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Abstract

Recent empirical work has demonstrated a positive correlation between grandparent-

child wealth-rank, even after controlling for parent-child wealth-rank, as well as a pos-

itive correlation between dynastic wealth-ranks across almost 600 years. We show that

a simple heterogeneous agents model with idiosyncratic returns to wealth generates

a realistic wealth distribution but fails to capture these long-run patterns of wealth

mobility. However, an extension of the basic model which includes persistent hetero-

geneity in returns to wealth is able to simultaneously match the wealth distribution,

short-run wealth mobility, and long-run wealth mobility.
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1 Introduction

Recent heterogeneous agents modeling of consumption-saving decisions has successfully been

able to identify the main drivers of wealth inequality (Benhabib et al., 2019; Cagetti and

De Nardi, 2006; Castañeda et al., 2003; Hubmer et al., 2016; Kindermann and Krueger,

2015; Krusell and Smith, 2015; Quadrini, 2000). This literature shows that heterogeneous

agent models with stochastic labor earnings and idiosyncratic returns to wealth can produce

fat-tailed distributions of wealth which match the data well.1 These models can also fit

reasonably well the inter-generational social mobility of wealth, producing a realistic parent-

child wealth-rank correlation (Benhabib et al., 2019).

More recently, however, empirical results suggest significant grandparent-child wealth-

rank correlations (Boserup et al., 2014) even after controlling for the effects of parent wealth

on child wealth. Furthermore, even long-run wealth-rank correlations appear to persist across

generations (Barone and Mocetti, 2016; Clark, 2014; Clark and Cummins, 2015). With re-

spect to this dimension of inter-generational mobility, the heterogeneous agents models in

the literature are bound not to fare well, in that they can hardly generate a large enough

coefficient for grandparent-child wealth-rank nor a large enough correlation for dynastic

wealth-ranks over very long time periods.2 It is not difficult to envision extensions of these

models which could produce significant grandparent-child and even long-run wealth-rank

correlations, e.g., postulating intergenerational autocorrelation in earnings and in the rate

of return to wealth. First, however, the evidence is not favorable to the existence of in-

dependent direct causal effects across generations, beyond parent-child effects.3 Secondly,

large intergenerational autocorrelations e.g., of returns to wealth are bound to generate even

fatter tails in the wealth distributions than we observe.4 Finally, extending the model along

these lines would require postulating very long intergenerational autocorrelation in earnings

and in the rate of return to wealth to capture long-run persistence, which does not appear

plausible and certainly not parsimonious as an explanation.

In this paper we instead study a simple heterogeneous agents model and extend it to

introduce persistent heterogeneity in the rate of return to wealth across generations. In

1See Benhabib et al. (2017) for a discussion of the relative role of earnings and returns to wealth.
2We discuss the theoretical reasons why this class of models produces limited long-run rank-wealth cor-

relations in Section 2.1. In Section 3 we confirm this by means of simulation analysis.
3We discuss this evidence in the next section.
4We confirm this in Section 3, by means of simulation analysis.
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other words, we allow households in some dynasties to have their wealth grow faster on

average than households in other dynasties. While we do not take a stand on the precise

interpretation of this form of persistent heterogeneity, we note that it can be seen as a

formalization of a latent factor representation of various dynastic characteristics suggested

in the literature. We summarize the findings of this literature next.

1.1 Long-Run Rank-Wealth Correlation

In this section we briefly discuss the evidence documenting wealth-rank correlations across

generations and its interpretation in the literature. First of all, a positive correlation be-

tween grandparent-child wealth rank, even after controlling for parent-child wealth rank, is

documented in Boserup et al. (2014), using three generations of Danish wealth data. Since

parent and grandparent wealth are correlated, and also possibly measured with error, they

implement a two stage least squares procedure to identify direct grandparent effects. Though

grandparent effects do not necessarily go through parents, they conclude in favor of indirect

effects, which they interpret as “social status.” Relatedly, Braun and Stuhler (2018) identify

a possible direct causal effect of grandparent-child interactions exploiting quasi-exogenous

variation in the time of grandparents’ death during World War II.” They find no effects of

direct contacts between grandparents and grandchildren; concluding in favor of grandparent

effects operating through indirect mechanisms. Finally, Warren and Hauser (1997), using

data from the Wisconsin Longitudinal Study, find no evidence for an independent influence

of grandparents once they condition on the status of both parents.

The evidence on long-run dynastic wealth-rank correlation is striking. Clark (2014) and

Clark and Cummins (2015) find high persistence of wealth across five generations using data

on rare surnames in England and Wales between 1858 and 2012, and Barone and Mocetti

(2016) find significant positive wealth elasticities as well as occupational persistence for

families in Florence between 1427 and 2011.5 While these data are less amenable to statistical

inference, Clark (2014) and Clark and Cummins (2015) argue that wealth, education, or

occupational status are transmitted via an underlying and unobserved latent factor which

is a representation of abilities, preferences, dynastic network connections, or other relevant

characteristics. This interpretation is also consistent with the evidence on grandparent-child

5Long-run persistence is also documented by Lindahl et al. (2015), Modin et al. (2013), Long and Ferrie
(2013), and Braun and Stuhler (2018) on occupational and educational attainment, and by Chan and Boliver
(2013) and Hertel and Groh-Samberg (2014) on social class.
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correlations, as argued in Stuhler (2012) and Braun and Stuhler (2018). Whether and how

this latent factor is affected by the environment and by historical and institutional dimensions

is hard to identify with the available data (Mare, 2011; Braun and Stuhler, 2018).

2 Models of Wealth Dynamics

In this section we develop the theory behind our analysis of long-run persistence in rank-

wealth correlation. We study rank-based models of wealth dynamics, that is, models in which

the growth rate of wealth depends on the wealth-rank rather than e.g., the wealth level.

