problem.

Next, we introduce a fundamental class of mechanisms, commonly referred to

as serial dictatorships (or priority mechanisms) (for example, see Satterthwaite and

Sonnenschein 1981 and Svensson 1994). A serial dictatorship is defined through a

priority ordering of agents. A priority ordering is a one-to-one and onto function

f : {1, 2, . . ., n} ! A. That is, for any k 2 {1, . . ., n}, f(k) 2 A is the agent with

the kth highest priority agent under f. Let F be the set of orderings. Each priority

ordering induces a direct mechanism. We refer to the direct mechanism pf as the serial
dictatorship induced by priority ordering f 2 F , and its matching outcome pf ½��
is found iteratively as follows:

Algorithm 1 The serial dictatorship induced by f:

Step 1: The highest priority agent f(1) is assigned her top choice house under �f ð1Þ
..
.

Step k: The kth highest priority agent f(k) is assigned her top choice house under �f ðkÞ among
the remaining houses.
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We can summarize the desirable properties of serial dictatorships with the following

theorem:

Theorem 1 A serial dictatorship is strategy-proof and Pareto-efficient.

Moreover, Abdulkadiroğlu and Sönmez (1998) show that for any Pareto-efficient

matching of a given problem, there exists a serial dictatorship that achieves this

matching.

Serial dictatorships can be easily implemented in real-life applications; therefore,

they are very appealing. If it is not possible to distinguish between agents to determine

the control rights of houses and order them as serial dictators, then a random ordering

can be chosen and the induced serial dictatorship can be implemented to sustain

fairness.

2.2 The housing market
The second model we consider is a variant of the house allocation problem and is

known as a housing market (Shapley and Scarf, 1974). The only difference between this

problem and the house allocation problem is that now each agent owns a house, i.e., has

the initial property right of a house. Hence, a housing market is an exchange market

(with indivisible objects) where agents have the option to trade their house in order

to get a better one. On the other hand, a house allocation problem has no predefined

control rights structure. The houses are social endowments, and the central planner

allocates them.

Formally, a housing market is a list ðA; ða; haÞa2A;�Þ such that

• A ¼ {1, . . ., n} is a set of agents and {h1, . . ., hn} is a set of houses such that

each agent a occupies house ha satisfying hb 6¼ ha for any b 6¼ a, and

• �¼ ð�aÞa2A is a strict preference profile such that for each agent a 2 A;�a is a

strict preference relation over houses.

Throughout this subsection, we fix the set of agents A. We also fix the endowments

of agents as above and denote the set as H. Thus, each market is denoted by a prefer-

ence profile �.

There are several real-life applications of housing markets. We will focus on an

important one in the next section. In this application, agents are end-stage kidney dis-

ease patients, are endowed with a live donor who would like to donate a kidney to

them, and have the option to trade their donors to receive a better quality kidney.

Next, we define solution concepts for housing markets. The definitions of a match-

ing, a mechanism, and their properties introduced for the housing allocation problem

also apply to the housing market.

We also introduce a new concept about the additional structure of the housing

market regarding initial property rights. A matching m is individually rational if for

each agent a 2 A;mðaÞ ≿a ha, that is, each agent is assigned a house at least as good
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as her own occupied house. A mechanism is individually rational if it always selects

an individually rational matching for each market.

Although we focused on allocation through direct mechanisms, a decentralized

solution may naturally exist for a housing market, which is an exchange economy with

indivisible objects. A competitive equilibrium may be achieved through decentralized

trading. We define a price vector as a positive real vector assigning a price for each

house, i.e., p ¼ ðphÞh2H 2 R
n
þþ such that ph is the price of house h. A matching - price

vector pair ðm; pÞ 2 M� R
n
þ finds a competitive equilibrium if for each agent

a 2 A,

• pmðaÞ � pha (budget constraint), and

• mðaÞ ≿a h for all h 2 H such that ph � pha (utility maximization).

Under a competitive equilibrium, each agent is assigned the best house that she

can afford.

Another important concept for exchange economies is the core. With divisibilities, it

is well known that any competitive equilibrium allocation is also in the core.

We formulate the core for a housing market as follows: A matching m is in the core

if there exists no coalition of agents B 	 A such that for some matching n 2 M such

that for all a 2 B, n(a) ¼ hb for some b 2 B, we have nðaÞ ≿a mðaÞ for all a 2 B and

nðaÞ �a mðaÞ for some a 2 B. That is, the core is the collection of matchings such that

no coalition could improve their assigned houses even if they traded their initially

occupied houses only among each other.

Although competitive equilibrium and the core are very intuitive solution concepts

with nice economic properties, it is not immediately clear that they exist and are

related to each other for the housing market. Shapley and Scarf also proved that the

core is nonempty and there exists a core matching that can be sustained under a com-

petitive equilibrium.

Theorem 2 The core of a housing market is non-empty and there exists a core matching

that can be sustained as part of a competitive equilibrium.

As an alternative proof to their initial proof, they introduced an iterative algorithm

that is a core and competitive equilibrium matching. They attribute this algorithm to

David Gale. This algorithm is a clearing algorithm that forms a directed graph in each

iteration and assigns houses to a subset of agents. In order to define the algorithm, we

define the following concept:

Consider a directed graph in which agents and houses are the vertices and edges

are formed by each agent pointing to one house and each house pointing to one agent.

We define a special subgraph of this graph. A cycle is a list of houses and agents (h1, a1, h2,

a2, . . ., hm, am) such that each agent ak points to house hkþ1 for k 2 {1, . . ., m � 1}, am
points to h1, and each house hk points to agent ak for k 2 {1, . . ., m}. Figure 2.1 depicts

such a cycle.
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h1

h2

a1

a2

am

…

Figure 2.1 A cycle.
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An interesting fact about any directed graph that is formed as explained above is the

following:

Lemma 1 Each directed graph formed by each agent pointing to a house and each house

pointing to an agent has a cycle, and no two cycles intersect.

This lemma will enable us to define the following algorithm properly:

Algorithm 2 Gale’s top trading cycles (TTC) algorithm:

Step 1: Let each agent point to her top choice house and each house point to its owner. In this

graph there is necessarily a cycle and no two cycles intersect (by Lemma 1). Remove all cycles from

the problem by assigning each agent the house that she is pointing to.
..
.

Step k: Let each remaining agent point to her top choice among the remaining houses and

each remaining house point to its owner (note that houses leave with their owners and owners leave

with their houses, so a house remaining in the problem implies that the owner is still in the prob-

lem and vice versa). There is necessarily a cycle and no two cycles intersect. Remove all cycles from

the problem by assigning each agent the house that she is pointing to.

The algorithm terminates when no agents and houses remain. The assignments formed during

the execution of the algorithm is the matching outcome.

Shapley and Scarf also proved the following theorem:

Theorem 3 Gale’s TTC algorithm achieves a core matching that is also sustainable by a

competitive equilibrium.

A competitive equilibrium price vector supporting this core matching at the equi-

librium can be formed as follows: Partition the set of agents as C1, C2, . . ., Cr where Ck

is the set of agents removed in Step k of Gale’s TTC algorithm. Price vector p is such

that for any pair of houses ha, hb if the owners a and b were removed in the same step,

i.e., a, b 2 Ck for some Step k, then we set pha ¼ phb , if (without loss of generality)

owner a is removed before agent b, i.e., a 2 Ck and b 2 C‘ such that k < ‘, then we

set pha > phb . That is, (1) the prices of the occupied houses whose owners are removed

in the same step are set equal to each other and (2) the prices of those whose owners
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are removed in different steps are set such that the price of a house that leaves earlier is

higher than the price of a house that leaves later.

Below, we demonstrate how Gale’s TTC algorithm works with an involved example:

Example 1 The execution of Gale’s TTC algorithm

Let

A ¼ a1; a2; a3; a4; a5; a6; a7; a8; a9; a10; a11; a12; a13; a14; a15; a16f g:
Here hi is the occupied house of agent ai. Let the preference profile � be given as:

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16

h15 h3 h1 h2 h9 h6 h7 h6 h11 h7 h2 h4 h6 h8 h1 h5

..

.
h4 h3

..

. ..
. ..

. ..
.

h12
..
.

h3 h4 h14 h13
..
. ..

. ..
.

..

. ..
. ..

.
h12 h16

..

. ..
.

h10
..
.

..

.

We depict the directed graphs that are formed in each step of the algorithm in

Figures 2.2–2.6. The cycles are shown through bold arrows. Observe that we abbreviated in

the graphs below the arrows through which each house points to its owner. When a cycle is

removed, each agent in the cycle is assigned the house she is pointing to.

The outcome is:

m ¼ a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16
h15 h4 h3 h2 h9 h6 h7 h12 h11 h10 h16 h14 h13 h8 h1 h5

� �
a1−h1 a2−h2 a3−h3 a4−h4 a5−h5

a6−h6

a7−h7

a8−h8

a16−h16

a15−h15

a14−h14

a13−h13 a12−h12 a11−h11 a10−h10 a9−h9

. . . . .

. .

. .

. .

. . . . .

Figure 2.2 Step 1 of Gale’s TTC algorithm.
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a16−h16

a2−h2 a3−h3 a4−h4 a5−h5

a8−h8a14−h14

a13−h13 a12−h12 a11−h11 a10−h10 a9−h9

Figure 2.3 Step 2 of Gale’s TTC algorithm.

. . .

.

. .

. . . .

a16−h16

a2−h2

a8−h8

a4−h4 a5−h5

a14−h14

a12−h12 a11−h11 a10−h10 a9−h9

Figure 2.4 Step 3 of Gale’s TTC algorithm.
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After Shapley and Scarf’s paper, a series of papers proved that the core of a housing

market has really nice properties when it is used as a direct mechanism:

Theorem 4 (Roth and Postlewaite 1977) The core of a housing market has exactly one

matching which is also the unique matching that can be sustained at a competitive equilibrium.

The above result together with Shapley and Scarf’s result implies that the core can

be used as a mechanism, and Gale’s TTC can be used to find it. By definition, the core
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a14−h14

a16−h16

a12−h12 a11−h11 a10−h10 a9−h9

a8−h8

a5−h5

Figure 2.5 Step 4 of Gale’s TTC algorithm.

a10−h10

.

Figure 2.6 Step 5 of Gale’s TTC algorithm.
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is Pareto-efficient and individually rational. The following theorem shows that this

mechanism also has good incentive properties:

Theorem 5 (Roth 1982a) The core mechanism is strategy-proof.

Moreover, there is no other mechanism with these properties:

Theorem 6 (Ma 1994) The core mechanism is the only mechanism that is individually

rational, Pareto-efficient, and strategy-proof for a housing market.

Thus, from theoretical, practical, and economic points of view, the core is the best

solution concept for housing markets. It is the decentralized solution concept and can

be implemented in a centralized manner. In economics, there are very few problem

domains with such a property. For example, in exchange economies with divisible goods,

the competitive equilibrium allocation is a subset of the core, but both the competitive

equilibrium and any other core selection are manipulable as a direct mechanism.3,4
3 Positive results of this section no longer hold in an economy in which one agent can consume multiple houses or

multiple types of houses. Even the core may be empty (Konishi, Quint, and Wako 2001). Also see Pápai (2003),

Wako (2005), and Klaus (2008) on the subject under different preference assumptions.

On the other hand, if there are no initial property rights, serial dictatorships can still be used for strategy-proof and

Pareto-efficient allocation (see Klaus and Miyagawa 2002). Also see Pápai (2001) and Ehlers and Klaus (2003) for

other characterizations under different preference assumptions.
4 See Quinzzii (1984) for the existence results of core allocations and competitive equilibria in a generalized model

with both discrete and divisible goods. See Bevia, Quinzii, and Silva (1999) for a generalization of this model when

an agent can consume multiple indivisible goods.
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In the next subsection, we focus on a market design problem that has the features of

both housing markets and house allocation problems.

2.3 House allocation with existing tenants
In some US universities, a probabilistic version of the serial dictatorship is used for allo-

cating dormitory rooms to students. By a (usually equally weighted) lottery, a priority

ordering is determined and students reveal a preference ordering over possible dormi-

tory rooms. Then the induced serial dictatorship is used to allocate these rooms to stu-

dents. This is known as the housing lottery at campuses.

Motivated by real-life on-campus housing practices, Abdulkadiroğlu and Sönmez

(1999) introduced a house allocation problem with existing tenants: A set of

houses shall be allocated to a set of agents by a centralized clearing house. Some of

the agents are existing tenants, each of whom already occupies a house, referred to

as an occupied house, and the rest of the agents are newcomers. Each agent has strict

preferences over houses. In addition to occupied houses, there are vacant houses.

Existing tenants are entitled not only to keep their current houses but also to apply

for other houses.

Here, existing tenants can be likened to the current college students who occupy

on-campus houses (or dormitory rooms, condos, etc.) from the previous year. The

newcomers can be likened to the freshman class and any other current student who

does not already occupy a house. Vacant houses are the houses vacated by the gradu-

ating class and the students who no longer need on-campus housing.

The mechanism known as the random serial-dictatorship (RSD) with squat-

ting rights is used in most real-life applications of these problems. Some examples

include undergraduate housing at Carnegie Mellon, Duke, Michigan, Northwestern,

and Pennsylvania. This mechanism works as follows:

Algorithm 3 The RSD with squatting rights:

1. Each existing tenant decides whether she will enter the housing lottery or keep her current

house (or dormitory room). Those who prefer keeping their houses are assigned their houses.

All other houses (vacant houses and houses of existing agents who enter the lottery) become

available for allocation.

2. An ordering of agents in the lottery is randomly chosen from a given distribution of order-

ings. This distribution may be uniform or it may favor some groups.

3. Once the agents are ordered, available houses are allocated using the induced serial dicta-

torship: The first agent receives her top choice, the next agent receives her top choice among

the remaining houses, and so on.

Since it does not guarantee each existing tenant a house that is as good as what she

already occupies, some existing tenants may choose to keep their houses even though

they wish to move, and this may result in a loss of potentially large gains from trade.

In contrast, Abdulkadiroğlu and Sönmez propose a mechanism that has the features of

both the core in housing markets and serial dictatorships in house allocation problems.
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We refer to this mechanism as the “You requestmy house - I get your turn” (YRMH-

IGYT) mechanism. Let f 2 F be a priority ordering of agents in A. Each f defines a

YRMH-IGYTmechanism. The corresponding YRMH-IGYT algorithm clears as follows:

Algorithm 4 The YRMH-IGYT algorithm induced by f:

• Assign the first agent her top choice, the second agent her top choice among the remaining

houses, and so on, until someone requests the house of an existing tenant.

• If at that point the existing tenant whose house is requested is already assigned another

house, then do not disturb the procedure. Otherwise, modify the remainder of the ordering

by inserting the existing tenant before the requestor at the priority order and proceed with

the first step of procedure through this existing tenant.

• Similarly, insert any existing tenant who is not already served just before the requestor in

the priority order once her house is requested by an agent.

• If at any point a cycle forms, it is formed by exclusively existing tenants and each of them

requests the house of the tenant who is next in the cycle. (A cycle is an ordered list

ðha1 ; a1; . . . ; hak ; akÞ of occupied houses and existing tenants where agent a1 demands the
house of agent a2; ha2 , agent a2 demands the house of agent a3; ha3 ; . . ., agent ak demands
the house of agent a1; ha1 .) In such cases, remove all agents in the cycle by assigning them

the houses they demand and proceed similarly.

Below, we present an example showing how the algorithm clears:

Example 2 The execution of the YRMH-IGYT algorithm

AE ¼ a1; a2; a3; a4; a5; a6; a7; a8; a9f g is the set of existing tenants;
AN ¼ a10; a11; a12; a13; a14; a15; a16f g is the set of newcomers; and
HV ¼ h10; h11; h12; h13; h14; h15; h16f g is the set of vacant houses:

Suppose that each existing tenant ak occupies hk for each k 2 {1, . . .,9}. Let the preference
profile � be given as:

a1 a2 a3 a4 a5 a6 a7 a8 a9

h15 h3 h1 h2 h9 h6 h7 h6 h11

..

.
h4 h3

..

. ..
. ..

. ..
.

h12
..
.

..

. ..
. ..

.

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{AE

a10 a11 a12 a13 a14 a15 a16

h7 h2 h4 h6 h8 h1 h5

h3 h4 h14 h13
..
. ..

. ..
.

h12 h16
..
. ..

.

h10
..
.

..

.