These models are convenient for our analysis as they allow for an analytic characterization

of asymptotic wealth-ranks and approximate standard heterogeneous agents models well. In

the following, we first introduce a standard rank-based model and relate it to heterogeneous

agents models. We then introduce persistent heterogeneity in the rate of return to wealth

across generations into the standard rank-based model. Finally, we derive theoretical results

about long-run persistence of wealth-rank correlations.

2.1 Rank-Based Models

Consider an economy populated by N households, indexed by i = 1, . . . , N . Ranking house-

holds by their wealth, let ρt(i) denote the wealth-rank of household i at time t, so that

ρt(i) < ρt(j) if and only if wi(t) > wj(t) or wi(t) = wj(t) and i < j. We define the ranked

wealth processes w(1) ≥ · · · ≥ w(N) by w(ρt(i))(t) = wi(t). The aggregate wealth of the

economy is then w(t) = w1(t) + · · ·+ wN(t).

For each household i = 1, . . . , N , wealth dynamics are given by

d logwi(t) = αρt(i) dt+ σρt(i) dBi(t), (2.1)

where Bi is a Brownian motion. We normalize, without loss of generality, the average growth

rate of the economy to zero; that is, α1 + · · ·+ αN = 0. Banner et al. (2005) show that the

rank-based model (2.1) admits a stationary distribution if the parameters αk satisfy

α1 + · · ·+ αk < 0, for k < N. (2.2)

Condition (2.2) suffices to guarantee that no household in the top ranks grows faster than
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in the lower ranks, which would cause it to break away from the average population wealth.

We will show in the next section that this condition is consistent with rate of returns to

wealth which are constant or even increasing in wealth in a standard heterogeneous agent

model of wealth dynamics.

Proposition 2.1. Consider a rank-based model (2.1) that satisfies (2.2) and also

σ2
k+1 − σ2

k = σ2
k − σ2

k−1, (2.3)

for all k = 2, . . . , N − 1. The ranked wealth processes satisfy

E
[
logw(k)(t)− logw(k+1)(t)

]
=

σ2
k + σ2

k+1

−4(α1 + · · ·+ αk)
, (2.4)

for all k = 1, . . . , N − 1, where the expectation is taken with respect to the stationary distri-

bution.

It follows that wealth inequality at the stationary distribution is increasing in the volatility

parameters σk and decreasing in the sums of the relative growth parameters αk.
6

Rank-Based Model as Approximation

We introduce a simple heterogeneous agents consumption-saving model, along the lines of

Benhabib et al. (2019) and Benhabib et al. (2011), and show that it can be formally mapped

into an approximated rank-based model such as (2.1). In Section 3 we will then show

that an appropriate calibration of this model indeed approximates the heterogeneous agents

consumption-saving model well.7

Each household i = 1, . . . , N has CRRA preferences and a joy-of-giving bequest motive.

In equilibrium, the intergenerational wealth dynamics for each household i = 1, . . . , N follow

wi(t+ 1) = λ(ri,t)wi(t) + β(ri,t, yi,t), (2.5)

6Ichiba et al. (2011) show that the ratio of each pair of adjacent ranked wealth processes w(k)/w(k+1)

follows a Pareto distribution, with the Pareto parameter for each k depending on the parameters αk and σk
according to (2.4).

7More generally, the model (2.1) can be calibrated to approximate many different dynamic models and
real-world phenomena that exhibit Pareto-like distributions (Fernholz, 2017).
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where yi,t and ri,t denote, respectively, the labor income and the return on wealth for house-

hold i in generation t, and wi(t) denotes the wealth holdings of household i in generation t.

The functions λ and β are the same for all households i = 1, . . . , N and represent, respec-

tively, the average return on wealth and the average labor income, adjusted for equilibrium

household behavior.8 We refer to the model (2.5) as the Standard model.

Let the function πt(k) identify the index i of the k-th ranked household at time t, so that

πt(k) = i if and only if ρt(i) = k. The rank-based approximation of the Standard model (2.5)

is the rank-based model (2.1) where the parameters αk and σk are defined by

αk = E
[
log
(
wπt(k)(t+ 1)/w(t+ 1)

)
− log

(
wπt(k)(t)/w(t)

)]
,

σ2
k = Var

[
log
(
wπt(k)(t+ 1)/w(t+ 1)

)
− log

(
wπt(k)(t)/w(t)

)]
,

(2.6)

for each rank k = 1, . . . , N .9 The parameters αk and σk measure the average and variance of

the growth rate of wealth relative to the aggregate at each rank k of the distribution. The

relative growth rate parameters αk represent the main link between the rank-based model

(2.1) and the Standard model (2.5): at the stationary distribution of Standard model, the

rank-based relative growth rate parameters αk satisfy, for each rank k = 1, . . . , N ,

αk = E
[
log
(
wπt(k)(t+ 1)/w(t+ 1)

)
− log

(
wπt(k)(t)/w(t)

)]
= E

[
log
(
wπt(k)(t+ 1)/wπt(k)(t)

)]
= E

[
log
(
λ(rπt(k),t) + β(rπt(k),t, yπt(k),t)/wπt(k)(t)

)]
, (2.7)

8The functions β and λ depend on i) the life-span T and the growth rate of labor income over time g; ii)
preference parameters η, ψ, and χ, representing the time discount rate, the elasticity of substitution, and the
bequest motive, respectively; iii) policy parameters b and ζ, denoting the estate tax on bequests of wealth
and the capital income tax rate. More precisely, from Benhabib et al. (2011):

λ(ri,t) = (1− b)eri,tT A(ri,t)B(b)

eA(ri,t)T +A(ri,t)B(b)− 1
,

β(ri,t, yi,t) = (1− b)yi,t
e(g−ri,t)T − 1

g − ri,t
eri,tT

A(ri,t)B(b)

eA(ri,t)T +A(ri,t)B(b)− 1
,

with

A(ri,t) = ri,t −
ri,t − η
ψ

and B(b) = χ1/ψ(1− b)(1−ψ)/ψ.