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{AN

Let

f ¼ ða13; a15; a11; a14; a12; a16; a10; a1; a2; a3; a4; a5; a6; a7; a8; a9Þ
be the ordering of the agents. We will denote the outcome of the mechanism by c f ½��.
Figures 2.7–2.26 illustrate the dynamics of the YRMH-IGYT algorithm.



h1

a1 a2 a3 a4 a5 a6 a7 a8 a9a13 a15 a11 a14 a12 a16 a10

h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16

Figure 2.7 YRMH-IGYT Example - Step 1.

h1 h2 h3 h4 h5
h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16

a2a1a10 a3 a4 a5 a7 a8 a9a6 a13 a15 a11 a14 a12 a16

yf
(a6) = h6

Figure 2.8 YRMH-IGYT Example - Step 2.

yf
(a13) = h13

h1 h2 h3 h4 h5 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16

a2a1a10 a3 a4 a5 a7 a8 a9a13 a15 a11 a14 a12 a16

Figure 2.9 YRMH-IGYT Example - Step 3.

h1 h2 h3 h4 h5 h7 h8 h9 h10 h11 h12 h14 h15 h16

a1 a2 a3 a4 a5 a7 a8 a9a15 a11 a14 a12 a16 a10

Figure 2.10 YRMH-IGYT Example - Step 4.

h2
h1 h3 h4 h5 h7 h8 h9 h10 h11 h12 h14 h15 h16

a2a1 a10 a3 a4 a5 a7 a8 a9a15 a11 a14 a12 a16

yf
(a1) = h15

yf
(a15) = h1

Figure 2.11 YRMH-IGYT Example - Step 5.

h2 h3 h4 h5 h7 h8 h9 h10 h11 h12 h14 h16

a2a10 a3 a4 a5 a7 a8 a9a11 a14 a12 a16

Figure 2.12 YRMH-IGYT Example - Step 6.
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h2 h4 h5 h7 h8 h9 h10 h11 h12 h14 h16

a2 a10 a4 a5 a7 a8 a9a11 a14 a12 a16

Figure 2.15 YRMH-IGYT Example - Step 9.

h2h3 h4 h5 h7 h8 h9 h10 h11 h12 h14 h16

a2 a10a3 a4 a5 a7 a8 a9a11 a14 a12 a16

yf
(a3) = h3

Figure 2.14 YRMH-IGYT Example - Step 8.

h2 h3 h4 h5 h7 h8 h9 h10 h11 h12 h14 h16

a2 a10 a3 a4 a5 a7 a8 a9a11 a14 a12 a16

Figure 2.13 YRMH-IGYT Example - Step 7.

yf
(a4) = h2

yf
(a2) = h4

h2h4
h5 h7 h8 h9 h10 h11 h12 h14 h16

a2 a10a4 a5 a7 a8 a9a11 a14 a12 a16

Figure 2.16 YRMH-IGYT Example - Step 10.

yf
(a11) = h16

h5 h7 h8 h9 h10 h11 h12 h14 h16

a10 a5 a7 a8 a9a11 a14 a12 a16

Figure 2.17 YRMH-IGYT Example - Step 11.

h5 h7 h8 h9 h10 h11 h12 h14

a10 a5 a7 a8 a9a14 a12 a16

Figure 2.18 YRMH-IGYT Example - Step 12.
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h8 h5 h7 h9 h10 h11 h12 h14

a8 a14 a12 a16 a10 a5 a7 a9

yf
(a3) = h12

yf
(a14) = h8

Figure 2.19 YRMH-IGYT Example - Step 13.

yf
(a12) = h14

h5 h7 h9 h10 h11 h14

a12 a16 a10 a5 a7 a9

Figure 2.20 YRMH-IGYT Example - Step 14.

h5 h7 h9 h10 h11

a16 a10 a5 a7 a9

Figure 2.21 YRMH-IGYT Example - Step 15.

h5 h7 h9 h10 h11

a5 a16 a10 a7 a9

Figure 2.22 YRMH-IGYT Example - Step 16.

h9 h5 h7 h10 h11

a9 a5 a16 a10 a7
yf

(a16) = h5

yf
(a9) = h11

yf
(a5) = h9

Figure 2.23 YRMH-IGYT Example - Step 17.
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h7 h10

a10 a7

Figure 2.24 YRMH-IGYT Example - Step 18.

h7 h10

a7 a10

yf
(a7) = h7

Figure 2.25 YRMH-IGYT Example - Step 19.

h10

a10

yf
(a10) = h10

Figure 2.26 YRMH-IGYT Example - Step 20.
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The outcome of the algorithm is

m¼ a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16
h15 h4 h3 h2 h9 h6 h7 h12 h11 h10 h16 h14 h13 h8 h1 h5

� �
The following theorem shows that this mechanism has desirable properties:

Theorem 7 (Abdulkadiroğlu and Sönmez 1999) Any YRMH-IGYT mechanism is

individually rational, Pareto-efficient, and strategy-proof.

Thus, the YRMH-IGYT mechanisms have nice features. The priority ordering can

be determined through a lottery. Chen and Sönmez (2002) showed through a labora-

tory experiment that this mechanism is practically better than the RSD mechanism

with squatting rights. The treatments of the YRMH-IGYT mechanism were more

efficient than the RSD with squatting rights mechanism, and manipulation did not

occur to a significant degree.

Moreover, it is the unique mechanism that satisfies certain desirable properties:

A mechanism is coalitionally strategy-proof if for any problem there is no

coalition of agents who can jointly misreport their preferences and all weakly benefit

while at least one in the coalition strictly benefits.
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A mechanism is consistent if, we remove the agents and their assigned houses by

the mechanism from the problem together with some unassigned houses, provided that

in the remaining problem if an existing tenant remains her occupied house also

remains, then rerunning the mechanism for this subproblem does not change the

assignments of agents in the subproblem.

A mechanism is weakly neutral if, when the vacant houses are relabeled and the

mechanism is rerun, then every agent who was assigned a vacant house in the original

problem is assigned the relabeled version of the vacant house, and every agent who was

assigned an occupied house in the original problem is assigned the same occupied

house.

The characterization theorem is as follows:

Theorem 8 (Sönmez and Ünver 2010b) A mechanism is coalitionally strategy-proof,

individually rational, Pareto-efficient, weakly neutral, and consistent if and only if it is

equivalent to a YRMH-IGYT mechanism.

We conclude by stating some other characterizations regarding restricted domains.

In the restricted domains, the mechanisms characterized are equivalent to YRMH-

IGYT mechanisms.

Theorem 9 (Svensson 1999) In the house allocation problem, a mechanism is coalition-

ally strategy-proof, and (weakly) neutral if and only if it is equivalent to a serial

dictatorship.

Theorem 10 (Ergin 2000) In the house allocation problem, a mechanism is Pareto-

efficient, (weakly) neutral, and consistent if and only if it is equivalent to a serial

dictatorship.

On the other hand, when there are no newcomers, as in the housing

market domain, Theorems 5 by Roth (1982a) and 6 by Ma (1994) imply that the

core mechanism is the only desirable mechanism: A mechanism is individually

rational, strategy-proof, and Pareto-efficient if and only if it is equivalent to the

core mechanism. Observe that these three theorems do not follow from

Theorem 8, since smaller sets of axioms are needed in characterization in the more

restricted domains.

Some other recent papers on house allocation and exchange mechanisms are as fol-

lows: Jaramillo and Manjunath (2009) extends the YRMH-IGYT mechanism (more

precisely, Gale’s TTC algorithm) to the case where agents can have preferences with

indifferences. The new mechanism is strategy-proof, Pareto-efficient, and individually

rational like the YRMH-IGYT mechanism. Ekici (2009) introduces a new property

call reclaim-proofness for house allocation problems with existing tenants. He shows

that all reclaim-proof matchings of a problem can be found through YRMH-IGYT

mechanisms induced by different priority orders. He continues defining competitive

matchings in this domain and shows that competitive matchings coincide with

reclaim-proof matchings.
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3. KIDNEY EXCHANGE

In the recent years, the design of kidney exchange (in the medical literature also known

as kidney paired donation) mechanisms has been one of the important market design

applications of the house allocation and exchange models. A new theory has been

developed to accommodate the institutional restrictions imposed by the nature of the

problem. This chapter surveys three articles on this design problem (Roth, Sönmez,

and Ünver, 2004, 2005a, 2007).

Transplantation is the preferred treatment for the end-stage kidney disease. There

are more than 70000 patients waiting for a kidney transplant in the US. In 2005, only

16500 transplants were conducted, 9800 from deceased donors and 6570 from living

donors, while 29160 new patients joined the deceased donor waiting list and 4200

patients died while waiting for a kidney.1 Buying and selling a body part is illegal in

many countries in the world including the US. Donation is the only source of kidneys

in many countries. There are two sources of donation:

1. Deceased donors: In the US and Europe a centralized priority mechanism is used

for the allocation of deceased donor kidneys. The patients are ordered in a waiting

list, and the first available donor kidney is given to the patient who best satisfies a

metric based on the quality of the match, waiting time in the queue, age of the

patient, and other medical and fairness criteria.

2. Living donors: Generally friends or relatives of a patient (due to the “no buying

and selling” constraint) would like to donate one of their kidneys to a designated

patient.2 Live donations have been an increasing source of donations in the last

decade. The design problem determines in the most efficient manner of allocating

the kidneys of these donors.

3.1 Directed live donations and donor exchanges
After a patient identifies a willing donor, the transplant is carried out if the donor kid-

ney is compatible with the patient. There are two tests that a donor should pass before

she is deemed compatible with the patient:

1. Blood compatibility test: There are four blood types, “O,” “A,” “B,” and “AB.”

“O” type kidneys are blood-type compatible with all patients; “A” type kidneys are

blood-type compatible with “A” and “AB” type patients; “B” type kidneys are

blood-type compatible with “B” and “AB” type patients; and “AB” type kidneys

are only blood-type compatible with “AB” type patients.

2. Tissue compatibility test (or crossmatch test): 6 HLA (short for human leuko-

cyte antigen) proteins (3 inherited from the mother and 3 inherited from the father)
1 According to SRTR/OPTN national data retrieved at http://www.optn.org on 2/27/2007.
2 Although the number of “nondirected,” good Samaritan altruistic donors has steadily been increasing, it is still small

relative to the number of “directed” live donors.

http://www.nepke.org
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located on patient and donor DNA helices respectively play two roles in determin-

ing tissue compatibility. If antibodies exist in the patient blood against the donor

HLA, then the donor kidney cannot be transplanted to the patient and it is deemed

tissue-type incompatible. It is reported that, on average, there is only 11% chance of

tissue-type incompatibility for a random donor and patient (Zenios, Woodle, and

Ross, 2001).

Exact HLA match is not required for tissue compatibility; however, there is a

debate in the medical literature about how important the closeness of HLA proteins

of the patient and donor are for the long-run survival rate of a transplanted kidney.

Traditionally, if either test fails, the patient remains on the deceased donor waiting

list and the donor goes home unutilized. However, the medical community came up

with two ways of utilizing these “unused” donors.

An (paired) exchange involves two incompatible patient-donor pairs such that

the patient in each pair feasibly receives a transplant from the donor in the other pair.

This pair of patients exchange donated kidneys. For example, see Figure 3.1. Of course

the number of pairs in a paired exchange can be larger than two.

A list exchange involves an exchange between one incompatible patient-donor

pair and the deceased donor waiting list. The patient in the pair becomes the first pri-

ority person on the deceased donor waiting list in return for the donation of her

donor’s kidney to someone on the waiting list (see Figure 3.2).

List exchanges can potentially harm O blood-type patients waiting on the deceased

donor waiting list. Since the O blood type is the most common blood type, a patient

with an incompatible donor is most likely to have O blood herself and a non-O blood-

type incompatible donor. Thus, after the list exchange, the blood type of the donor

sent to the deceased donor waiting list has generally non-O blood, while the patient

placed at the top of the list has O blood. Thus, list exchanges are deemed ethically

controversial. Only the New England region in the US adopted list exchange.
Donor 1 Patient 1

Patient 2 Donor 2

Figure 3.1 A paired exchange.



Donor Patient

Deceased donor
waiting list

1st Patient

2nd Patient

3rd Patient
…

Figure 3.2 A list exchange.
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A list exchange can also involve more pairs than one. Doctors also use nondirected live

altruistic donors instead of deceased donors. There is no uniform national policy

regarding the handling of nondirected live donors. Many regions conduct exchanges

induced by nondirected live donors. Since live donor kidneys are better quality than

deceased donor kidneys, such exchanges create better participation incentives for

patients and their live paired donors.

3.2 The designs
Two live donor exchange programs have already been established in the US through

collaboration between economists and medical doctors, one in New England and

one in Ohio. A national exchange program is being developed.

The surveyed designs illustrate how the exchange system may be organized from

the point of view of efficiency, providing consistent incentives to patients-donors-

doctors. Although medical compatibilities are important for matching, the incentives

to patients and doctors are also quite important. Patients (doctors) hold private informa-

tion about their (their patients’) preferences over several dimensions such as the geo-

graphic distance of the match or the number of willing donors they have. Under

some designs, they may not want to reveal this information truthfully, since they (their

patients) may benefit from manipulation of information revelation. The initial two

designs we will discuss in this survey extract the private information truthfully from

patients (doctors) under any circumstance (strategy-proofness). We impose several other

important economic or normative criteria on our designs besides incentive compatibility,
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such as Pareto efficiency and fairness. For fairness, we consider two different

approaches: (1) giving priorities to patients based on their exogenous characteristics or

(2) making every patient as equally well off as the medical constraints permit (also

known as egalitarianism). Finally, the last design we will discuss refines Pareto efficiency

and focuses on aggregate efficiency concerns.

3.3 The model
A kidney exchange problem consists of:

• a set of donor (kidney)-(transplant) patient pairs {(k1, t1), . . . (kn, tn)},
• a set of compatible kidneys Ki 
 K ¼ {k1, . . ., kn} for each patient ti, and

• a strict preference relation �i over Ki [ {ki, w} where w refers to the priority

in the waiting list in exchange for kidney ki.

An outcome of a problem is a matching of kidneys/waiting list option to patients

such that multiple patients can be matched with the w option (and lotteries over

matchings are possible). A kidney exchange mechanism is a systematic procedure to

select a matching for each kidney exchange problem (and lottery mechanisms are

possible).3

A matching is Pareto-efficient if there is no other matching that makes everybody

weakly better off and at least one patient strictly better off. A mechanism is Pareto-

efficient if it always chooses Pareto-efficient matchings.

A matching is individually rational if each patient is matched with an option that is

weakly better than her own paired-donor. A mechanism is individually rational if it

always selects an individually rational matching.4

A mechanism is strategy-proof if it is always the best strategy for each patient to:

1. reveal her preferences over other available kidneys truthfully, and

2. declare the whole set of her donors (in case she has multiple donors) to the sys-

tem without hiding any (the model treats each patient as having a single donor,

but the extension to multiple donors is straightforward).

3.4 Multi-way kidney exchanges with strict preferences
The first design and the set of results are due to Roth, Sönmez, and Ünver (2004).

Unless otherwise noted, all stated results are from this paper. In this design the under-

lying assumptions are as follows:

• Any number of patient-donor pairs can participate in an exchange, i.e.,

exchanges are possibly multi-way.
3 For the time being, we exclude the possibility of non-directed altruistic donors. However, such donors can be

incorporated into the problem easily as w option. But, there is one difference: an altruistic donor cannot be matched

to more than one patient.
4 We will assume that an incompatible own paired-donor is the opt-out option of a patient.
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• Patients have heterogeneous preferences over compatible kidneys; in particular,

no two kidneys have the same quality, i.e., the preferences of a patient are strict

and they linearly order compatible kidneys, the waiting list option, and her own

paired-donor. Opelz (1997) shows in his data set that among compatible donors,

the increase in the number of HLA protein mismatches decreases the likelihood

of kidney survival. Body size, age of donor etc. also affect kidney survival.

• List exchanges are allowed.

Under these assumptions, this model is very similar to the house allocation model

with existing tenants. We will consider a class of mechanisms that clear through an iter-

ative algorithm.

Since the mechanism relies on an algorithm consisting of several rounds, let’s first

focus on some of the graph-theoretical objects encountered by the algorithm. In each

stept

• each patient ti points either toward a kidney in Ki [ {ki} or toward w, and

• each kidney ki points to its paired patient ti.

In such a directed graph, we are interested in two types of subgraphs: One is a

cycle (as defined in housing markets, where agents refer to patients and houses refer

to kidneys). Each cycle is of even size and no two cycles can intersect. The other is

a new concept. A w-chain is an ordered list of kidneys and patients (k1, t1, k2,

t2, . . ., km, tm) such that ki points to ti for each patient, ti points to kiþ1 for each i 6¼ m,

and tm points to w (see Figure 3.2).