9The expectations in (2.6) are calculated under the stationary distribution of model (2.5). Note that
model (2.5) has a Brownian motion continuous time limit; see Saporta and Yao (2005).

6



since the expected value of aggregate wealth w satisfies E[logw(t + 1)] = E[logw(t)] by

stationarity. From (2.7), we have

αk = E
[
log

(
λ(rπt(k),t)

(
1 +

β(rπt(k),t, yπt(k),t)

λ(rπt(k),t)wπt(k)(t)

))]
= E

[
log
(
λ(rπt(k),t)

)]
+ E

[
log

(
1 +

β(rπt(k),t, yπt(k),t)

λ(rπt(k),t)wπt(k)(t)

)]
, (2.8)

which yields a simple decomposition of the rank-based relative growth rates αk into the two

main parametric functions characterizing the model, β and λ. The first term measures the

average log return to wealth adjusted for equilibrium behavior, λ, at rank k in the wealth

distribution. The second term measures the average log ratio of labor income adjusted for

equilibrium household behavior, β, to capital income λw, at rank k in the distribution.

The decomposition (2.8) allows us to map the stability condition for rank-based models

in (2.2) into a condition in terms of β and λ in the Standard model (2.5). In the Standard

model (2.5), wealth returns ri,t and labor income yi,t are both independent of the wealth

rank of household i at time t. Consequently, the first component of the decomposition (2.8),

λ, is independent of wealth rank while the second component of this decomposition, β
λw

, is

decreasing in wealth rank since wealth w is increasing in rank. In the Standard model, then,

α1 < α2 < · · · < αN because the ratio of labor income to capital income is lower at higher

ranks in the wealth distribution. A negative relationship between wealth and returns is not

required to satisfy the stability condition (2.2).10

Proposition 2.2. If the Standard model (2.5) is stationary, then its rank-based approxima-

tion defined by (2.1) and (2.6) is also stationary.

2.2 Persistently Heterogeneous Rank-Based Model

We introduce a form of persistent heterogeneity in the average growth rates of households in

the rank-based model (2.1). For each household i = 1, ..., N , wealth dynamics are given by

d logwi(t) =
(
γi + α̂ρt(i)

)
dt+ σρt(i) dBi(t), (2.9)

10In fact, if follows from this argument that even a positive relationship between wealth and returns in
the Standard model could be consistent with condition (2.2).
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for each household i = 1, . . . , N , with γi ∈ {γ`, γh} and γh > γ`. In other words, households

are of two types: household i is a low (resp. high) type, if γi = γ` (resp. γi = γh) and

household wealth grows more slowly (resp. quickly) on average over time. We assume that

n of the households are high types with γi = γh, and N − n of the households are low types

with γi = γ`. We keep normalizing the average growth rate of wealth to zero, which in this

economy requires
∑N

k=1 α̂k +
∑N

i=1 γi =
∑N

k=1 α̂k + (N − n)γ` + nγh = 0.

To admit a stationary distribution, the persistently heterogeneous setup (2.9) must satisfy

a stability condition that generalizes the condition (2.2) for the standard rank-based model

(2.1) with no heterogeneity. Following Ichiba et al. (2011), this condition states that

m∑
k=1

α̂k + m̃γh + (m− m̃)γ` < 0, for all m = 1, . . . , N − 1; m̃ = min(m,n). (2.10)

Condition (2.10) generalizes condition (2.2) for the standard rank-based model and it

ensures that no top subset of households grows faster than the aggregate. This is sufficient

to guarantee that the high-type, high-growth households in the top ranks do not break

away from the rest of the population. In particular, this condition ensures that the average

relative growth rate of high-type households when occupying the top m ranks of the wealth

distribution is negative.

2.3 Long-Run Wealth-Rank Correlations

In this section we provide a theoretical characterization of asymptotic wealth-rank for both

the standard rank-based model and the model with persistent heterogeneity. We show that

persistent heterogeneity is required to generate long-run wealth-rank correlations.

We start with the implications of the rank-based model (2.1) for mobility. We define

occupation times ξi,k, for all i, k, as the fraction of time household i occupies rank k, ξi,k =

limT→∞
1
T

∫ T
0

1{ρt(i)=k} dt. Note that, by definition, the occupation times must add up to one,

so that
∑N

i=1 ξi,k =
∑N

k=1 ξi,k = 1. We can now show the following,

Proposition 2.3. Occupation times ξi,k in the standard rank-based model (2.1) satisfy

ξi,k =
1

N
, a.s., for all i, k. (2.11)
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Furthermore, for each household i, the asymptotic wealth-rank satisfies

lim
τ→∞

E[ρt+τ (i)] =
N + 1

2
. (2.12)

This result is a consequence of the fact that all households in the model (2.1) display identical

expected wealth dynamics. Therefore, i) they will spend equal time in all ranks, (2.11); and ii)

they must on average approach the same rank asymptotically; hence, necessarily the median

of the distribution, (2.12). In other words, (2.11)-(2.12) imply that higher-ranked households

today do not occupy on average higher ranks in the future as well. As a consequence, the

standard rank-based model (2.1) cannot produce long-run wealth-rank correlations.

This is not the case when persistent heterogeneity is added to the standard rank-based

model, as in (2.9). We turn now to analyze the implications of this model for asymptotic

wealth-rank. If household i is a low-type household with γi = γ`, then, by symmetry, the

fraction of time household i spends in each rank k is equal to the fraction of time any other

low-type household spends in each rank k. Thus, we can define the low-type household

occupation times ξ`,k such that ξ`,k = ξi,k, for all ranks k = 1, . . . , N . Similarly, if we

suppose that household j is a high-type household with γj = γh, then we can define the

high-type household occupation times ξh,k such that ξh,k = ξj,k, for all ranks k = 1, . . . , N .