We refer to the last pair (km, tm) as the head and the first pair (k1, t1) as the tail in

such a w-chain (see Figure 3.3). A w-chain is also of even size but, unlike in a cycle, a

kidney or a patient can be part of several w-chains (see Figure 3.4).
k1 t1

…

w

k2

t2

tm km

Figure 3.3 A w-chain.



w

t1

k1

t2 t 3

k2 k3

t 4 t 5

k 4 k 5

Figure 3.4 In this figure, there are 5 w-chains initiated by each of the 5 pairs: (k1, t1), (k2, t2, k1, t1),
(k3, t3, k1, t1), (k4, t4, k3, t3, k1, t1), and (k5, t5, k3, t3, k1, t1)
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One practical possibility is choosing among w-chains with a well-defined chain

selection rule. The choice of chain selection rule has implications for efficiency and

incentive-compatibility.

We can now state our first result of this section:

Lemma 2 Consider a graph in which both the patient and the kidney of each pair are dis-

tinct nodes as is the waiting list option w. Suppose each patient points either toward a kidney or

w, and each kidney points to its paired patient. Then either there exists a cycle or each pair initi-

ates a w-chain. Moreover, when cycles exist, no two cycles intersect.

Based on this lemma, we can formulate the following exchange procedure that is

referred to as the top trading cycles and chains algorithm (TTCC) algorithm.

Fix a chain selection rule. At a given time and for a given kidney exchange problem,

the TTCC mechanism determines the exchanges as follows:

Algorithm 5 The TTCC algorithm with a chain selection rule:

1. Initially all kidneys are available and all agents are active. At each stage of the procedure
• each remaining active patient ti points to the best remaining unassigned kidney or to the

waiting list option w, whichever is more preferred,

• each remaining passive patient continues to point to her assignment, and

• each remaining kidney ki points to its paired patient ti.
2. By Lemma 2, there is either a cycle, or a w-chain, or both.
(a) Proceed to Step 3 if there are no cycles. Otherwise, locate each cycle and carry out the

corresponding exchange. Remove all patients in a cycle together with their assignments.
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(b) Each remaining patient points to her top choice among remaining choices and each kidney

points to its paired patient. Proceed to Step 3 if there are no cycles. Otherwise locate all

cycles, carry out the corresponding exchanges, and remove them.

(c) Repeat Step 2b until no cycle exists.
3. If there are no pairs left, we are done. Otherwise, by Lemma 2, each remaining pair initiates a

w-chain. Select only one of the chains with the chain selection rule. The assignment is final for

the patients in the selected w-chain. In addition to selecting a w-chain, the chain selection rule

also determines:
(a) whether the selected w-chain is removed, or

(b) the selected w-chain in the procedure although each patient in it is henceforth passive.

If the w-chain is removed, then the tail kidney is assigned to a patient in the deceased donor wait-

ing list. Otherwise, the tail kidney remains available in the problem for the remaining steps.
4. Each time a w-chain is selected, a new series of cycles may form. Repeat Steps 2 and 3 with

the remaining active patients and unassigned kidneys until no patient is left. If there exist

some tail kidneys of w-chains remaining at this point, remove all such kidneys and assign

them to the patients in the deceased-donor waiting list.

Below we list a number of plausible chain selection rules:

a. Choose minimal w-chains and remove them.

b. Choose the longest w-chain and remove it.

c. Choose the longest w-chain and keep it.

d. Prioritize patient-donor pairs in a single list. Choose the w-chain starting with

the highest priority pair and remove it.

e. Prioritize patient-donor pairs in a single list. Choose the w-chain starting with

the highest priority pair and keep it.

Each w-chain selection rule induces a TTCC mechanism. The removal and non-

removal of w-chain has implications for efficiency.

Theorem 11 (Roth, Sönmez, and Ünver 2004) Consider a chain selection rule where

any w-chain selected at a nonterminal step remains in the procedure and thus the kidney at its

tail remains available for the next step. The TTCC mechanism induced by any such chain

selection rule is Pareto-efficient.

In the absence of list exchanges, the kidney exchange problem is a direct application

of housing markets, and therefore, Theorem 5 implies that TTCC is strategy-proof.

What happens when list exchanges are allowed?

Theorem 12 (Roth, Sönmez, and Ünver 2004) The TTCC mechanism induced by

chain selection rules (a), (d), or (e) is strategy-proof. On the other hand, the TTCC

mechanism induced by chain selection rules (b) or (c) is not strategy-proof.

We mentioned that the current model is very similar to the house allocation model

with existing tenants. There is also a close relationship between the TTCC algorithm

and YRMH-IGYT algorithm, when we introduce to the house allocation problem

with existing tenants a house similar to the w option of the kidney exchange problem.
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Proposition 1 (Krishna and Wang 2007) The TTCC algorithm induced by chain

selection rule (e) is equivalent to the YRMH-IGYT algorithm.

3.5 Two-way kidney exchanges with 0–1 preferences
Although the previous model is a variation of the house allocation and exchange

model, there are intricate restrictions of the kidney exchange problem that this model

cannot handle.

Since kidney donation is considered a gift, a donor cannot be forced to sign a con-

tract regarding the donation. Thus, all transplants in an exchange should be conducted

simultaneously, since otherwise a donor in the exchange could potentially back out

after her paired-patient receives a kidney. This is an important restriction and almost

always respected in real life. Since there should be a separate transplant team of doctors

present for each donation and consequent transplant, this constraint puts a physical

limit on the number of pairs that can participate simultaneously in one exchange.

Because of this restriction, most of the real-life exchanges have been two-way

exchanges including two pairs in one exchange. Roth, Sönmez, and Ünver (2005a)

considered a model of kidney exchange using this restriction.

Another controversial issue in the market design for kidneys concerns the prefer-

ences of patients over kidneys. In the previous model, the assumption was that these

preferences are heterogeneous. Although this is certainly the correct modeling

approach from a theoretical point of view, small differences in quality may be only

of secondary importance. Indeed, in the medical empirical literature several authors

make this claim. In this second model, we will assume that all compatible kidneys have

the same likelihood of survival, following Delmonico (2004) and Gjertson and Cecka

(2000) who statistically show this in their data set. The medical doctors also point out

that if the paired-donor of a patient is compatible with her, she will directly receive a

kidney from her paired-donor and will not participate in the exchange.

The following model and the results are due to Roth, Sönmez, and Ünver (2005a),

unless otherwise noted.

Let N be the set of pairs of all and only incompatible donors and their patients.

Preferences are restricted further such that, for each pair i 2 N, and k, k0 2 Ki, k �i k
0,

i.e., a patient is indifferent among all compatible kidneys. Moreover, we restrict our

attention to individually rational and two-way exchanges in this subsection. That is,

for any m 2 M and pair i, if m(ti) ¼ kj for some pair j then m(tj) ¼ ki, and kj 2 Ki,

ki 2 Kj. By a slight abuse of notation, we treat both the patient and the donor as one

entity, and rewrite m(i) ¼ j, meaning that patient ti is matched with donor kj, instead

of m(ti) ¼ kj.
5 Since we focus on two-way exchanges, we need to define the following

concept: Pairs i, j are mutually compatible if j has a compatible donor for the patient
5 Moreover, throughout this section, whenever it is appropriate, we will use the term “patient” instead of “pair.”
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of i and i has a compatible donor for the patient of j, that is, kj 2 Ki and ki 2 Kj. We can

focus on a mutual compatibility matrix that summarizes the feasible exchanges and prefer-

ences. A mutual compatibility matrix R ¼ [ri,j]i2N,j2N is defined as for any i, j 2 N,

ri;j ¼ 1 if i and j are mutually compatible

0 otherwise

�
A two-way kidney exchange problem is denoted by (N, R). Figure 3.5 depicts an

undirected graph representation of a kidney exchange problem with N ¼ {1, 2, . . ., 14},
Problem (N, R) is given where the edges are the set of feasible two-way exchanges

and the vertices are the incompatible pairs. A subproblem of (N, R) is denoted as (I, RI)

where I	N andRI is the restriction ofR to the pairs in I. For example, Figure 3.6 depicts

subproblem (I, RI) of the above problem with I ¼ {8, 9, 10, 11, 12, 13, 14} :

In Figure 3.7, we depict with boldface edges amatching for the above problem (R,N).

A problem is connected if the corresponding graph of the problem is connected,

i.e., one can traverse between any two nodes of the graph using the edges of the graph.

A component is a largest connected subproblem. In the above problem (R, N), there

is only one component, the problem itself. On the other hand, in the above subprob-

lem (I, RI), there are two components, the first consisting of pairs 8, 9, and 10 and the
2 3 6

1 4 5

7 8 11 12

9 10 13 14

Figure 3.5 A two-way kidney exchange problem.

8 11 12

9 10 13 14

Figure 3.6 A subproblem of the problem in Figure 3.5.



Figure 3.7 A matching.
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second consisting of pairs 11, 12, 13, and 14. We refer to a component as odd if it has

an odd number of pairs, and as even if it has an even number of pairs. In the above

example, the first component is odd and the second component is even.

Besides deterministic outcomes, we will also define stochastic outcomes. A sto-

chastic outcome is a lottery l ¼ ðlmÞm2M that is a probability distribution on all

matchings. Although in many matching problems, there is no natural definition of

von Neumann - Morgenstern utility functions, there is one for this problem: It takes

value 1 if the patient is matched and 0 otherwise. We can define the (expected) utility

of a patient ti under a lottery l as the probability of the patient getting a transplant and

we denote it by ui(l). The utility profile of lottery l is denoted by u(l) ¼ (ui(l))i2N.
A matching is Pareto-efficient if there is no other matching that makes every

patient weakly better off and some patient strictly better off. A lottery is ex-post effi-

cient if it gives positive weight to only Pareto-efficient matchings. A lottery is ex-ante

efficient if there is no other lottery that makes every patient weakly better off and

some patient strictly better off. Although in many matching domains ex-ante and

ex-post efficiency are not equivalent (for example, see Bogomolnaia and Moulin,

2001), because of the following lemma, they are equivalent for two-way kidney

exchanges with 0–1 preferences.

Lemma 3 (Roth, Sönmez, and Ünver 2005a) The same number of patients are matched

at each Pareto-efficient matching, which is the maximum number of pairs that can be matched.

Thus, finding a Pareto-efficient matching is equivalent to finding a matching that

matches the maximum number of pairs. In graph theory, such a problem is known

as a cardinality matching problem (see e.g., Korte and Vygen 2002, for an excellent survey

of this and other optimization problems regarding graphs), and various intuitive

polynomial time algorithms are known to find one Pareto-efficient matching starting

with Edmonds’ (1965) algorithm.
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This lemma would not hold if exchange were possible among three or more

patients. Moreover, we can state the following lemma regarding efficient lotteries:

Lemma 4 (Roth, Sönmez, and Ünver 2005a) A lottery is ex-ante efficient if and only

it is ex-post efficient.

There are many Pareto-efficient matchings, and finding all of them is not compu-

tationally feasible (i.e., NP-complete). Therefore, we will focus on two selections of

Pareto-efficient matchings and lotteries that have nice fairness features.

3.5.1 Priority mechanism
In many situations a natural priority ordering may arise that naturally orders patients. For

example, the sensitivity of a patient to the tissue types of others, known as PRA, is a good

criterion accepted also bymedical doctors. Some patients may be sensitive to almost all tissue

types other than their own and have a PRA¼99%, meaning that they will reject 99% of

donors from a random sample based solely on tissue incompatibility. So, one can order the

patients fromhigh to lowwith respect to their PRAs and use the following priority mechanism:

Algorithm 6 The two-way priority (kidney exchange) mechanism:

Given a priority ordering of patients, a priority mechanism

matches Priority 1 patient if she is mutually compatible with a patient, and skips her otherwise.
..
.

matches Priority k patient in addition to all the previously matched patients if possible, and

skips her otherwise.

Thus, the mechanism determines which patients are to be matched first, and then one

can select a Pareto-efficient matching that matches those patients. Thus, the mechanism is

only unique-valued for the utility profile induced. Anymatching inducing this utility profile

can be the final outcome. The following result makes a priority mechanism very appealing:

Theorem 13 A two-way priority mechanism is Pareto-efficient and strategy-proof.

Although the above model did not consider multiple paired-donors, the extension

of the model to multiple paired-donors is straightforward.

One can find additional structure about Pareto-efficient matchings (even though

finding all such matchings is exhaustive) thanks to the results of Gallai (1963, 1964)

and Edmonds (1965) in graph theory and combinatorial optimization. We can partition

the patients (as a matter of fact, the incompatible pairs) into three sets as NU, NO, NP.

The members of these sets are defined as follows:

An underdemanded patient is one for who there exists a Pareto-efficient match-

ing that leaves her unmatched. Set NU is formed by underdemanded patients, and we

will refer to this set as the set of underdemanded patients. An overdemanded patient

is one who is not underdemanded, yet is mutually compatible with an underdemanded

patient. Set NO is formed by overdemanded patients. A perfectly matched patient is

one that is neither underdemanded nor mutually compatible with any underdemanded

patient. Set NP is formed by perfectly matched patients.
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3.5.2 The structure of Pareto-efficient matchings
The following result, due to Gallai and Edmonds, is the key to understand the structure

of Pareto-efficient matchings:

Lemma 5 Gallai (1963,1964)-Edmonds (1965) Decomposition (GED): Let m be

any Pareto-efficient matching for the original problem (N, R) and (I, RI) be the subproblem

for I ¼ N \ NO. Then we have:

1. Any overdemanded patient is matched with an underdemanded patient under m.
2. J 	 NP for any even component J of the subproblem (I, RI) and all patients in J are

matched with each other under m.
3. J 	 NU for any odd component J of the subproblem (I, RI) and for any patient i 2 J,

it is possible to match all remaining patients with each other under m. Moreover, under m
Figure
• either one patient in J is matched with an overdemanded patient and all others are

matched with each other,
3.8
or
• one patient in J remains unmatched while the others are matched with each other.
One can interpret this lemma as follows: There exists a competition among odd com-

ponents of the subproblem (I, RI) for overdemanded patients. Let D ¼ D1; . . . ;Dp

� �
be

the set of odd components remaining in the problem when overdemanded patients are

removed. By the GED Lemma, all patients in each odd-component are matched but at

most one, and all of the other patients are matched under each Pareto-efficient matching.

Thus, such a matching leaves unmatched jDj � jNOj patients each of whom is in a

distinct odd component.

A depiction of the GED Lemma for a problem is given in Figure 3.8.
Overdemanded
patients

Odd
components

Even
components

The Gallai-Edmonds Decomposition.



Figure 3.9 A Pareto-efficient matching of the GED given in Figure 3.8.
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First suppose that we determine the set of overdemanded patients, NO. After

removing those from the problem, we mark the patients in odd components as under-

demanded, and patients in even components as perfectly matched. Moreover, we can think

of each odd component as a single entity, which is competing to get one overde-

manded patient for its patients under a Pareto-efficient matching. An example of a Par-

eto-efficient matching is given in Figure 3.9 for problem in Figure 3.8.

It turns out that the sets NU, NO, NP and the GED decomposition can also be

found in polynomial time thanks to Edmonds’ algorithm.

Below, we introduce another mechanism that takes into consideration another

notion of fairness. This mechanism is also due to Roth, Sönmez, and Ünver (2005a).

3.5.3 Egalitarian mechanism
Recall that the utility of a patient under a lottery is the probability of receiving a trans-

plant. Equalizing utilities as much as possible may be considered very plausible from an

equity perspective, which is also in line with the Rawlsian notion of fairness (Rawls

1971). We define a central notion in Rawlsian egalitarianism:

A feasible utility profile is Lorenz-dominant if

• the least fortunate patient receives the highest utility among all feasible utility

profiles, and
6 By k

profi
..

.

• the sum of utilities of the k least fortunate patients is the highest among all feasi-

ble utility profiles.6

Is there a feasible Lorenz-dominant utility profile? Roth, Sönmez, and Ünver answer

this question affirmatively. It is constructed with the help of the GED of the problem. Let

• J 	 D be an arbitrary set of odd components of the subproblem obtained

by removing the overdemanded patients,
least fortunate patients under a utility profile, we refer to the k patients whose utilities are lowest in this utility

le.
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• I 	 NO be an arbitrary set of overdemanded patients, and

• CðJ ; IÞ denote the neighbors of J among I, that is, each overdemanded

patient in CðJ ; IÞ is in I and is mutually compatible with a patient in an odd

component of the collection J .

Suppose only overdemanded patients in I are available to be matched with under-

demanded patients in
S

J2J J. Then, what is the upper bound of the utility that can be

received by the least fortunate patient in
S

J2J J? The answer is

f ðJ ; IÞ ¼ jSj2J J j � ðjJ j � jCðJ ; IÞjÞ
jSJ2J Jj

and it can be received only if

1. all underdemanded patients in [J2J J receive the same utility, and

2. all overdemanded patients in CðJ ; IÞ are committed for patients in [J2J J.

The function f is the key in constructing an egalitarian utility profile. The following

procedure can be used to construct it:

Algorithm 7 The construction of the egalitarian utility profile uE :

Partition D as D1;D2; . . . and NO as NO
1 ;NO

2 ; . . . as follows:
Step 1. D1 ¼ argmin

J	D
f ðJ ;NOÞ and

NO
1 ¼ CðD1;N

OÞ
..
.

Step k.

Dk ¼ arg min
J	D

�Sk�1

‘¼1
D‘

f J ;NO

-[k�1

‘¼1

NO
‘

 !
and

NO
k ¼ C Dk;N

O

-[k�1

‘¼1

NO
‘

 !

Construct the vector uE ¼ ðuEi Þi2N as follows:

1. For any overdemanded patient and perfectly matched patient i 2 N n NU,

uEi ¼ 1:

2. For any underdemanded patient i whose odd component left the above procedure at Step k(i),

uEi ¼ f ðDkðiÞ;NO
kðiÞÞ:

We provide an example explaining this construction:

Example 3 Let N ¼ {1, . . . ,16} be the set of patients and let the reduced problem be given

by the graph in Figure 3.10. Each patient except 1 and 2 can be left unmatched at some Pareto-

efficient matching and hence NU ¼ {3,. . .,16} is the set of underdemanded patients. Since both
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Figure 3.10 Graphical Representation for Example 3.
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patients 1 and 2 have links with patients in NU, NO ¼ {1,2} is the set of overdemanded

patients.

D ¼ D1; . . . ;D6f g
where

D1 ¼ 3f g; D2 ¼ 4f g;D3 ¼ 5f g;D4 ¼ 6; 7; 8f g
D5 ¼ 9; 10; 11f g;D6 ¼ 12; 13; 14; 15; 16f g

Consider J 1 ¼ D1;D2f g ¼ 3f g; 4f gf g. Note that by the GED Lemma, an odd compo-

nent that has k patients guarantees k� 1

k
utility for each of its patients. Since

f ðJ 1;N
OÞ ¼ 1

2
< 2

3
< 4

5
, none of the multi-patient odd components is an element of D1.

Moreover, patient 5 has two overdemanded neighbors and f ðJ ;NOÞ > f ðJ 1;N
OÞ for any

J 	 3f g; 4f g; 5f gf g with 5f g 2 J . Therefore

D1 ¼ J 1 ¼ 3f g; 4f gf g; NO
1 ¼ 1f g;

uE3 ¼ uE4 ¼ 1

2
:

Next consider J 2 ¼ D3;D4;D5f g ¼ 5f g; 6; 7; 8f g; 9; 10; 11f gf g. Note that

f ðJ 2;N
O
�
NO

1 Þ ¼ 7� ð3� 1Þ
7

¼ 5

7
. Since f ðJ 2;N

OnNO
1 Þ ¼ 5

7
< 4

5
, the 5-patient odd

component D6 is not an element of D2. Moreover,

f ðfD3g;NO
�
NO

1 Þ ¼ f ðfD4g;NO
�
NO

1 Þ
¼ f ðfD5g;NO

�
NO

1 Þ ¼ 1;

f ðfD3;D4g;NO
�
NO

1 Þ ¼ f ðfD3;D5g;NO
�
NO

1 Þ ¼ 3

4
;

f ðfD4;D5g;NO
�
NO

1 Þ ¼ 5

6
:
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Therefore,

D2 ¼ J 2 ¼ 5f g; 6; 7; 8f g; 9; 10; 11f gf g;
NO

2 ¼ 2f g;

and uE5 ¼ � � � ¼ uE11 ¼
5

7
:

Finally since NOnðNO
1 [NO

2 Þ ¼ �,

D3 ¼ 12; 13; 14; 15; 16f gf g;
NO

3 ¼ �;

and uE12 ¼ � � � ¼ uE16 ¼
4

5
:

Hence the egalitarian utility profile is

uE ¼ ð1; 1; 1
2
;
1

2
;
5

7
;
5

7
;
5

7
;
5

7
;
5

7
;
5

7
;
5

7
;
4

5
;
4

5
;
4

5
;
4

5
;
4

5
Þ:

Roth, Sönmez, and Ünver (2005a) proved the following results:

Theorem 14 (Roth, Sönmez, and Ünver 2005a) The vector uE is a feasible utility

profile.

In particular, the proof of Theorem 14 shows how a lottery that implements uE can

be constructed.

Theorem 15 (Roth, Sönmez, and Ünver 2005a) The utility profile uE Lorenz-

dominates any other feasible utility profile (efficient or not).

The egalitarian mechanism is a lottery mechanism that selects a lottery whose utility

profile is uE. It is only unique-valued for the utility profile induced. As a mechanism,

the egalitarian approach has also appealing properties:

Theorem 16 (Roth, Sönmez, and Ünver 2005a) The egalitarian mechanism is

Pareto-efficient and strategy-proof.

The egalitarian mechanism can be used for cases in which there is no exogenous

way to distinguish among patients. The related literature for this subsection include

two other papers, one by Bogomolnaia and Moulin (2004), who inspected a two-sided

matching problem with the same setup as the model above, and one by Dutta and Ray

(1989), who introduced the egalitarian approach for convex TU-cooperative games.

3.6 Multi-way kidney exchanges with 0–1 preferences
Roth, Sönmez, and Ünver (2007) inspected what is lost when the central authority

conducts only two-way kidney exchanges rather than multi-way exchanges. More

specifically, they inspected the upper bound of marginal gains from conducting

2&3-way exchanges instead of only two-way exchanges, 2&3&4-way exchanges instead
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of only 2&3-way exchanges, and unrestricted multi-way exchanges instead of

only 2&3&4-way exchanges. The setup is very similar to the previous subsection with

only one difference: a matching does not necessarily consist of two-way exchanges.

All results in this subsection are due to Roth, Sönmez, and Ünver (2007) unless

otherwise noted.

An example helps illustrate why the possibility of a 3-way exchange is important:

Example 4 Consider a sample of 14 incompatible patient-donor pairs. A pair is denoted as

type x-y if the patient and donor are ABO blood-types x and y respectively. There are nine pairs,

who are blood-type incompatible, of types A-AB, B-AB, O-A, O-A, O-B, A-B, A-B, A-B,

and B-A; and five pairs, who are incompatible because of tissue rejection, of types A-A, A-A,

A-A, B-O, and AB-O. For simplicity in this example there is no tissue rejection between

patients and other patients’ donors.

• If only two-way exchanges are possible:
(A-B,B-A); (A-A,A-A); (B-O,O-B); (AB-O,A-AB) is a possible Pareto-efficient

matching.
• If three-way exchanges are also feasible:
(A-B,B-A); (A-A, A-A, A-A); (B-O, O-A, A-B); (AB-O, O-A, A-AB) is a possi-

ble maximal Pareto-efficient matching.
The three-way exchanges allow

1. an odd number of A-A pairs to be transplanted (instead of only an even number with two-

way exchanges), and

2. a pair with a donor who has a blood type more desirable than her patient’s to facilitate three

transplants rather than only two. Here, the AB-O type pair helps two pairs with patients

having less desirable blood type than their donors (O-A and A-AB), while the B-O type

pair helps one pair with a patient having a less desirable blood type than her donor (O-A)

and a pair of type A-B. Here, note that another A-B type pair is already matched with a

B-A type, and this second A-B type pair is in excess.

First we introduce two upper-bound assumptions and find the size of Pareto-

efficient exchanges with only two-way exchanges:

Assumption 1 (Upper Bound Assumption) No patient is tissue-type incompatible with

another patient’s donor.

Assumption 2 (Large Population of Incompatible Patient-Donor Pairs) Regardless

of the maximum number of pairs allowed in each exchange, pairs of types O-A, O-B, O-AB,

A-AB, and B-AB are on the “long side” of the exchange in the sense that at least one pair of each

type remains unmatched in each feasible set of exchanges.

The first result is about the greatest lower bound of the size of two-way Pareto-

efficient matchings:

Proposition 2 (Roth, Sönmez, and Ünver 2007) The Maximal Size of Two-Way

Matchings: For any patient population obeying Assumptions 1 and 2, the maximum number of

patients who can be matched with only two-way exchanges is:
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2ð#ðA-OÞ þ#ðB-OÞ þ#ðAB-OÞ þ#ðAB-AÞ þ#ðAB-BÞÞ
þ ð#ðA-BÞ þ#ðB-AÞ � j#ðA-BÞ �#ðB-AÞjÞ

þ 2
#ðA-AÞ

2

$ %
þ #ðB-BÞ

2

$ %
þ #ðO-OÞ

2

$ %
þ #ðAB-ABÞ

2

$ % !

where bac refers to the largest integer smaller than or equal to a and #(x-y) refers to the number of
x-y type pairs.

We can generalize the above example in a proposition for three-way exchanges.

We introduce an additional assumption for ease of notation. The symmetric case

implies replacing types “A” with “B” and “B” with “A” in all of the following results.

Assumption 3 #(A-B) > #(B-A).

The following is a simplifying assumption.

Assumption 4 There is either no type A-A pair or there are at least two of them. The same

is also true for each of the types B-B, AB-AB, and O-O.

When three-way exchanges are also feasible, as we noted earlier, Lemma 3 no

longer holds. Thus, we consider the largest of the Pareto-efficient matchings under

2&3-way matching technology.

Proposition 3 (Roth, Sönmez, and Ünver 2007) The Maximal Size of 2&3-Way

Matchings: For any patient population for which Assumptions 1–4 hold, the maximum number

of patients who can be matched with two-way and three-way exchanges is:

2ð#ðA-OÞ þ#ðB-OÞ þ#ðAB-OÞ þ#ðAB-AÞ þ#ðAB-BÞÞ
þ ð#ðA-BÞ þ#ðB-AÞ � j#ðA-BÞ �#ðB-AÞjÞ
þ ð#ðA-AÞ þ#ðB-BÞ þ#ðO-OÞ þ#ðAB-ABÞÞ
þ #ðAB-OÞ
þ min ð#ðA-BÞ �#ðB-AÞÞ; ð#ðB-OÞ þ#ðAB-AÞÞf g

And to summarize, the marginal effect of availability of 2&3-way kidney exchanges over

two-way exchanges is:

#ðA-AÞ þ#ðB-BÞ þ#ðO-OÞ þ#ðAB-ABÞ

� 2
#ðA-AÞ

2

" #
þ #ðB-BÞ

2

" #
þ #ðO-OÞ

2

" #
þ #ðAB-ABÞ

2

" # !

þ #ðAB-OÞ
þ min ð#ðA-BÞ �#ðB-AÞÞ; ð#ðB-OÞ þ#ðAB-AÞÞf g

What about the marginal effect of 2&3&4-way exchanges over 2&3-way exchanges?

It turns out that there is only a slight improvement in the maximal matching size with

the possibility of four-way exchanges. We illustrate this using the above example:
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Example 5 (Example 4 Continued) If four-way exchanges are also feasible, instead of the

exchange (AB-O; O-A, A-AB) we can now conduct a four-way exchange (AB-O, O-A, A-B,

B-AB). Here, the valuable AB-O type pair helps an additional A-B type pair in excess in addi-

tion to two pairs with less desirable blood-type donors than their patients.

Proposition 4 (Roth, Sönmez, and Ünver 2007) The Maximal Size of

2&3&4-Way Matchings: For any patient population in which Assumptions 1-4 hold, the max-

imum number of patients who can be matched with two-way, three-way, and four-way exchanges is:

2 ð#ðA-OÞ þ#ðB-OÞ þ#ðAB-OÞ þ#ðAB-AÞ þ#ðAB-BÞÞ
þ ð#ðA-BÞ þ#ðB-AÞ � j#ðA-BÞ �#ðB-AÞjÞ
þ ð#ðA-AÞ þ#ðB-BÞ þ#ðO-OÞ þ#ðAB-ABÞÞ
þ#ðAB-OÞ
þmin ð#ðA-BÞ �#ðB-AÞÞ; ð#ðB-OÞ þ#ðAB-AÞ þ#ðAB-OÞÞf g

Therefore, in the absence of tissue-type incompatibilities between patients and other patients’

donors, the marginal effect of four-way kidney exchanges is bounded from above by the rate of the

very rare AB-O type.

It turns out that under the assumptions above, larger exchanges do not help to

match more patients. This is stated as follows:

Theorem 17 (Roth, Sönmez, and Ünver 2007) Availability of Four-Way

Exchange Suffices: Consider a patient population for which Assumptions 1, 2, 4 hold and let

m be any maximal matching (when there is no restriction on the size of the exchanges). Then there

exists a maximal matching n that consists only of two-way, three-way, and four-way exchanges,

under which the same set of patients benefits from exchange as in matching m.
In fact, Roth, Sönmez, and Ünver proved a more general theorem, which states

that as long as there are n object types (e.g., for kidneys, 4 blood-types) and compati-

bility is determined by a partial order (i.e., a transitive, reflexive, anti-symmetric binary

relation, e.g., blood-type compatibility is a partial order with “O” at the highest level,

“A” and “B” incomparable with each other at the next level, and “AB” at the bottom

level of compatibility), if Assumptions 2 and 4 hold, and m is any maximal matching,

then there exists a maximal matching n which consists only of 2&3&. . .&n-way
exchanges, in which the same agents are matched as in m.

The strategic properties of multi-way kidney exchange mechanisms are inspected

by Hatfield (2005) in the 0-1 preference domain. This result is a generalization of

Theorem 13.

A deterministic kidney exchange mechanism is consistent� if whenever it

only selects a multi-way matching in set X 	 M as its outcome, where all matchings

in X generate the same utility profile when the set of feasible individually rational

matchings is M, then for any other problem for the same set of pairs such that

the set of feasible individually rational matchings is N 
 M with X \N 6¼ �,
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it selects a multi-way matching in set X \N .7,8 The last result of this section is

as follows:

Theorem 18 (Hatfield 2005): If a deterministic mechanism is nonbossy and strategy-

proof then it is consistent�. Moreover, a consistent� mechanism is strategy-proof.9

Thus, it is trivial to create strategy-proof mechanisms using maximal-priority or prior-

ity multi-way exchange rules. By maximal-priority mechanisms, we mean mechanisms

that maximize the number of patients matched (under an exchange restriction such as

2, 3, 4, etc., or no exchange size restriction) and then use a priority criterion to select

among such matchings.

3.7 Recent developments and related literature
In closing of this section, we would like to note that New England Program for

Kidney Exchange (NEPKE)10 is using a priority-based mechanism that incorporates

2&3&4-way paired exchanges, list exchanges, and nondirected altruistic donor

exchanges (similar to the list exchanges, instead of the pair initiating a list exchange,

an altruistic donor is used, e.g., see Sönmez and Ünver, 2006 and Roth, Sönmez,

Ünver, Delmonico, and Saidman, 2006; also see Roth, Sönmez, and Ünver, 2005b).

The Alliance for Paired Donation (APD)11 is another kidney exchange program that

has been established with the help of economists. This program is larger than its

New England counterpart in number of transplant centers participating. In 2007,

remarkably most of the kidney exchanges conducted in NEPKE and APD were chain

exchanges initiated by a nondirected altruistic donor.

At the time of the preparation of this survey, the United Network for Organ

Sharing (UNOS), the contractor for the federal Organ Procurement and Transplant

Network (OPTN) that is in charge of the allocation of deceased donor kidneys in

the US, has been designing the national kidney exchange program in collaboration

with medical doctors, economists, and computer scientists.

Finding maximal multi-way matchings with a size limit is an NP-complete problem

unlike its counterpart for two-way exchanges. Especially in large patient pools this may cre-

ate a computational handicap. In the computer science literature, Abraham, Blum, and

Sandholm (2007) introduced an integer-programming algorithm that can compute the

maximal multi-way exchanges with size-limit in a fast fashion exploiting the special

structure of the multi-way kidney exchange problem. They use the Roth, Sönmez,

and Ünver (2007) formulation of the multi-way exchange problem in their algorithm.
7 Recall that a kidney exchange mechanism may select many matchings that are utilitywise equivalent in the 0-1

preference domain. A two-way priority mechanism is an example.
8 We use the � superscript to distinguish this new property from the consistency property we introduced in the house

allocation problem.
9 When there are possible indifferences in preferences, nonbossiness and strategy-proofness together are not necessarily

equivalent to coalitional strategy-proofness.
10 See http://www.nepke.org retrieved on 10/16/2008.
11 See http://www.paireddonation.org retrieved on 10/16/2008.

http://www.nepke.org
http://www.nepke.org
http://www.paireddonation.org
http://www.paireddonation.org
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Ünver (2010) considered a dynamic exchange problemwhere pairs arrive at the pool under

a stochastic Poisson process. He finds optimal dynamic matching in this framework and

shows that it may always not be optimal to conduct the largest exchange currently possible.