Because the sum of occupation times across all ranks or individual households must equal

one, it follows that the low- and high-type occupation times ξ`,k and ξh,k must satisfy

(N − n)ξ`,k + nξh,k = 1, (2.13)

for all k = 1, . . . , N .

Proposition 2.4. Consider a persistently heterogeneous rank-based model (2.9) that satisfies

(2.3) and (2.10). Then, the low- and high-type occupation times ξ`,k and ξh,k satisfy

0 < ξ`,1 < ξ`,2 < · · · < ξ`,N <
1

N − n
, a.s., (2.14)

and
1

n
> ξh,1 > ξh,2 > · · · > ξh,N > 0, a.s. (2.15)

Because the occupation times for both low- and high-type households satisfy ξi,1 + · · ·+
ξi,N = 1, Proposition 2.4 implies that ξ`,1 < ξh,1 and ξh,N < ξ`,N . This means that low-type
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households spend more time at the lowest ranks of the wealth distribution than high-type

households. The following theorem uses this result to show that the heterogeneous rank-

based model (2.9) will feature persistence in wealth-ranks over infinitely long time horizons.

Theorem 2.5. Consider a persistently heterogeneous rank-based model (2.9) that satisfies

(2.3) and (2.10). Then,

lim
τ→∞

E[ρt+τ (i)] < lim
τ→∞

E[ρt+τ (j)] if and only if ρt(i) < ρt(j), (2.16)

for all households i, j = 1, . . . , N , where the expectations are taken with respect to the sta-

tionary distribution.

Theorem 2.5 implies that the long-run asymptotic household rank correlation will be pos-

itive in the heterogeneous rank-based model. This is because the higher-ranked households

today are expected to occupy higher ranks in the future as well. It is important to emphasize

that the expectations in (2.16) are taken unconditional on the types of households i and j

— the values of the parameters γi and γj are unknown and not part of the information set.

The result in Theorem 2.5 is intuitive. Because all high-type households are ex-ante

identical, the expected asymptotic rank of these households is the median of the top n ranks

of the wealth distribution, since high-type households are expected to occupy higher ranks

than low-type households. Similarly, the expected asymptotic rank of low-type households is

the median of the bottom N −n ranks. Without knowing its type, the expected asymptotic

rank of some household i is thus a weighted average of the medians of the top n and bottom

N − n ranks, with the weights equal to the respective probabilities that household i is a

high type and that it is a low type. Because higher-ranked households are more likely to be

high-type households, it follows that the weight on the median of the top n ranks is greater

for such high-ranked households and hence the expected asymptotic rank is also higher.

Because all high-type households are ex-ante identical, the expected asymptotic rank of

these households is the median of the top n ranks of the wealth distribution, since high-

type households are expected to occupy higher ranks than low-type households. Similarly,

the expected asymptotic rank of low-type households is the median of the bottom N − n

ranks. Without knowing its type, the expected asymptotic rank of some household i is thus

a weighted average of the medians of the top n and bottom N − n ranks, with the weights

equal to the respective probabilities that household i is a high type and that it is a low type.
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Because higher-ranked households are more likely to be high-type households, it follows that

the weight on the median of the top n ranks is greater for such high-ranked households and

hence the expected asymptotic rank is also higher.

3 Simulations

In this section we present a simulation analysis of wealth dynamics. We calibrate each

of the models of Section 2 and compare their simulated wealth dynamics along various

relevant empirical dimensions regarding the wealth distribution and wealth-rank persistence

over generations. More precisely, we consider i) the approximated rank-based model (2.1)

calibrated using the Standard model (2.5); ii) the persistently heterogeneous rank-based

model (2.9), the extension of the rank-based model that includes persistent heterogeneity;

iii) an extension of the Standard model (2.5) in which returns to wealth are auto-correlated

across generations.

3.1 Calibrations

We first discuss the details of the calibrations we adopt.

The Approximated Rank-Based model. We wish to construct the rank-based approx-

imation of the Standard model, using (2.6) to define the rank-based parameters αk and σk

from (2.1). The first step is to parameterize the Standard model, which we do following

Benhabib et al. (2011) and Benhabib et al. (2019). We set the household lifespan T equal to

45 years and the growth rate of labor earnings equal to 0.01. The preference parameters η, ψ,

and χ are set equal to 0.04, 2, and 0.25, respectively. The estate tax and the capital income

tax, b and ζ, are set equal to 0.2 and 0.15, respectively. To model lifetime labor income yi,t,

we use a six-state Markov chain calibrated to the U.S. Survey of Consumer Finances (SCF).

This yields a mean of 6.4 and a standard deviation of 16.1 for yi,t, where one unit is equal to

10,000 dollars.11 Finally, for the idiosyncratic lifetime return on wealth, ri,t, we use a four-

state Markov chain that is calibrated so that the average and standard deviation of these

returns approximately match the empirical results of Fagereng et al. (2020) for Norwegian

11Specifically, we have yi,t ∈ {0.9, 3.6, 7.4, 18.5, 39.0, 130.0}, with i.i.d. transition probabilities for the six
states equal to (0.22, 0.56, 0.17, 0.02, 0.015, 0.015), respectively.
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data.12

The next step is to simulate this parameterization of the Standard model, which we do

for 2,000 generations with the number of households N set equal to 10,000. We then use

the results of these simulations and follow the econometric procedure described by Fern-

holz (2017) to estimate the relative growth-rate parameters αk, k = 1, . . . , N .13 Using our

estimates of the rank-based relative growth rate parameters αk, we can find values for rank-

based variance parameters σk satisfying (2.3) that, according to the characterization (2.4),

yield a stationary distribution for the rank-based model that best approximates the average

distribution of the Standard model across the 2,000 generations.14

0 2000 4000 6000 8000 10000
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Growth Rate (%)

Figure 1: Annualized estimated parameters αk for the approximated rank-based model.