Yilmaz (2008) found an egalitarian mechanism that allows multi-way list and paired

exchanges under compatibility-based preferences.

Zenios (2002) studied the optimal control of a paired and list exchange program.

In addition to the simulations reported in Roth, Sönmez, and Ünver (2004, 2005b,

and 2007), in the medical literature starting with Segev et al. (2005), who simulated

possible gains in the US population using Edmonds’ (1965) algorithm from weight-

maximal two-way exchanges, several papers reported Monte-Carlo simulations

estimating possible gains from various ideas in kidney exchange.

In the algorithmic design literature, there are theoretically related studies to the

kidney exchange problem such as Abraham et al. (2005), Cechlárová, Fleiner, and

Manlove (2005), Biró and Cechlárová (2007), Irving (2007), and Biró and McDermid

(2008). These studies study computational complexity of different proposed solutions

to the house allocution and kidney exchange problems.

4. SCHOOL ADMISSIONS

4.1 College admissions
In Gale and Shapley’s (1962) seminal model, there exist two sides of agents referred to

as colleges and students. Each student would like to attend a college and has preferences

over colleges and the option of remaining unmatched. Each college would like to

recruit a maximum number of students determined by their exogenously given capac-

ity. They have preferences over individual students, which translate into preferences

over groups of students under a responsiveness (Roth 1985) assumption. More specifi-

cally, a college admissions problem consists of:

• a finite set of students I,

• a finite set of schools S,

• a quota vector q ¼ (qs)s2S such that qs 2 Zþþ is the quota of school s,

• a preference profile for students �I ¼ ð�iÞi2I such that �i is a strict preference

relation over schools and remaining unmatched, denoting the strict preference rela-

tion of student i, and

• a preference profile for schools over individual students �S ¼ ð�sÞs2S such

that �s is a strict preference relation over students and remaining unmatched, such

that when such a relation is extended over groups of students it satisfies the follow-

ing two restrictions known as responsiveness (Roth 1985):1
1 B
– whenever i, j 2 I and J 	 In{i, j}, i [ J �s j [ J if and only if i �s j,

– whenever i 2 I and J 	 Ini; i [ J �s J if and only if i �s�, which denotes the

remaining unmatched option for a school (and for a student).
y an abuse of notation, we will denote a singleton without {}.
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Amatching is the outcome of a problem, and is defined by a functionm : I[ S! 2S[ 2I

such that for each student i 2 I, m(i ) 2 2S with jm(i )j � 1, for each school s, m(s) 2 2I with

jm(s)j � qs, andm(i )¼ s if and only if i2 m(s). A (deterministic direct)mechanism selects a

matching for each problem.

The central solution concept in the literature is stability (Gale and Shapley 1962).

A matching m is stable if

• each match is individually rational, i.e., there is no blocking agent x and a

partner y 2 m(x) such that mðxÞny �xmðxÞ, that is, no agent would rather not

be matched with one of her mates under m (if x is a student, then she prefers

remaining unmatched to her mate), and

• there is no blocking pair (i, s) 2 I � S such that
– s �i mðiÞ, and
– i [ ðmðsÞnxÞ �i mðsÞ for some x 2 m(s) or jm(s)j < qs and mðsÞ [ i �s mðsÞ,
that is, there exists no student-school pair who would prefer to be matched with

each other rather than at most one of their current mates under m.

Gale and Shapley prove that for each market there exists a stable matching that can

be found through the school-proposing or student-proposing versions of the

deferred acceptance (DA) algorithm. We state these algorithms below:

Algorithm 8 The school-proposing DA algorithm:

Step 1: Each school s proposes to its top choice qs students (if it has fewer individually rational

choices than qs, then it proposes to all its individually rational students). Each student rejects any

individually irrational proposals and, if more than one individually rational proposal is received,

“holds” the most preferred.
..
.

Step k: Any school s that was rejected in the previous step by ‘ students makes a new pro-

posal to its most preferred ‘ students who haven’t yet rejected it (if there are fewer than ‘ individ-
ually rational students, it proposes to all of them). Each student “holds” her most preferred

individually rational offer to date and rejects the rest.

The algorithm terminates after a step where no rejections are made by matching each student to

the school (if any) whose proposal she is “holding.”

Algorithm 9 The student-proposing DA algorithm:

Step 1: Each student proposes to her top-choice individually rational school (if she has one).

Each school s rejects any individually irrational proposals and, if more than qs individually ratio-

nal proposals are received, “holds” the most preferred qs of them and rejects the rest.
..
.

Step k: Any student who was rejected in the previous step makes a new proposal to her most

preferred individually rational school that hasn’t yet rejected her (if there is one). Each school

s “holds” at most qs best student proposals to date, and rejects the rest.

The algorithm terminates after a step where no rejections are made by matching each school to

the students (if any) whose proposals it is “holding.”
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These algorithms have desirable properties:

Theorem 19 (Gale and Shapley 1962) The student- and school-proposing DA

algorithm each converge to a stable matching in a finite number of steps.

Moreover, these algorithms can be used to determine the outcomes of important

stable mechanisms:

Theorem 20 (Gale and Shapley 1962) The outcome of the student-proposing DA

algorithm is at least as good as any other stable matching for all students. The outcome of

the school-proposing DA algorithm is at least as good as any other stable matching for

all schools.

We will refer to the mechanism whose outcome is reached by the student-

proposing DA algorithm as the student-optimal stable mechanism and the mecha-

nism whose outcome is reached by the school-proposing DA algorithm as the

school-optimal stable mechanism.2

Stability implies Pareto efficiency. However, it imposes many restrictions on

mechanisms:

Theorem 21 (Roth 1982b) There is no stable and strategy-proof college admissions

mechanism.

Yet, a partially positive result exists:

Theorem 22 (Dubins and Freedman 1981, Roth 1982b) It is a weakly dominant strat-

egy for students to tell the truth under the student-optimal stable mechanism.

However, we have a negative result for schools’ incentives under stable

mechanisms:

Theorem 23 (Roth 1985) There exists no stable mechanism that makes it a dominant

strategy for each school to state its preferences over the students truthfully.

While these results are true in the college admissions setting, the hospital-intern

entry-level labor markets in the US can be modeled using the same framework. In

the US, the National Residency Matching Program (NRMP) oversees this matching

procedure. Roth (1984) showed that the previous NRMP mechanism that was in

use from 1950s to 1997 was equivalent to the school-optimal stable mechanism. Roth

(1991) observed that several matching mechanisms that have been used in Britain for

hospital-intern matching were unstable and as a result were abandoned, while stable

mechanisms survived. This key observation helped to pin down stability as a key prop-

erty of matching mechanisms in the college admissions framework. Roth and Peranson

(1999) introduced a new design for the NRMP matching mechanism based on the

student-optimal stable mechanism. Interestingly, the replacement of the older stable
2 See Roth and Sotomayor (1990) for other properties of stable matchings, such as the lattice property, conflict of

interest, and parallels between the model in which a school can also be matched with a single student (also known as

the one-to-one matching market or marriage market) and the college admissions model.
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mechanism with the newer mechanism was partially attributed to the positive and

negative results in Theorems 22 and 23, respectively.
4.1.1 Differences between college admissions, student placement,
and school choice problems
Although Gale and Shapley named their model as the college admissions problem, not

all college admission procedures can be studied within this framework. For example,

US college admissions are usually decentralized. However, there are countries, such

as Turkey, Greece, and China, where the process of college admissions is centralized.

In such countries, colleges are not strategic agents unlike in the college admissions

model, while students potentially are. School seats are objects to be consumed, and

there are priority orderings for each school over students based on their exam scores.

We will refer to such a problem as a student placement problem (Balinski and Sönmez

1999). In the US, K-12 public school admissions are centralized in many states. More-

over, there is relative freedom of school choice freedom, i.e., students do not have to

attend the neighborhood school, but have the chance to attend a different school. In

such a problem, schools seats are objects to be consumed, and students are potential

strategic agents. Priorities that order students for each school are exogenously deter-

mined by geography and demographics. We will refer to such a problem as a school

choice problem (Abdulkadiroglu and Sönmez 2003a). We explore these models and

real-life mechanisms below.
4.2 Student placement
A student placement problem consists of:

• a finite set of students I,

• a finite set of schools S,

• a qauota vector q ¼ (qs)s2S such that qs 2 Zþþ is the quota of school s,

• a preference profile for students �I ¼ ð�iÞi2I such that �i is a strict preference

relation over schools and remaining unmatched option, denoting the strict prefer-

ence relation of student i,

• a finite set of categories for schools C,

• an exam score profile for students e ¼ (ei)i2I such that for any i 2 I and

ei ¼ ðeicÞc2C where for each category c 2 C, eic 2 Rþ is the exam score of student

i in this category and there are no other students j 2 In{i} such that eic ¼ ejc, and

• a type function mapping each school to a category type, t : S ! C.

Throughout this subsection we fix I, S, C, and t. Thus a placement problem is

denoted through a triple ð�I ; q; eÞ.
Each school s admits students according to the exam scores of students in

category t (s).
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For each student placement problem, we can construct an associated college

admissions problem by assigning each school s a preference relation �s based on

the ranking in its category t(s).

We will define a matching and mechanism in this domain together with a new

concept.

A matching is a function m : I ! S [ �f g such that no school is assigned to more

students than its capacity. When m(i) ¼ �, we say that student i is unmatched or matched

to no school option.

A tentative student placement is a correspondence m : I ) S [ �f g such that

no school is assigned to more students than its capacity. Observe that a tentative student

placement allows a student to be assigned to more than one school.

Amechanism is a function that assigns amatching for each student placement problem.

Next, we will define desirable properties of student placement mechanisms.

A matching m eliminates justified envy if, whenever a student i prefers

another student j’s assignment m( j ) to her own, she ranks worse than j in the category

of school m( j ).
A matching m is non-wasteful if, whenever a student i prefers a school s to her

own, there is no empty slot at school s under m.
We introduced these new concepts to relate elimination of justified envy, nonwasteful-

ness, and individual rationality to stability in the college admissions model as follows:

Proposition 5 (Balinski and Sönmez 1999) A school placement matching eliminates

justified envy and is non-wasteful and individually rational if and only if the matching is

stable in the associated college admissions problem. That is, there is an isomorphism with stable

college admissions.

Elimination of justified envy is a critical property in the context of Turkish college

admissions. In Turkey, colleges have schools in different areas such as medicine, engi-

neering, humanities, social sciences, and management. The score categories for these

schools are typically different from each other. Medical schools usually admit based

on a science-weighted score, engineering schools use a math-weighted score, manage-

ment schools use an equal-language-math-weighted score, and many social sciences

and humanities use a social-science-weighted score. Elimination of justified envy is

used as the basic notion of fairness in Turkish placement system.

A mechanism eliminates justified envy (or is nonwasteful) if it always selects a

matching that eliminates justified envy (is nonwasteful).

4.2.1 Simple case: one skill category
If there is a single category, then the following proposition follows:

Proposition 6 (Balinski and Sönmez 1999) If there is only one category (and hence only

one ranking) then there is only one mechanism that is Pareto-efficient and eliminates justified

envy: The simple serial dictatorship induced by this ranking.
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It is also useful to observe that there is a unique stable matching in the associated col-

lege admissions model that coincides with the outcome of the above serial dictatorship.

An example from Turkey is again useful in this context. There exist merit-based

Turkish high schools that admit their students using the results of a centralized exam. This

exam has a single score and category. It turns out that the mechanism used in Turkey,

developed independently by computer programmers, is the induced serial-dictatorship.

4.2.2 Current mechanism in Turkish college student placement:
multi-category serial dictatorship
Currently, the Turkish centralized mechanism uses the following iterative algorithm:

Algorithm 10 The multicategory serial dictatorship:

Step 1:

• For each category c: Consider the ranking induced by the exam scores in this category and

assign the school seats in this category to students with the induced simple serial dictatorship.

• Assign the “no school” option to all students who are not assigned a school.

• This in general leads to a tentative student placement.

• For each student i construct �1
i from �i as follows:
– If the student is not assigned more than one school then �1
i ¼�1

i .

– If the student is assigned more than one school then obtain �1
i by moving the “no

school” option � right after the best of these assignments, otherwise keeping the ranking

of the schools the same.
Let �1 ¼ ð�1
i Þi2I be the list of adjusted preferences.

..

.

Step k: Construct �k from �k�1 as it is described in Step 1.

The procedure terminates at the step in which no student is assigned more than one school.

The multicategory serial dictatorship selects this matching.

We give an example to show how this algorithm works.

Example 6 I ¼ i1; i2; i3; i4; i5f g, S ¼ s1; s2; s3f g, q ¼ ðqs1 ; qs2 ; qs3Þ ¼ ð2; 1; 1Þ,
C ¼ c1; c2f g; tðs1Þ ¼ c1, tðs2Þ ¼ tðs3Þ ¼ c2, with preference profile � and exam score profile

e given as:

i1 : s2 � s1 �� ei1 ¼ ð9; 9Þ
i2 : s1 � s2 � s3 �� ei2 ¼ ð8; 6Þ
i3 : s1 � s3 � s2 �� ei3 ¼ ð7; 7Þ

i4 : s1 � s2 �� ei4 ¼ ð6; 8Þ
i5 : s2 � s3 � s1 �� ei5 ¼ ð5; 5Þ

Note that these scores induce the following rankings in categories c1 and c2:

c1 : i1 i2 i3 i4 i5
c2 : i1 i4 i3 i2 i5



827Matching, Allocation, and Exchange of Discrete Resources
Step 1: In Step 1 we first find the serial dictatorship outcomes for �:

c1 :
i1 i2

s1 s1
c2 :

i1 i4 i3

s2 � s3

Step 1 yields the following tentative student placement:

n1 ¼ i1 i2 i3 i4 i5
s1; s2 s1 s3 � �

� �
Since student i1 is assigned two schools her preferences are truncated:

i1 : s2 ��

For other students: �1
i2
¼ �i2 ; �1

i3
¼ �i3 ; �1

i4
¼ �i4 , and �1

i5
¼ �i5 .

Step 2: In Step 2 we first find the serial dictatorship outcomes for �1:

c1 :
i1 i2 i3

� s1 s1
c2 :

i1 i4 i3

s2 � s3

Step 2 yields the following tentative student placement:

n2 ¼ i1 i2 i3 i4 i5
s2 s1 s1; s3 � �

� �
:

Since student i3 is assigned two schools her preferences are truncated:

i3 : s1 ��

For other students: �2
i1
¼�1

i1
; �2

i2
¼�1

i2
; �2

i4
¼�1

i4
, and �2

i5
¼�1

i5
.

Step 3: In Step 3 we first find the serial dictatorship outcomes for �2:

c1 :
i1 i2 i3

� s1 s1
c2 :

i1 i4 i3 i2

s2 � � s3

Step 3 yields the following tentative student placement:
n3 ¼ i1 i2 i3 i4 i5
s2 s1; s3 s1 � �

� �
Since student i2 is assigned two schools her preferences are truncated:

i2 : s1 ��

For other students: �3
i1
¼�2

i1
; �3

i3
¼�2

i3
; �3

i4
¼�2

i4
, and �3

i5
¼�2

i5
.

Step 4: In Step 4 we first find the serial dictatorship outcomes for �3.

c1 :
i1 i2 i3
� s1 s1

c2 :
i1 i4 i3 i2 i5
s2 � � � s3
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Step 4 yields the following tentative student placement (which is also a matching):

n4 ¼ i1 i2 i3 i4 i5
s2 s1 s1 � s3

� �
Since no student is assigned more than one school in n4 the algorithm terminates and

’msdð�I ; e; qÞ ¼ n4.

4.2.3 Mechanisms via the associated college admissions problem
We can introduce two desirable mechanisms using the isomorphism between the

student placement and school admissions models:

• The Gale-Shapley school-optimal stable mechanism: The mechanism that

selects the school-optimal stable matching of the associated college admissions

problem for each student placement problem.

• The Gale-Shapley student-optimal stable mechanism: The mechanism that

selects the student-optimal stable matching of the associated college admissions

problem for each student placement problem.

The following theorem proves the relationship between the Gale-Shapley

mechanisms and the multicategory serial dictatorship.

Theorem 24 (Balinski and Sönmez 1999) The multicategory serial dictatorship

is equivalent to the Gale-Shapley school-optimal stable mechanism.

Next, we comment on the properties of this mechanism:

4.2.4 Pareto efficiency and elimination of justified envy
Although all stable mechanisms (including Gale and Shapley’s) are Pareto-efficient in

the college admissions model, in the student placement model, this is no longer true.

The reason can be summarized as follows: Since schools are no longer agents in the lat-

ter model, we are no longer interested in their welfare. Moreover, unstable matchings

can raise the welfare of students over the student-optimal stable matching in the college

admissions model. These two results together imply that the outcome of any stable

mechanism can be Pareto-inefficient in the student placement model:

Example 7There are three students i1, i2, i3 and three schools s1, s2, s3, each of which has only

one seat and admit according to the following two categories c1 and c2 as t(s1)¼ c1, t(s2)¼ c2, and t

(s3) ¼ c3. The preferences and exam scores are as follows:

i1 : s2 � s1 � s3 �� ei1 ¼ ð10; 7Þ
i2 : s1 � s2 � s3 �� ei2 ¼ ð8; 8Þ
i3 : s1 � s2 � s3 �� ei3 ¼ ð9; 3Þ

These exam scores induce the following ranking for categories:

c1 : i1 � i3 � i2
c2 : i2 � i1 � i3



829Matching, Allocation, and Exchange of Discrete Resources
Only m eliminates justified envy but it is Pareto-dominated by n:

m ¼ i1 i2 i3
s1 s2 s3

� �
n ¼ i1 i2 i3

s2 s1 s3

� �
However, the multicategory serial dictatorship mechanism is not even Pareto-

efficient within the set of mechanisms that eliminate justified envy.

Example 8 Let I ¼ {i1, i2} S ¼ {s1, s2} q ¼ (1,1) C ¼ {c1, c2}, t(s1) ¼ c1, t(s2) ¼ c2.

The preferences of students are given as follows:

i1 : s1 � s2 �� ei1 ¼ ð6; 8Þ
i2 : s2 � s1 �� ei2 ¼ ð8; 6Þ

The algorithm terminates in one step resulting in the following Pareto-inefficient matching:

’msd½�I ; e; q� ¼ i1 i2
s2 s1

� �
It is Pareto-dominated by the following matching that eliminates justified envy:

m ¼ i1 i2
s1 s2

� �
:

On the other hand, we can adopt Theorem 20 (due to Gale and Shapley) in the school

placement domain for the Gale-Shapley student-optimal stable mechanism as follows:

Theorem 25 (Gale and Shapley 1962) The Gale-Shapley student-optimal stable

mechanism Pareto-dominates any other mechanism that eliminates justified envy.

4.2.5 Strategy-proofness and elimination of justified envy
On the other hand, strategy-proofness is no longer at odds with the elimination of

justified envy, yet the multicategory serial dictatorship is not strategy-proof:

Example 9 (Example 8 continued) Recall that

’msd½�I ; e; q� ¼ i1 i2
s2 s1

� �
Now suppose i1 announces a fake preference relation�0

i1
where only s1 is individually rational.

In this case

’msd½�0 ;�i ; e; q� ¼ i1 i2
� �
i1 2 s1 s2

and hence, student i1 successfully manipulates the multicategory serial dictatorship.

A mechanism is strategy-proof if truth telling is a weakly dominant strategy for

each student in its associated preference revelation game. We can adopt Theorem 22

for the student placement model:

Theorem 26 (Dubins and Freedman 1981, Roth 1982b): The Gale-Shapley

student-optimal stable mechanism is strategy-proof.
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The following theorem shows that there is no other desirable mechanism:

Theorem 27 (Alcalde and Barbera 1994): The Gale-Shapley student-optimal stable

mechanism is the only mechanism that eliminates justified envy, and is individually

rational, nonwasteful, and strategy-proof.

4.2.6 Respecting improvements
Example 10 (Example 8 continued) Recall that

fmsd½�I ; e; q� ¼ i1 i2
s2 s1

� �
:

Now suppose student i1 scores worse in both tests and her new exam scores are e0i1 ¼ ð5; 5Þ.
In this case

fmsd½�I ; e
i1 ; ei2 ; q� ¼ i1 i2

s1 s2

� �
:

and student i1 is rewarded by getting her top choice as a result of worse performance!

Note the example is about rewarding worse performance, not respecting better

performance. We define this as a property: A mechanism respects improvements

if a student never receives a worse assignment as a result of an increase in one or more

of her exam scores. The following theorems give another characterization of the Gale-

Shapley student-optimal stable mechanism:

Theorem 28 (Balinski and Sönmez 1999): The Gale-Shapley student-optimal

stable mechanism respects improvements.

Theorem 29 (Balinski and Sönmez 1999): The Gale-Shapley student-optimal

stable mechanism is the only mechanism that is individually rational and nonwasteful,

and that eliminates justified envy and respects improvements.

Thus, the Gale-Shapley student-optimal stable mechanism is the clear winner for

student placement, while the Turkish student placement system uses a mechanism

that is equivalent to the Gale-Shapley school-optimal stable mechanism.3
4.3 School choice
Next, we discuss the third model in this section: A school choice problem (Abdulkadiroğlu

and Sönmez 2003a) models the school choice in public schools in many school districts

in the US, such as Boston, St. Petersburg (Florida), Minneapolis, etc. It consists of a

number of students, each of whom should be assigned a seat at one of a number of

schools. Each school has a maximum capacity but there is no shortage of the total seats.
3 See Ehlers and Klaus (2006) and Kojima and Manea (2007b) for two other characterizations regarding the Gale-

Shapley student-optimal stable mechanism in resource allocation problems.
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Each student has preferences over all schools and each school has a priority ordering of

all students. The priorities are exogenous.

Formally, a school choice problem consists of

• a finite set of students I,

• a finite set of schools S,

• a quota vector q ¼ (qs)s2S such that qs 2 Zþþ is the quota of school s,

• a preference profile for students �I ¼ ð�iÞi2I such that �i is a strict preference

relation over schools and remaining unmatched, denoting the strict preference rela-

tion of student i,

• a priority profile for schools ≿S ¼ ð≿sÞs2S such that for each school s 2 S;≿s is

a binary relation over the set of students that is complete, reflexive, and transitive.

That is, i ≿s j means that student i has at least as high priority as student j at school

s. Two distinct students i and j can have the same priority at school s, which is

denoted as i �s j (i.e., �s is the cyclic part of ≿s). If i has higher priority than j at

s, we denote it as i �s j (i.e., �s is the antisymmetric part of ≿s).

This problem has a number of differences from the college admissions problem and

the student placement problem:

• Differences from college admissions:

– Students are (possibly strategic) agents; school seats are objects to be consumed.

– Elimination of justified envy is plausible but not a must. If imposed, then the

school choice problem is isomorphic to stable college admissions.

• Differences from student placement:

– Priorities are exogenous, and

– Elimination of justified envy is plausible but not a must.
4.3.1 The Boston school choice mechanism
The most commonly used school choice mechanism is that used by the Boston Public

Schools (BPS) until 2005:

Algorithm 11 The Boston (school choice) mechanism:

1. For each school a priority ordering is exogenously determined. (In case of Boston, priorities

depend on home address, whether the student has a sibling already attending a school, and

a lottery number to break ties.)

2. Each student submits a preference ranking of the schools.

3. The final phase is the student assignment based on preferences and priorities:

Step 1: In Step 1 only the top choices of the students are considered. For each school, consider

the students who have listed it as their top choice and assign seats of the school to these students

one at a time following their priority order until either there are no seats left or there is no student

left who has listed it as her top choice.
..
.
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Step k: Consider the remaining students. In Step k only the kth choices of these students are

considered. For each school still with available seats, consider the students who have listed it as their

kth choice and assign the remaining seats to these students one at a time following their priority order

until either there are no seats left or there is no student left who has listed it as her kth choice.

4.3.2 Incentives, Pareto efficiency, and justified-envy-freeness with
strict and weak priorities
The major difficulty with the Boston mechanism is that it is not strategy-proof.

Moreover, it is almost straightforward to manipulate it. Even if a student has a very

high priority at school s, unless she lists it as her top choice she loses her priority to

students who have top ranked school s. Hence, the Boston mechanism gives parents

strong incentives to overrank schools where they have high priority.

There is also some evidence in the popular media regarding the ease of manipula-

tion of this mechanism. Consider the following quotation from the St. Petersburg

Times (09/14/2003):

“Make a realistic, informed selection on the school you list as your first choice. It’s the

cleanest shot you will get at a school, but if you aim too high youmight miss. Here’s why:

If the random computer selection rejects your first choice, your chances of getting your

second choice school are greatly diminished. That’s because you then fall in line behind

everyone who wanted your second choice school as their first choice. You can fall even

farther back in line as you get bumped down to your third, fourth and fifth choices.”

Further evidence comes from the 2004–2005 BPS School Guide:

“For a better choice of your “first choice” school . . . consider choosing less popular
schools.”

The Boston mechanism does not eliminate justified envy, either. Priorities are lost

unless the school is ranked as the top choice. In the previous section, we argued that if elimi-

nation of justified envy is plausible, then the Gale-Shapley student-optimal stable mechanism

is the big winner! However, unlike in the student placement problem, in which ties in stu-

dent exam scores are rare, there are possibly many students who have the same priority in

the school choice problem. For example, in Boston, all students who live in the walking

zone of a school and have no siblings attending the school have the same priority. Thus,

the student-proposingDA algorithm can be used after breaking the tie among equal priority

students through a single even lottery. This lottery preserves the strategy-proofness and

justified-envy-freeness of the Gale-Shapley mechanism.

The following theorem is about the Nash equilibria of the Boston Mechanism

revelation game:

Theorem 30 (Ergin and Sönmez 2006): When priorities are strict, the set of Nash

equilibrium outcomes of the preference revelation game induced by the Boston mechanism is

equal to the set of stable matchings of the associated college admissions game under true

preferences.
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Thus, we can state the following corollary regarding the Boston mechanism and the

Gale-Shapley student-optimal stable mechanism:

Corollary 1 When priorities are strict, the dominant-strategy equilibrium outcome of the

Gale-Shapley student-optimal stable mechanism either Pareto-dominates or is equal to

the Nash equilibrium outcomes of the Boston mechanism.

The preference revelation game induced by the Boston mechanism is a “coordina-

tion game” among large numbers of parents in which there is incomplete information.

So it is unrealistic to expect to reach a Nash equilibrium in practice.

On the other hand, if there is a limit to the number of schools that a student can

reveal to the centralized match (as in Boston and New York City), then Corollary 1

no longer holds, while Theorem 30 still holds:

Theorem 31 (Haeringer and Klijn 2007) When priorities are strict and students can

reveal only a limited number of schools in their preference lists, the Gale-Shapley student-

optimal stable mechanism may have Nash equilibria in undominated strategies that induce

justified envy.

Haeringer and Klijn (2007) also found the sufficient conditions when equilibria of

the above game eliminate justified envy.

On the other hand, the following nice property of the Gale-Shapley mechanism relates

its efficiency properties to any other strategy-proof and Pareto-efficient mechanism:

Theorem 32 (Kesten 2010) When priorities are strict, the Gale-Shapley student-

optimal stable mechanism is not Pareto-dominated by any other Pareto-efficient mechanism

that is strategy-proof.

When a school has the same priority for two or more students, some results under

strict priorities extend, while some don’t.

Under weak priorities, there can be many student-optimal justified-envy-free

matchings, matchings that are not Pareto-dominated by any other justified-envy-free

matching and Pareto-dominate any justified-envy-free matching that is not student opti-

mal. Recall that when priorities are strict, there is a unique such matching (see Theorem

25). The above mechanism also has desirable properties for recovering such matchings:

Theorem 33 (Ehlers 2006, Erdil and Ergin 2008) When priorities are weak, all stu-

dent-optimal justified-envy-free matchings can be found by different tie-breaking rules among

equal priority students using the student-proposing DA algorithm.

This above result is a generalization of an earlier result of Abdulkadiroğlu and

Sönmez (1998) who showed that when all students have the same priority, all

Pareto-efficient matchings can be achieved through different serial dictatorships.

The following is a stronger generalization of the earlier result of Kesten (2010)

(Theorem 32) for weak priorities:

Theorem 34 (Abdulkadiroğlu, Pathak, and Roth 2009) When priorities are weak, the

Gale-Shapley student-optimal stable mechanism with any tie breaking rule is not Pareto-

dominated by any other mechanism that is strategy-proof.
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On the other hand, the Gale-Shapley student-optimal stable mechanism is not

Pareto-efficient. As we discussed in the previous section, there is an efficiency cost

to the elimination of justified envy. We restate a version of Example 7 below. Observe

that this result does need strict priorities among at least three students to hold:

Example 11 There are three students i1, i2, i3 and three schools s1, s2, s3, each of which has

only one seat. Priorities and preferences are as follows:

s1 : i1 � i3 � i2 i1 : s2 � s1 � s3
s2 : i2 � i1 � i3 i2 : s1 � s2 � s3
s3 : i2 � i1 � i3 i3 : s1 � s2 � s3

Only m eliminates justified envy but it is Pareto-dominated by n:

m ¼ i1 i2 i3
s1 s2 s3

� �
n ¼ i1 i2 i3

s2 s1 s3

� �
Actually, the efficiency cost of justified envy is much more severe with weak prio-

rities. The following result can be contrasted with Theorems 25 and 26, which show

that the Gale-Shapley student-optimal stable mechanism is strategy-proof and Pareto-

dominant among mechanisms that eliminate justified envy when priorities are strict:

Theorem 35 (Erdil and Ergin 2008) When priorities are weak, there is no mechanism

that is constrained Pareto-efficient (within the justified-envy-free class) among (lottery)

mechanisms that eliminate justified envy and are (weakly) strategy-proof.4,5

To summarize, with weak priorities, the above results show the tension between

strategy-proofness and constrained efficiency for justified-envy-free mechanisms. The

Gale-Shapley student-optimal stable mechanism (with a tie-breaking rule that makes

it strategy-proof, such as a single tie-breaking lottery) is strategy-proof and Pareto-

undominated by other strategy-proof mechanisms. Yet, there exist justified-envy-free

and nonstrategy-proof mechanisms that Pareto-dominate this mechanism. An example

of a constrained efficient and justified-envy-free mechanism is given by Erdil and Ergin

(2008). This mechanism is nonstrategy-proof.

4.3.3 The school choice TTC mechanism
Given these negative results, one can argue that Pareto efficiency is a more important

property than elimination of justified envy. School boards can interpret priorities as

trading rights to a particular school. In this case, a version of the TTC mechanism

becomes very plausible. Abdulkadiroğlu and Sönmez (2003a) introduced a mechanism

whose outcome can be determined by the following algorithm:

Algorithm 12 The school choice TTC algorithm:
4 “Weak” strategy-proofness is defined for lottery mechanisms, and requires existence of at least one von Neumann-

Morgenstern utility function compatible with preferences, under which truth telling is a dominant strategy.
5 Yilmaz (2010) obtained a similar impossibility result for the house allocation with existing tenant’s domain.
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• Break the ties among equal priority students of each school through a single even

lottery.

• Assign a counter for each school that keeps track of how many seats are still available at the

school. Initially set the counters equal to the capacities of the schools.

• Each student “points to” her favorite school. Each school points to the student who has the

highest priority.

• There is at least one cycle (by Lemma 2). Every student in a cycle is assigned a seat at the

school she points to and is removed. The counter of each school in a cycle is reduced by one

and if it reduces to zero, the school is also removed. Counters of all other schools stay put.

• Repeat above steps for the remaining “economy.”

TTC simply trades priorities of students among themselves starting with the stu-

dents with highest priorities. TTC inherits the plausible properties of Gale’s TTC:

Theorem 36 (Abdulkadiroğlu and Sönmez 2003a) The school choice TTC mech-

anism is Pareto-efficient and strategy-proof.

Chen and Sönmez (2006) conducted an experimental study and found that the

Gale-Shapley mechanism outperforms TTC and the Boston mechanism in terms of

truthful revelation of preferences and overall efficiency. They related this result to

the fact that TTC has a tedious algorithmic description with respect to the Gale-

Shapley mechanism; thus students understood the second algorithm, better than the

first one, under which they tried to manipulate their preferences. On the other hand,

Pais and Pintér (2008) showed that when the same games are played in an incomplete

information setting then TTC resulted with more efficiency than the Gale-Shapley

mechanism and the Boston mechanism.