Figure 1 plots the annualized estimated relative growth-rate parameters αk for the rank-

based approximation of the Standard model. The figure shows that the these parameters

satisfy the stability condition (2.2), with the estimated values such that α1 < α2 < · · · <
αN .15

12Specifically, we have ri,t ∈ {0.02, 0.05, 0.09, 0.27}, with i.i.d. transition probabilities for the four states
equal to (0.44, 0.45, 0.10, 0.01), respectively. With this parameterization, the average and standard deviation
of idiosyncratic returns are 4.3% and 3.1%, respectively.

13Following Fernholz (2017), we apply a Gaussian kernel filter with a range of 4,000 ranks ten times to
smooth the estimated parameters αk.

14Specifically, we minimize the squared distance between the wealth shares reported in Table 1 for the
Standard model and those predicted by (2.4) for the rank-based model.

15Recall from Section 2.1, however, that this does not imply that returns on wealth in the model are lower
for higher-ranked, higher-wealth households.
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Figure 2 plots the annualized estimated variance parameters σk for the rank-based ap-

proximation of the Standard model, and Figure 3 presents a log-log plot of wealth versus

rank for both the Standard model and its rank-based approximation. We can see from Figure

3 that the rank-based approximation generates a smoothed version of the wealth distribution

from the Standard model.
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Figure 2: Annualized estimated parameters σk for the approximated rank-based model.
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Figure 3: Log-log plot of wealth versus rank for the Standard model (average from 2,000
simulations) and its rank-based approximation.

The Persistently Heterogeneous Rank-Based model. We wish to calibrate the persis-

tently heterogeneous rank-based model (2.9), which extends the rank-based model (2.1) to

13



include persistent heterogeneity, so that it maintains approximately the same realistic sta-

tionary wealth distribution as the approximated rank-based model. We assume that 3,000 of

the households are high-type households, with γh = 0.02. According to (2.10), this implies

that the remaining 7,000 low-type households have γ` ≈ −0.0086. Furthermore, we can

use the same estimated parameter values for σk from the approximated rank-based model

(Figure 2) for the persistently heterogeneous rank-based model.

The calibration of the rank-based relative growth rates α̂k is more delicate, however.

We cannot simply use the estimated values of αk from the approximated rank-based model

(Figure 1) for the persistently heterogeneous rank-based model since the persistently hetero-

geneous parameters γi from (2.9) lead to a more skewed stationary distribution than in the

model (2.1). Thus, it is necessary to adjust the estimated rank-based relative growth rate

parameters αk in Figure 1, so that α̂k 6= αk, to maintain a similar stationary distribution for

the two rank-based models.

Consider the rank-based approximation (2.1) of the heterogeneous rank-based model

(2.9), where the parameters αk are defined as in (2.6). In this case, Fernholz et al. (2013)

show that the relative growth rate parameters α′k for the rank-based approximation are given

by

α′k = α̂k + (N − n)ξ`,kγ` + nξh,kγh, (3.1)

for all k = 1, . . . , N . According to Proposition 2.1, the stationary distributions of the rank-

based approximation of the model (2.9) and the rank-based model (2.1) will be the same if

we choose α̂k such that α′k = αk, for each rank k. However, solving for the parameters α̂k

that achieve this equality is complicated by the fact that we cannot directly solve for the

occupation times ξ`,k and ξh,k in (3.1), but instead must rely on simulations of the persistently

heterogeneous rank-based model to generate estimates of these parameters.

We use a simple procedure to generate estimates of the parameters α̂k from the model

(2.9) such that α′k is approximately equal αk, for each rank k. First, we use (3.1) to guess

values of the parameters α̂k such that α′k−αk ≈ 0, for all k = 1, . . . , N . Next, we simulate the

persistently heterogeneous rank-based model with these parameters α̂k to generate estimates

of the rank-based approximation parameters α′k, and then calculate the standard deviation

of α′k − αk. Once this error term is calculated, we incrementally alter the values of α̂k by

setting each equal to xα̂k, where x is slightly less than or slightly greater than one. We then

re-estimate the parameters α′k and again calculate the sum of squared values α′k−αk. If the
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squared error with the parameter values xα̂k is smaller, then we keep the new parameter

values and repeat the procedure by altering the new parameter values in the same way. If

not, then we consider a different value of x and repeat the procedure. This procedure is

repeated until the sum of squared values α′k − αk is larger for the parameter values xα̂k, for

both x = 1.001 and x = 0.999. The annualized estimated parameters α̂k found using this

procedure are shown in Figure 4.
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Figure 4: Annualized estimated parameters α̂k for the persistently heterogeneous rank-based
model, and annualized estimated parameters αk for the approximated rank-based model.

The Auto-Correlated Returns model. We introduce autocorrelated returns into the

Standard model (2.5) to capture imperfect social mobility as in Benhabib et al. (2011) and

Benhabib et al. (2019) and to investigate how such returns impact long-run mobility. In this

version of the model, we assume that wealth returns follow a highly persistent AR-1 process,

with

log(1 + ri,t+1) = θ log(1 + ri,t) + εi,t, (3.2)

where εi,t is normally distributed with mean equal to 0.0375 and standard deviation equal

to 0.025 and the persistence parameter θ is equal to 0.9. For symmetry, we also assume

that labor earnings log yi,t are i.i.d. and drawn from a normal distribution with mean equal

to 0.85 and standard deviation equal to 1.416.16 In all other respects, the auto-correlated

16These values imply that the mean of yi,t is 6.4 and the standard deviation is 16.1, exactly matching the
calibration of the Standard model which is based on the SCF.

15



returns model is identical to the Standard model which was used to calibrate the rank-based

model.

3.2 Results

The wealth shares of different subsets of households in the SCF data can be compared with

those generated by the different calibrated models in the upper part of Table 1. All models

other than the auto-correlated returns model are calibrated to match these wealth shares

and do relatively well at this, especially for the top 1% wealth share.

Data Standard Approximated Persist. Heter. Auto-Correlated

Model Rank-Based Rank-Based Returns

Model Model Model

Wealth Distribution

Top 1% 33.6% 33.1% 32.6% 35.1% 98.5%

Top 1-5% 26.7% 26.4% 17.1% 16.6% 0.6%

Top 5-10% 11.1% 6.3% 9.4% 9.1% 0.3%

Top 10-20% 12.0% 8.0% 11.0% 10.6% 0.3%

Top 20-40% 11.2% 10.5% 12.9% 12.4% 0.2%

Top 40-60% 4.5% 7.7% 8.2% 7.9% 0.1%

Bottom 60-100% -0.1% 8.0% 8.7% 8.3% 0.1%

Wealth-Rank Correlations

Parent-Child Rank Coeff. 0.191 0.177 0.187 0.218 0.252

Grandparent-Child Rank Coeff. 0.116 0.015 -0.004 0.089 0.147

Long-Run Persistence Coeff. 0.105 0.001 0.000 0.116 0.022

Table 1: Upper part: Average wealth shares from 1,000 simulations of the different models
- data from the Survey of Consumer Finances. Lower part: Average coefficients from re-
gressions of child rank on parent rank and grandparent rank from 1,000 simulations of the
different model - data from Danish wealth holdings for three generations in Boserup et al.
(2014). Average coefficient from regressions of household rank in generation t on household
rank in generation t − 23 (585 years) from 1,000 simulations of the different models - data
from estimates of very long-run (585 years) dynastic wealth holdings in Florence, Italy, in
Barone and Mocetti (2016).

In addition to realistic wealth distributions, these models generate parent-child wealth-
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rank correlations comparable to those of Boserup et al. (2014), as reported in the lower part

of Table 1.

The numerical results on the rank coefficient in the lower part of Table 1 are consistent

with the theoretical results of Section 2. Proposition 2.3 implies that household wealth

ranks will be uncorrelated over very long time periods in the rank-based approximation of

the Standard model, while Theorem 2.5, in contrast, implies that household wealth ranks will

be positively correlated over arbitrarily long time periods in a rank-based model that features

persistent heterogeneity. The simulation results confirm these results.17 Furthermore, these

results show that the version of the Standard model with highly auto-correlated returns is

able to approximately match the empirical results of Boserup et al. (2014) and generate

a significant link between child and grandparent wealth ranks, after controlling for parent

wealth rank. This auto-correlated returns model, however, fails to match the long-run link

between dynastic wealth ranks reported by Barone and Mocetti (2016), and also generates

an implausibly skewed wealth distribution as shown in the last column of Table 1. In

conclusion, it is only the heterogeneous rank-based model that can match all aspects of

the data simultaneously — the wealth distribution, the link between child, parent, and

grandparent wealth ranks, and the positive correlation of dynastic wealth ranks over very

long time periods.

It is useful, then, to study the properties of the heterogeneous rank-based model more

closely. Table 2 shows the composition of the top 1% and top 5% wealth-ranked households in

terms of low- and high-type households. This table also shows the composition of the bottom

50% and bottom 25% ranked households. According to the table, high-type households make

up the great majority of the top 1% and 5%, but there is still a non-negligible minority of

low-type households in these top subsets. The results in the table also suggest that low-

type households are more common in top subsets of the wealth distribution than high-type

households are in bottom subsets of the wealth distribution. Indeed, the fraction of low-type

households in the bottom 25% approximately matches the fraction of high-type households

in the top 1%, even though the latter is a much smaller and more exclusive subset of the

wealth distribution.

17The Standard model is, like its rank-based approximation, unable to generate long-run wealth rank
correlations as well.
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Top 1% Top 5% Bottom 50% Bottom 25%

High-Type Households 86.6% 72.7% 17.5% 12.0%

Low-Type Households 13.4% 27.3% 82.5% 88.0%

Table 2: Average composition of the top 1%, top 5%, bottom 50%, and bottom 25% of
households from 1,000 simulations of the heterogeneous rank-based model.

Figures 5 and 6 plot the estimated occupation times of different percentiles of the wealth

distribution for, respectively, high-type and low-type households. The estimated occupation

times presented in the figures are clearly consistent with the result in Proposition 2.4. Be-

cause there are 3,000 high-type households and 7,000 low-type households, the maximum

average occupation time for a high-type household in any percentile of the wealth distribu-

tion is 1/3000 ≈ 0.033%, while the maximum occupation time for a low-type household in

any percentile is 1/7000 ≈ 0.014%.18
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Figure 5: Average high-type household occupation times for different percentiles of the
wealth distribution from 1,000 simulations of the heterogeneous rank-based model.

18These upper bounds for low- and high-type household occupation times also appear in Proposition 2.4,
since the number of high-type households in this simulation n is equal to 3,000.
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Figure 6: Average low-type household occupation times for different percentiles of the wealth
distribution from 1,000 simulations of the heterogeneous rank-based model.

The very long-run persistence of wealth rank that exists in the heterogeneous rank-based

model can be seen most clearly in Figure 7. In this figure, we plot the correlation between the

wealth ranks of households in generation t and generation t+x, with values of x ranging from

1 to 25, for both the heterogeneous rank-based and auto-correlated returns models. Although

the auto-correlated returns model is able to generate substantial persistence in rank across

one or two generations, the rank correlation in this model quickly declines towards zero as the

generational gap between households increases. In contrast, the heterogeneous rank-based

model generates a more realistic but smaller persistence in wealth rank across one or two

generations, and this persistence never falls below 0.1 even as the generational gap grows

large. Of course, this very long-run persistence in wealth rank is exactly what is predicted

by Theorem 2.5.
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Figure 7: Rank correlations across multiple generations from 1,000 simulations of the het-
erogeneous rank-based and auto-correlated returns models.