4.4 Recent developments and related literature
In New York City (Abdulkadiroğlu, Pathak, and Roth 2005), the Gale-Shapley

student-optimal stable mechanism was adopted in Fall 2003. The New York City

school choice problem is a hybrid between college admissions and school choice, since

there are some strategic schools. In Boston (Abdulkadiroğlu, Pathak, Roth, and

Sönmez 2005, 2006), though TTC had a head start, the Gale-Shapley student-optimal

stable mechanism was selected to replace the Boston mechanism.

Ergin (2002) showed that under an acyclicity condition of priorities, the Gale-

Shapley mechanism finds Pareto-efficient outcomes in the school admissions domain.

Moreover, the Gale-Shapley mechanism is coalitionally strategy-proof in this case.

Since in the adopted mechanisms we discussed above, ties among equal priority

students are broken randomly, we may observe some unnecessary inefficiency under

the Gale-Shaley student-optimal stable mechanism.

Kesten (2010) introduced a hybrid approach for the school choice domain that

compensates for the inefficiency of the Gale-Shapley student-optimal stable mechanism

through a compromise mechanism that introduces minimal instability while creating
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more efficient outcomes. Moreover, the instability is created with the consent of

participating students: a blocking student will never be worse off if she gives consent

for such stability violations.

Erdil and Ergin (2008) recognized that the artificial tie breaking of priorities induces

inefficiencies under theGale-Shapley student-optimal stablemechanism. Therefore, after

the algorithm converges they proposed a second stage. This is also an iterative procedure.

They proposed a random trading stage so that each student can trade her seat as long as

other students agree. However, not all trades are acceptable. Trades involving students

with the highest priority are deemed feasible. After a “stable” trading cycle is randomly

found, the trades are realized. Thus, this process does not induce further inefficiencies.

One can conduct feasible trades again and repeat the above procedure until no stable

trades are left. Although the Erdil-Ergin mechanism is constrained ex-post efficient, it

is not strategy-proof, and yet truth telling is an ordinal Bayesian-Nash equilibrium in a

low and symmetric information setting. Using data from NYC schools, Abdulkadiroğlu,

Pathak, and Roth (2008) showed that over 1,500 student applicants among 8th graders

could have improved their assignment in the Erdil-Ergin mechanism among 90,000

students, if the same student preferences would have been revealed.

Pathak and Sönmez (2008) inspected the Boston mechanism’s revelation game

when not all students are sophisticated. Sincere players are restricted to report their true

preferences, while strategic players play a best response. Although there are multiple

equilibrium outcomes, a sincere student receives the same assignment in all equilibria.

Finally, the assignment of any strategic student under the Pareto-dominant Nash

equilibrium of the Boston mechanism is weakly preferred to her assignment under

the student-optimal stable mechanism.

Abdulkadiroğlu and Ehlers (2007) inspected the school choice problem, when there

are minimum quotas for students from different backgrounds at schools. These mini-

mum quotas in general lead to nonexistence of justified-envy-free matchings. Thus,

they introduced a new definition of justified-envy-freeness. Under this new definition,

they showed that a justified-envy-free matching always exists in a “controlled” school

choice problem.

There is also an emerging literature regarding the lottery mechanisms in school

choice. We cite some of the recent papers below.

Abdulkadiroğlu, Che, and Yasuda (2008) introduced a new tie-breaking rule: each

student has the option to designate a target school besides revealing her preferences.

Whenever tie breaking is needed among multiple students for a school, students who

designate this school as target get priority in tie-breaking. Then the Gale-Shapley stu-

dent-optimal stable mechanism is applied on the modified priority structure. The

authors found plausible properties of this mechanism over the Gale-Shapley version.

Pathak (2006) inspected lottery design in the school choice domain. He proved an

equivalence result between RSD and random school-choice TTC mechanism, when
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all priority orders of schools are independently and uniformly randomly drawn. This

corresponds to two versions of tie breaking among equal priority students: tie breaking

for all schools using a single lottery or tie breaking independently for each school.

However, such an equivalence does not exist for random multiple tie-breaking version

of the Gale-Shapley student-optimal stable mechanism and RSD (which is equivalent

to Gale-Shapley mechanism with random single tie breaking). Sethuraman (2009)

generalized this result to the domain with schools with multiple quotas using a more

general mechanism. He showed that his multilottery mechanism a generalized version of

the school TTC mechanism is equivalent to RSD.

Featherstone and Niederle (2008) observed that Boston mechanism resulted with

better efficiency than the Gale-Shapley student-optimal mechanism in laboratory

experiments, when ties are broken randomly, and preferences are private information.

Thus, Boston mechanism is effectively manipulated by the students in these experi-

ments. They also prove this result in a symmetric environment in theory. Abdulkadir-

oğlu, Che, and Yasuda (2009) showed that under similar ordinal preferences of students

and coarse priority structures, any symmetric Bayesian equilibrium of the Boston

mechanism is better than the dominant strategy outcome of the Gale-Shapley

mechanism.

Kesten and Ünver (2009) introduced two lottery mechanisms that result in

lotteries over student-optimal justified-envy-free matchings according to two new

definitions of justified-envy-freeness. This is the first study that employed an

“ex-ante” lottery design approach in school choice, while the previous approaches

were “ex-post.”
5. AXIOMATIC MECHANISMS AND MARKET DESIGN

5.1 House allocation and hierarchical exchange
In the house allocation domain, Pápai (2000) introduced a wide class of mechanisms

called hierarchical exchange mechanisms that are inspired by Gale’s TTC algorithm and

serial dictatorships such that they uniquely characterize the class of Pareto-efficient,

reallocation-proof, and coalitionally strategy-proof mechanisms.

A mechanism f is reallocation-proof if for any problem �, there is no pair

of agents a and b and two preference relations �0
a and �0

b such that f½�0
a;��a�ðaÞ ¼ f½�

�ðaÞ and f½�0
b;��b�ðbÞ ¼ f½��ðbÞ and yet f½�0

a;�0
b;�� a;bf g�ðbÞ≿af½��ðaÞ and

f½�0
a;�0

b;�� a;bf g�ðaÞ�bf½��ðbÞ.
The idea behind hierarchical exchange mechanisms is as follows:

Suppose that we assign houses to the agents initially according to an inheritance rule

that is described by the mechanism. As the agents who have the property rights of the

houses leave the market while the houses remain unmatched, their property rights are

passed to other agents according to the inheritance rule.
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A submatching is the matching of a subset of agents B 	 A to houses G 	 H,

i.e., a one-to-one and onto function s: B ! G. Let As ¼ B and Hs ¼ G. Let S
be the set of submatchings. For each house h, let S�h be the set of submatchings

that do not assign house h.

Note that a matching is a submatching s with As ¼ A. Let M 
 S be the set of

matchings, as before.

Formally, a hierarchical exchange mechanism is described through an inheritance

function f ¼ (fh)h2H such that each fh : S�hnM ! A determines who has the property

rights of house h, once a submatching is already fixed. That is, for any

s 2 S�hnM; fhðsÞ 2 AnAs, such that fh(s) is the agent who has the property right of

house h when the submatching s is already fixed.1

We have the following restriction on fh : For all s 	 s0 with fhðsÞ 62 As0 , we have

fh(s0) ¼ fh(s). That is, if an agent has the right of a house, when more matches are

determined, and this agent is not matched, she does not lose her right for this house.

Let F be the set of such f functions. Each f 2 F induces a hierarchical exchange

mechanism, let ff be this mechanism.

An iterative algorithm is used to find the allocation under a hierarchical exchange

mechanism:

Algorithm 13 The hierarchical exchange induced by f:

Step k: Suppose sk is a submatching already determined at the end of the previous step (we

start with s1 ¼ � initially at k ¼ 1). If sk is a matching then we terminate the algorithm, and

sk is the outcome of the algorithm. Otherwise, each remaining house h points to its inheritance

right holder fh (sk), each remaining agent points to her top choice house among the remaining

houses, and we obtain a directed graph. There exists at least one cycle (by Lemma 2). We clear

each cycle by assigning each agent in the cycle the house she is pointing to. Let skþ1 be the

submatching that is determined by clearing these cycles, and the matches already determined under

sk. We continue with Step k þ 1.

Below, we give examples about the relationship of hierarchical exchange and other

mechanisms we introduced in the previous chapters of this survey:

Example 12 Suppose that m is a matching, and for each agent a 2 A, fm(a) (�)¼ a. Then this

inheritance rule gives a house to each agent initially. The rest of the inheritance rule is defined arbitrarily.

The induced hierarchical exchange algorithm is equivalent to Gale’s top trading cycles algo-

rithm and finds the core of the housing market induced by initial endowment m.
Example 13 Let p ¼ (a1, . . ., an) be an ordering of agents in A. Suppose that for all h and

all s, fh(s) ¼ ak where k is the lowest index such that ak not matched under s.
This inheritance rule gives the control rights of all houses to the same agent as long as

that agent is available. That is, the induced hierarchical exchange mechanism is the serial

dictatorship induced by p.
1 This simplified definition is due to Pycia and Ünver (2009).
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Example 14 Suppose that there are two types of agents and houses, AE, AN and HO, HV,

respectively. For each a 2 AE, ha 2HO, we set fhað�Þ ¼ a.Moreover, suppose there is an ordering

of agents p ¼ (a1, . . ., an) such that for all h 2 HV, fh (s) ¼ ak where ak is the agent with lowest

k such that ak is not matched under s. For all ha 2 HO, whenever a is matched under s but ha is

not, then fhaðsÞ ¼ ak where ak is the agent with lowest k such that ak is not matched under s.
The induced hierarchical exchange mechanism is the YRMH-IGYT mechanism induced by

priority order p.

Example 15 Suppose the property rights of the houses are given according to the following

inheritance table for houses H ¼ {h1, h2, h3, h4} over A ¼ {1, 2, 3, 4}.

h1 h2 h3 h4

1 1 2 4

2 2 3 3

3 3 1 2

4 4 4 1

An inheritance table refers to a specific inheritance rule profile such that regardless of the

assigned house of the owner of a remaining house, this remaining house is inherited by the

same new owner. The induced inheritance profile f by the above table is as follows:

fh1ð�Þ ¼ 1; fh1ð ð1; xÞf gÞ ¼ 2 for any x 2 {h2, h3, h4} (that is, when 1 is matched, the right goes

to 2), fh1ð ð1; xÞ; ð2; yÞf gÞ ¼ 3 for all {x,y}	 {h2, h3, h4}. fh1ð ð1; xÞ; ð2; yÞ; ð3; zÞf gÞ ¼ 4 for

all {x, y, z} 	 {h2, h3, h4}. The rights for houses h2, h3, and h4 are similarly defined.

One interpretation of the above table is that the inheritance table gives the priority profile of

houses over the students (for example, houses are school seats and the agents in A are students,

and the priority profile is induced by f). Then the induced school choice top trading cycles

mechanism (Abdulkadiroğlu and Sönmez 2003a) is a hierarchical exchange mechanism.

Hierarchical exchange mechanisms constitute a proper superset of the mechanisms

we introduced earlier. We illustrate this with an example, in which the hierarchical

exchange mechanism introduced is neither a serial dictatorship, the core mechanism,

a YRMH-IGYT mechanism, nor a school choice TTC mechanism:

Example 16 Let A ¼ {1, 2, 3}, H ¼ {h1, h2, h3}. Suppose the inheritance rule profile f

induces a tree for house h1:

h1

1

ðh2Þ . & ðh3Þ
3 2

ðh3Þ # # ðh2Þ
2 3
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This means, fh1ð�Þ ¼ 1, fh1ð ð1; h2Þf gÞ ¼ 3, fh1ð ð1; h3Þf gÞ ¼ 2, fh1ð ð1; h2Þ;f
ð3; h3ÞgÞ ¼ 2, fh1ð ð1; h3Þ; ð2; h2Þf gÞ ¼ 3. Suppose for houses h2 and h3 we have the

following inheritance table for fh2 and fh3 :

h2 h3

1 2

2 3

3 1

Let the preferences of the agents be given as:

1 2 3

h2 h2 h1
h3 h1 h2
h1 h3 h3

The induced hierarchical exchange outcome is found as follows through the directed graphs

formed:

Step 1: 1 ! h2 ! 1, 2 ! h2 ! 1, 3 ! h1 ! 1.

There is only one cycle: 1 ! h2 ! 1, agent 1 is assigned h2.

Now according to h1’s inheritance tree the right of house h1 goes to agent 3.

Step 2: 2 ! h1 ! 3, 3 ! h1 ! 3.

There is one cycle: 3 ! h1 ! 3, agent 3 is assigned house h1.

Step 3: 2 ! h3 ! 2, there is one cycle: 2 ! h3 ! 2.

No agent is left, thus the algorithm terminates. The outcome of the hierarchical exchange

mechanism is given as

m ¼ 1 2 3

h2 h3 h1

� �
Our result of this chapter is as follows:

Theorem 37 (Pápai 2000) A mechanism is reallocation-proof, Pareto-efficient, and

coalitionally strategy-proof if and only if it is a hierarchical exchange mechanism.

5.2 Trading cycles with brokers and owners
In this section, we introduce a new algorithm called trading cycles with brokers and owners

(Pycia and Ünver, 2009), which is more general than hierarchical exchange. This will

remove the reallocation-proofness axiom from the above characterization result.

The algorithm works as follows: In each round, it assigns the control rights of each

unremoved house to some unremoved agent. This agent controls this house as an

“owner” or as a “broker.” The hierarchical exchange only designated control rights

holders as “owners.” Thus “brokers” are innovation of this new algorithm. In either

case, this house cannot be matched in this round unless its control rights holder is
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matched. The algorithm is based on the top-trading cycles idea, yet it is substantially

different.

The assignment produced by this algorithm depends on the structure of control rights.

Let us define this new concept first. A structure of control rights (ac, hb) consists of

a profile of control functions ac ¼ ach : S�h ! A
	 


h2H such that for all h and all

s 2 S�h; a
c
hðsÞ 2 A� As; and a brokered house function hb : S �M ! H [ �f g

such that for all s 2 S �M, if jAsj ¼ jAj � 1, then hbðsÞ ¼ �.

For all control rights structures, the assignment of houses to agents is determined by

an iterative algorithm that we refer to as the trading-cycles-with-brokers-and-

owners algorithm (TCBO algorithm for short).

Algorithm 14 The trading cycles with brokers and owners (TCBO) induced by

(ac, hb):

Step k: Let sk�1 be the submatching of agents and houses removed before step k. Before the

first round, the submatching of removed agents is empty, s0 ¼ �.

Determination of intra-round trade graph:Each unremoved house h points to the agent who

controls it at sk�1. If there exists a broker at sk�1, he points to his first choice owned-house at

sk�1. Every other unremoved agent points to his top choice house among the unremoved houses.

Removal of trading cycles: There exists at least one cycle (by Lemma 2). We remove each

agent in each cycle by assigning him the house he is pointing to.

Stopping rule: We stop the algorithm if all agents are removed (matched). The resultant

matching, sk, is then the outcome of the algorithm.

Since we assign at least one agent a house in every round, and since there are

finitely many agents, the algorithm stops after finitely many rounds.

The terminology of owners and brokers is motivated by the trading analogy. In

each round of the algorithm, an owner can either trade a house he controls for another

house (in a cycle of several exchanges), or can leave in this round matched with a house

he owns. A broker can trade the house he owns for another house (in a cycle of several

exchanges), but cannot leave in this round matched with the house he brokers. One

interpretation of this is that the owner can consume his house, but the broker cannot.