4 Conclusion

We consider a simple heterogeneous agents model based on Benhabib et al. (2019) and show

that such standard models fail to match recent empirical results regarding long-run wealth

mobility. In particular, this type of model does not generate a positive correlation between

grandparent-child wealth rank, after controlling for parent-child wealth rank, and does not

generate a positive correlation between dynastic wealth ranks across very long time periods.

We extend the standard model to include persistent heterogeneity in returns to wealth, and

show that such an extended model is able to simultaneously match the wealth distribution,

short-run wealth mobility, and long-run wealth mobility. While we do not take a stand on

the precise interpretation of this form of persistent heterogeneity, we note that it can be

seen as a formalization of the latent factor representation of abilities, preferences, dynastic

network connections, occupational persistence or other relevant characteristics.
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Proofs

This section presents the proofs of Propositions 2.3, 2.2, and 2.4 and Theorem 2.5.

Proof of Proposition 2.3. The first part of the proposition, (2.11), follows directly from

Proposition 2.3 of Banner et al. (2005). For the second part, we have, for any household

i = 1, . . . , N ,

lim
τ→∞

E[ρt+τ (i)] = lim
τ→∞

N∑
k=1

kP (ρt+τ (i) = k) = lim
τ→∞

N∑
k=1

k

N
=
N(N + 1)

2N
=
N + 1

2
,

where the second equality follows from (2.11).

Proof of Proposition 2.2. First, note that E[log λ(rπt(k),t))] = E[log(λ(rπt(`),t))] and also

E[β(rπt(k),t, yπt(k),t)] = E[β(rπt(`),t, yπt(`),t)] for all wealth ranks k, `, because the expected

value of both returns to wealth and labor income do not vary across different ranks. Then,

because the ranked wealth processes satisfy w(1) ≥ · · · ≥ w(N) by definition, it follows from

(2.8) that α1 ≤ α2 ≤ · · · ≤ αN and hence (2.2) is satisfied and the rank-based model is

stationary.

Proof of Proposition 2.4. In order to prove the proposition, it is necessary to characterize

the occupation times for low- and high-type households in a heterogeneous rank-based model

(2.9) that satisfies (2.3) and (2.10). We denote the symmetric group of permutations of

{1, . . . , N} by ΨN , where p(k) ∈ {1, . . . , N} denotes the k-th element of the permutation p ∈
ΨN . Each permutation p describes a potential wealth ranking of the households i = 1, . . . , N ,

with p(k) denoting the index of the k-th ranked household. According to Corollary 4 from

Ichiba et al. (2011), for all i, k = 1, . . . N , the occupation time ξi,k is given by

ξi,k =
∑

{p∈ΨN | p(k)=i}

N−1∏
j=1

φp,j Ω, a.s., (A.1)

where

φp,j =
σ2
j + σ2

j+1

−4(
∑j

m=1 α̂m + γp(m))
, (A.2)
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for any permutation p ∈ ΨN and all j = 1, . . . , N − 1, and Ω =

(∑
q∈ΨN

∏N−1
j=1 φq,j

)−1

.

According to (A.1), for any k = 1, . . . , N − 1,

ξ`,k =
∑

{p∈ΨN | p(k)=`, p(k+1)=`}

N−1∏
j=1

φp,j Ω +
∑

{p∈ΨN | p(k)=`, p(k+1)=h}

N−1∏
j=1

φp,j Ω, (A.3)

and also

ξ`,k+1 =
∑

{p∈ΨN | p(k)=`, p(k+1)=`}

N−1∏
j=1

φp,j Ω +
∑

{p∈ΨN | p(k)=h, p(k+1)=`}

N−1∏
j=1

φp,j Ω. (A.4)

If k < N − 1 as well, then

∑
{p∈ΨN | p(k)=`, p(k+1)=h}

N−1∏
j=1

φp,j =
∑

{p∈ΨN | p(k)=`, p(k+1)=h}

φp,kφp,k+1

k−1∏
j=1

φp,j

N−1∏
j=k+1

φp,j, (A.5)

and

∑
{p∈ΨN | p(k)=h, p(k+1)=`}

N−1∏
j=1

φp,j =
∑

{p∈ΨN | p(k)=h, p(k+1)=`}

φp,kφp,k+1

k−1∏
j=1

φp,j

N−1∏
j=k+1

φp,j. (A.6)

For every p ∈ ΨN with p(k) = ` and p(k + 1) = h, there exists a p′ ∈ ΨN with p′(k) = h,

p′(k + 1) = `, and p′(j) = p(j) for all j 6= k, k + 1, so it follows that

∑
{p∈ΨN | p(k)=h, p(k+1)=`}

k−1∏
j=1

φp,j

N−1∏
j=k+1

φp,j =
∑

{p∈ΨN | p(k)=`, p(k+1)=h}

k−1∏
j=1

φp,j

N−1∏
j=k+1

φp,j. (A.7)

Let p ∈ ΨN with p(k) = ` and p(k + 1) = h, and p′ ∈ ΨN with p′(k) = h, p′(k + 1) = `, and

p′(j) = p(j) for all j 6= k, k + 1. According to (A.2), we have

φp,k =
σ2
k + σ2

k+1

−4(
∑k

m=1 α̂m + γp(m))
<

σ2
k + σ2

k+1

−4(
∑k

m=1 α̂m + γp′(m))
= φp′,k, (A.8)

since γh > γ`. Together with the fact that φp,k+1 = φp′,k+1, (A.3), (A.4), (A.5), (A.6), (A.7),

and (A.8) thus imply that ξ`,k < ξ`,k+1.
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If k = N − 1, then we have

∑
{p∈ΨN | p(N−1)=`, p(N)=h}

N−1∏
j=1

φp,j =
∑

{p∈ΨN | p(N−1)=`, p(N)=h}

φp,N−1φp,N

N−2∏
j=1

φp,j, (A.9)

and

∑
{p∈ΨN | p(N−1)=h, p(N)=`}

N−1∏
j=1

φp,j =
∑

{p∈ΨN | p(N−1)=h, p(N)=`}

φp,N−1φp,N

N−2∏
j=1

φp,j. (A.10)

As with the previous case, for every p ∈ ΨN with p(N − 1) = ` and p(N) = h, there exists a

p′ ∈ ΨN with p′(N − 1) = h, p′(N) = `, and p′(j) = p(j) for all j < N − 1, so it follows that

∑
{p∈ΨN | p(N−1)=`, p(N)=h}

N−2∏
j=1

φp,j =
∑

{p∈ΨN | p(N−1)=h, p(N)=`}

N−2∏
j=1

φp,j, (A.11)

Similarly, we if we let p ∈ ΨN with p(N − 1) = ` and p(N) = h, and p′ ∈ ΨN with

p′(N − 1) = h, p′(N) = `, and p′(j) = p(j) for all j < N − 1, then (A.2) implies that

φp,N−1 =
σ2
N−1 + σ2

N

−4(
∑N−1

m=1 α̂m + γp(m))
<

σ2
N−1 + σ2

N

−4(
∑N−1

m=1 α̂m + γp′(m))
= φp′,N−1. (A.12)

Thus, combining (A.3), (A.4), (A.9), (A.10), (A.11), (A.12) implies that ξ`,N−1 < ξ`,N . All

low-type households have equal occupation times at each rank, so that ξi,k = ξj,k = ξ`,k for

all households i, j that are low types with γi = γj = γ`, and thus because there are N − n
total low-type households, it must be that ξ`,k < 1/(N − n) for all k = 1, . . . , N . It follows,

then, that 0 < ξ`,1 < ξ`,2 < · · · < ξ`,N < 1/(N − n), a.s. A similar argument establishes that

1/n > ξh,1 > ξh,2 > · · · > ξh,N > 0, a.s.

Proof of Theorem 2.5. Suppose that household i is a low-type household with γi = γ`,

and household j is a high-type household with γj = γh. According to Proposition 2.4, we

have ξ`,1 < ξ`,2 < · · · < ξ`,N , a.s. and ξh,1 > ξh,2 > · · · > ξh,N , a.s. It follows, then, that

lim
τ→∞

E[ρt+τ (i) | γi = γ`] = ξ`,1 + 2ξ`,2 + · · ·+Nξ`,N >
N + 1

2
, (A.13)

where the last inequality follows because ξ`,N > 1/N and the expected value in (A.13) is

increasing in the value of ξ`,N despite the constraint that ξ`,1 + · · ·+ ξ`,N = 1. From (A.13),
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we have

ξ`,1 + 2ξ`,2 + · · ·+Nξ`,N >
N + 1

2
,

N(ξ`,1 + 2ξ`,2 + · · ·+Nξ`,N) > 1 + 2 + · · ·+N,

which implies that

1−Nξ`,1 + 2− 2Nξ`,2 + · · ·+N −N2ξ`,N) < 0,

1

n
− N

n
ξ`,1 +

2

n
− 2N

n
ξ`,2 + · · ·+ N

n
− N2

n
ξ`,N < 0. (A.14)

If we write (2.13) as

ξh,k =
1

n
(1− (N − n)ξ`,k) =

1

n
− N

n
ξ`,k + ξ`,k,

for all k = 1, . . . , N , then (A.14) implies that

ξh,1 − ξ`,1 + 2(ξh,2 − ξ`,2) + · · ·+N(ξh,N − ξ`,N) < 0,

and hence also

ξh,1 + 2ξh,2 + · · ·+Nξh,N < ξ`,1 + 2ξ`,2 + · · ·+Nξ`,N . (A.15)

Because household j is a high type, limτ→∞ E[ρt+τ (j) | γj = γh] = ξh,1 + 2ξh,2 + · · ·+Nξh,N ,

and hence it follows from (A.15) that

lim
τ→∞

E[ρt+τ (i) | γi = γ`] > lim
τ→∞

E[ρt+τ (j) | γj = γh]. (A.16)

Having shown in (A.16) that low-type households will on average in the long run occupy

lower ranks than high-type households, the last step is to show that the higher the rank of a

household at time t, the more likely that household is to be a high type. If some household i

occupies rank k at time t, so ρt(i) = k, for any rank k = 1, . . . , N , then the probability that

household i is a high type is

P (γi = γh | ρt(i) = k) =
nξh,k

(N − n)ξ`,k + nξh,k
= nξh,k,

where the second equality follows from (2.13). By Proposition 2.4, it follows that

1 > nξh,1 > nξh,2 > · · · > ξh,N > 0,

1 > P (γi = γh | ρt(i) = 1) > · · · > P (γi = γh | ρt(i) = N) > 0, (A.17)
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and also that

0 < P (γi = γ` | ρt(i) = 1) < · · · < P (γi = γ` | ρt(i) = N) < 1. (A.18)

Taken together, (A.16), (A.17), (A.18) imply that

lim
τ→∞

E[ρt+τ (i)] = lim
τ→∞

E[ρt+τ (i) | γi = γh]P (γi = γh | ρt(i) = k)

+ lim
τ→∞

E[ρt+τ (i) | γi = γ`]P (γi = γ` | ρt(i) = k),

is increasing in k.
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