Example 17 (Execution of the TCBO algorithm) Let A ¼ {1, 2, 3} and

H ¼ {h1, h2, h3}. Suppose the control rights structure is such that

• h1 is owned by 1 as long as 1 and h1 are unmatched, is owned by 2 when 2 and h1 are

unmatched and 1 is matched, and is owned by 3 when 3 and h1 are unmatched and 1

and 2 are matched,

• h2 is owned by 2 as long as 2 and h2 are unmatched, is owned by 1 when 1 and 2 are

unmatched and 2 is matched, and is owned by 3 when 3 and h2 are unmatched, and 1

and 2 are matched,

• h3 is controlled by 3; he has the brokerage right as long as either 1 and 2 are unmatched and

the ownership right when 1 and 2 are matched (notice that we do not need to specify who inherits

h3 when 3 is matched, because 3 may be matched only in a cycle that also contains h3).
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The above structure of control rights may be represented as follows:

ach1 ach2 ach3

1 2 3b

2 1

3 3

Theb sign, above, next to 3 in h3’s control right column, shows that h3 is a brokered-house

(when some agents other than 3 who controls h3 are unmatched). The preferences of the agents

are given as follows:

agent 1 : h3 �1 h2 �1 h1
agent 2 : h3 �2 h1 �2 h2
agent 3 : h3 �3 h1 �3 h2

We run the algorithm as follows:

Step 1. Owned-house h1 points to a
c
h1
ð�Þ ¼ 1, owned-house h2 points to a

c
h2
ð�Þ ¼ 2, bro-

kered-house hbð�Þ ¼ h3 points to ac
hbð�Þð�Þ ¼ 3. Agents 1 and 2 point to h3 and broker 3

points to his first choice owned-house, that is h1. There exists one cycle

h1 ! 1 ! h3 ! 3 ! h1;

and by removing it, we obtain
s1 ¼ ð1; h3Þ; ð3; h1Þf g

Step 2. O-house h2 points to a
2
h2
ðs1Þ ¼ 2 and agent 2 points to h2. There exists one cycle

h2 ! 2 ! h2;

and by removing it, we obtain
s2 ¼ ð1; h3Þ; ð2; h2Þ; ð3; h1Þf g:

This is a matching, since no agents are left.

We terminate the algorithm, and the outcome of the mechanism is s2.
Observe that this outcome cannot be reproduced by a hierarchical exchange mechanism. Con-

sider a modified problem obtained by changing preferences of agent 3 so that h2 is preferred to h1:

agent 1 : h3 �1 h1 �1 h2
agent 2 : h3 �2 h2 �2 h1
agent 3 : h3 �0

3 h2 �0
3 h1

In this case, the TCBO outcome is

s0 ¼ ð1; h1Þ; ð2; h3Þ; ð3; h2Þf g:
However, any hierarchical exchange mechanism that assigns h3 to 1 in the first problem should

continue to do so in the second problem. Thus, no hierarchical exchange mechanism can reproduce

this TCBOs outcome.
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We are ready to formally define TCBO mechanism class (Pycia and Ünver 2009).

A control rights structure (ac, hb) is compatible if for all submatchings s 2 S �M,
C1. Persistence of ownership: If agent a owns house h at s, and a and h are

unmatched at s0 � s, then a owns h at s0.
C2. No ownership for brokers: If agent b is a broker at s, then hb does not own

any house at s.
C3. Limited persistence of brokerage: If agent hb brokers house f at s, agent
a0 6¼ b and house g 6¼ f are unmatched at s, and b does not broker f at submatching

s [ {(a0, g)}, then either

• Broker-to-heir transition: (i) there is exactly one agent a who owns a house

both at s and s [ {(a0, g)}, (ii) agent a owns house f at s [ {(a0, g)}, and (iii) at

submatching s [ {(a0, g), (a, f )}, agent b owns all houses that a owns at s,

or
• Direct exit from brokerage: there is no agent who owns a house at both s
and s [ {(a0, g)}.
Each compatible pair (ac, hb) induces a trading-cycles-with-brokers-and-owners

mechanism (TCBO mechanism for short). Its outcome is found through the

TCBO algorithm that was introduced earlier. The control rights structure introduced

in the previous example is compatible, thus the mechanism implemented is TCBO.

The main theorem regarding this larger class is proven by Pycia and Ünver (2009)

and removes reallocation-proofness property of Pápai from the axiomatic characteriza-

tion. We further assume that jHj 
 jIj:
Theorem 38 (Pycia and Ünver 2009) A mechanism is coalitionally strategy-proof

and Pareto-efficient if and only if it is a TCBO mechanism.

The characterization does not need Pareto-efficiency, if the mechanisms have full

range, i.e., mechanism f has full range if for every matching m 2 M, there exists some

preference profile � such that f½�� ¼ m.
Corollary 2 (Pycia and Ünver 2009) A full-range mechanism is coalitionally strategy-

proof if and only if it is a TCBO mechanism.

As an example of a mechanism design problem in which brokerage rights are useful,

consider a manager who assigns n tasks t1, . . ., tn to n employees w1, . . ., wn with strict

preferences over the tasks. The manager wants the allocation to be Pareto-efficient

with regard to the employees’ preferences. Within this constraint, she would like to

avoid assigning task t1 to employee w1. She wants to use a coalitionally strategy-proof

direct mechanism, because she does not know employees’ preferences. The only way

to do it using the previously known mechanisms is to endow employees w2, . . ., wn

with the tasks, let them find the Pareto-efficient allocation through a top-trading cycles

procedure, such as Pápai’s (2000) hierarchical exchange, and then allocate the remain-

ing task to employee w1. Ex ante each such procedure is unfair to the employee w1.

Using a trading-cycles-with-brokers-and-owners mechanism, the manager can achieve
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her objective without the extreme discrimination of the employee w1. She makes w1

the broker of t1, allocates the remaining tasks among w2, . . ., wn (for instance she

may make wi the owner of ti, i ¼ 2, . . ., n), and runs trading cycles with brokers and

owners.

5.3 Related literature
Unlike the core mechanism for housing markets (see Theorem 6), there are many

desirable mechanisms in the house allocation (with existing tenants) domain. We

already stated some axiomatic characterization results in Theorems 8, 9, and 10. Also

in the school admissions domain, we stated two characterization results (see Theorems

27 and 29, see also Ehlers and Klaus 2006, and Kojima and Manea 2007, for other

characterizations in the same domain).

We will cite several other papers below:

On the other hand, if we do not insist on strict preferences, coalitional strategy-

proofness and Pareto efficiency are incompatible in general. Ehlers (2002) found the

largest possible preference domain under which these two properties are not at odds,

and characterized the set of coalitionally strategy-proof and Pareto-efficient mechan-

isms. Similarly, Bogomolnaia, Deb, and Ehlers (2005) characterized two classes of

strategy-proof mechanisms in the same preference domain.

There are several other axiomatic studies that focus on more specialized properties

of mechanisms in different domains, such as Ehlers, Klaus, and Pápai (2002), Miyagawa

(2002), Ehlers and Klaus (2007), Pápai (2007), Velez (2008), and Kesten (2009b).
6. CONCLUDING REMARKS

We would like to conclude by commenting on the literature that we left out of this

survey. Our attention to axiomatic mechanism design was brief. Similarly, we did

not explore lottery mechanisms in depth. Such explorations deserve their own survey

papers. We give a brief summary of the literature on lottery mechanisms below, since

the literature may have important implications for market design.

6.1 Lottery mechanisms in matching
In the house allocation domain, a study by Chambers (2004) showed that a probabilis-

tic consistency property is difficult to achieve if fairness is also imposed. He showed

that a uniform lottery allocation of houses is the unique stochastically consistent mech-

anism that is also fair in the sense of equal treatment of equals. Clearly, such an alloca-

tion is not Pareto-efficient.

On the positive side, Bogomolnaia and Moulin (2001) introduced an algorithm

class, which we can refer to as eating algorithms that implement different lottery mechan-

isms. Randomization is used to sustain fairness among the agents, since as we have seen,
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desirable deterministic mechanisms impose an artificial hierarchical structure that can

favor some agents over others. A central mechanism in the class, which gives “equal

eating speeds” to all agents, is known as the probabilistic serial (PS) mechanism.

One shortcoming of the PS mechanism is that it is not strategy-proof. Yet, all

mechanisms induced by eating algorithms including PS are ordinally efficient, in the

sense that the probability distribution of houses assigned is not first-order stochastically

dominated by any other (lottery) mechanism. In fact, a mechanism is ordinally efficient

if and only if its outcome can be found through an eating algorithm.1

On the other hand, another central mechanism, obtained by randomly drawing a

priority ordering of agents and implementing the resulting serial dictatorship, is not

ordinally efficient. This is a surprising result, since serial dictatorships are Pareto-effi-

cient mechanisms. On the other hand, this lottery mechanism, known as the random

serial dictatorship (RSD) is strategy-proof.

PS and RSD mechanisms are both fair (in the sense of equal treatment of equals).

Yet, it turns out that ordinal efficiency, equal treatment of equals, and strategy-proof-

ness are incompatible properties. Thus, PS favors ordinal efficiency, while RSD favors

strategy-proofness. RSD is only ex-post efficient and PS is only weakly strategy-proof.

Kojima and Manea (2010) showed that manipulability of the PS mechanism may

not be a big problem. If there are sufficiently many copies of the houses (e.g., when

“houses” represent “slots at schools” in the school choice domain), then PS will be a

strategy-proof mechanism. In such cases, one can claim that PS is a superior mechanism

to RSD.2

Abdulkadiroğlu and Sönmez (1998) gave a theoretical intuition in support of the

use of RSD. One can imagine another fair mechanism as follows: randomly assign

houses to agents and find the core of the resulting housing market (core from random

endowments). It turns out that this mechanism is equivalent to RSD through their

result. Pathak and Sethuraman (2010), in turn, generalized the equivalence results (as

explained in the School Choice Section).

On the other hand, Sönmez and Ünver (2005) showed that in the house allocation

with existing tenants domain, randomly endowing newcomers with vacant houses, and

finding the core of the resulting housing market in which existing tenants initially own

their occupied houses, is equivalent to randomly drawing a priority order of agents in

which existing tenants are always ordered after the newcomers and implementing the

induced YRMH-IGYT mechanism. Thus, the core idea favors newcomers by giving

all rights to vacant houses to newcomers.
1 Crés and Moulin (2001) and Bogomolnaia and Moulin (2002) introduced a strategy-proof and ordinally efficient

lottery mechanism in a preference domain where relative preferences of the agents are identical for the houses, but

opting-out can be ranked differently for each different agent.
2 See Manea (2006) and Che and Kojima (2008) about results on asymptotic ordinal inefficiency and efficiency of RSD

in different large economies, respectively.
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Abdulkadiroğlu and Sönmez (2003b) explored why serial dictatorships, Pareto-

efficient mechanisms, could result in an ordinally inefficient probability distribution

over assigned houses when they are used following a uniformly random priority order

drawing (i.e., RSD). They discovered that the probability distribution induced by

RSD can also be generated by equivalent lotteries over inefficient quasi-matchings.

Moreover, they also found a full characterization of ordinally efficient matchings

through this intuition.

Kesten (2009a) explored the origins of ordinal inefficiencies under RSD (equivalently

core from random endowments) from a different point of view. He discovered that these

inefficiencies are not the results of the allocation or trading procedures used, but the

deterministic problem definition. That is, if we can allocate or endow agents fractions

of houses (equivalent to probabilities) through the algorithms we introduced, then

RSD, PS, and Gale’s TTC are essentially equivalent.

Katta and Sethuraman (2006) generalized the PS mechanism when indifferences are

allowed in preferences. Yilmaz (2009, 2010) included individual rationality constraints

as in the house allocation with existing agents domain and introduced a natural generali-

zation of the PSmechanismwith andwithout indifferences in preferences. Athanassoglou

and Sethuraman (2007) allowed fractional house endowments in the house allocation

domain (i.e., the existing tenants initially own a probability distribution over houses)

and found a generalization of Yilmaz’s mechanisms.

Budish, Che, Kojima, and Milgrom (2009) studied how to implement random

matchings under certain constraints through lotteries whose support contain matchings

that satisfy these constraints. They generalized Birkhoff-von Neuman Theorem by

showing that when the constraints on matching probabilities can be represented as

bi-hierarchies there exists a lottery implementation of the random matching matrix.

6.2 Other literature
We end with a series of citations pointing out new and emerging areas in discrete

resources allocation and exchange problems.

First of all, there is an emerging literature on generalizations of thematching problem to

different domains which simultaneously include hedonic games, housing markets, two-

sided matching problems, and so on (see for example Sönmez 1996, 1999, and Pápai 2007).

Additionally, Ben-Shoham, Serrano, and Volij (2004) looked into the evolutionary

dynamics that drive decentralized robust exchange in a housing market (for a generali-

zation of this process to multiple house consumption see Bochet, Klaus, and Walzl

2007). Kandori, Serrano, and Volij (2008) inspected a similar decentralized process

for housing markets with transfers when there are random and persistent shocks to

the preferences of agents.

Recently, Bade (2008) studied rationalizable and nonrationalizable behavior of

agents in housing problems and markets.
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Market design has recently been the driving force in the advance of theory in dis-

crete resource allocation and exchange problem. Market design applications are not

limited to the ones discussed throughout this survey. Guillen and Kesten (2008)

discovered that the mechanism used to assign students to rooms in an MIT dormitory

is essentially equivalent to a version of the Gale-Shapley student-optimal stable

mechanism that takes into consideration individual rationality constraints, and com-

pared YRMH-IGYT and the MIT dormitory allocation mechanisms experimentally.

In another market design study, Kesten and Yazici (2008) introduced an ex-post fair

“discrete resource” allocation mechanism for possible applications in large corpora-

tions and organizations such as the navy or a university. However, in general such

an allocation is not efficient. When multiple objects, such as courses, are being

distributed to agents, such as students at a university, competitive equilibrium from

equal (artificial) budgets is a natural candidate for sustaining ex-post fairness and effi-

ciency together. Since a competitive equilibrium may not exist in general, Sönmez

and Ünver (2010a) introduced a “course” allocation mechanism based on bidding

under equal budgets, which can replace the most popular course bidding mechanism

used in many business schools. This bidding mechanism was intended to create com-

petitive equilibrium under equal budgets, but it fails by the impossibility result. Even

under a modified definition of competitive equilibrium, this mechanism is not a

competitive mechanism, while the Sönmez and Ünver proposal is. Krishna and

Ünver (2008) showed that the Sönmez and Ünver (2010a) proposal is superior to

the current bidding mechanisms in a designed experimental environment and in a

field experiment at University of Michigan Business School. Harvard Business School

course bidding mechanism tries to achieve ex-post fairness using a series of serial

dictatorships with reversal of priority orders in each round of course allocation.

Budish and Cantillon (2009) tested the Harvard Business School course allocation

scheme in a field experiment and showed that it is manipulable and causes significant

welfare losses. Budish (2009) endenized competitive prices and bidding using a direct

mechanism. He proposed an approximate competitive equilibrium concept and a

mechanism which finds such equilibria. The proposed direct mechanism calculates

an approximate competitive equilibrium by finding approximately market clearing

prices from approximately equal (artificial bid) budgets for students. This equilibrium

is also approximately strategy-proof and ex-post envy-free.

There are other experimental studies on matching market design that we did not

mention earlier. Calsamiglia, Haeringer, and Klijn (2007) supported the Haeringer

and Klijn (2009) theoretical study on constrained school choice with laboratory

experiments and complemented the Chen and Sönmez (2006) experimental study on

unconstrained school choice. In the marketing literature, Wang and Krishna (2006)

made an experimental study of the TTCC mechanism of Roth, Sönmez, and Ünver

(2004), which was employed for time-share summer housing exchange.
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Dynamic models of house allocation and exchange have been attracting attention

recently: In addition to Ünver (2010), Bloch and Cantala (2008), and Kurino (2008)

considered intertemporal house allocation when some agents leave and new agents join

the agent population over time. Abdulkadiroğlu and Loertscher (2007) considered

dynamic house allocation when the preferences of agents are uncertain.
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Abdulkadiroğlu, A., Ehlers, L., 2007. Controlled School Choice. Working paper.
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Abdulkadiroğlu, A., Pathak, P.A., Roth, A.E., 2009. Strategy-Proofness versus Efficiency in Matching

with Indifferences: Redesigning the NYC High School Match. Am. Econ. Rev. 99, 1954–1978.
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Abraham, D.J., Cechlárová, K., Manlove, D.F., Mehlhorn, K., 2005. Pareto Optimality in House

Allocation Problems. In: Lecture Notes in Computer Science. 3827, Springer, pp. 1163–1175.
Abraham, D.J., Blum, A., Sandholm, T., 2007. Clearing Algorithms for Barter Exchange Markets:

Enabling Nationwide Kidney Exchanges. In: Proceedings of ACMEC 2007: the Eighth ACM Confer-
ence on Electronic Commerce.
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Roth, A.E., Sönmez, T., Ünver, M.U., 2005b. A Kidney Exchange Clearing-house in New England.

American Economic Review Papers and Proceedings 95 (2), 376–380.
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Sönmez, T., Ünver, M.U., 2010b. House Allocation with Existing Tenants: A Characterization. Games

Econ. Behav. 69, 425–445.
Svensson, L.G., 1994. Queue allocation of indivisible goods. Soc. Choice Welfare 11, 323–330.
Svensson, L.G., 1999. Strategyproof Allocation of Indivisible Goods. Soc. Choice Welfare 16, 557–567.
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