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Abstract

We study the risky behavior of adolescents. Concentrating on smoking, we structurally es-

timate a dynamic social interaction model in the context of students’ school networks included

in the National Longitudinal Study of Adolescent Health (Add Health). The model allows for

forward-looking behavior of agents, addiction effects, and social interactions in the form of

preferences for conformity in the social network. We find strong evidence for forward-looking

dynamics and addiction effects. We also find that social interactions in the estimated dynamic

model are quantitatively large. A misspecified static model would fit data substantially worse

while producing a much smaller estimate of the social interaction effect. The estimated dy-

namic model allows us to decompose the effect on smoking of a permanent shock to students’

preferences in the 10th grade - e.g., a shock to tobacco availability at home or family income -

in its own direct component and in the component due to social interactions. Indeed we find

large relative social effects in grade 10th, declining in grade 11th and 12th.

Journal of Economic Literature Classification Numbers: C18, C33, C62, C63, C73, I12.

Keywords: Dynamic social interactions, conformity, smoking, addiction, identification, model

validation, dynamic social multiplier.
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1 Introduction

Smoking behavior is widespread among adolescents. According to the National Youth Tobacco

Survey in 2021, approximately 2.55 million (9.3%) students in the U.S. reported to have used

a tobacco product in the past 30 days: 2.06 million (13.4%) high school students and 470,000

(4.0%) middle school students (CDC, 2021). Smoking is a serious policy concern because it

involves severe risks in terms of health outcomes. According to WHO, the tobacco epidemic is

one of the biggest public health threats the world has ever faced killing more than 8 million people

a year around the world (WHO, 2021). Furthermore, smoking is responsible for a large amount

of socio-economic costs, in terms of, e.g., poor academic performance (König, 2016), earnings and

unemployment (Ekpu and Brown, 2015; Weng et al., 2015), and criminal victimisation (Lewis

et al., 2016). The empirical literature on risky health behavior in economics and social sciences

emphasizes several fundamental aspects of smoking behavior. First of all, it responds to dynamic

incentives, such as, e.g., future price changes and anticipated future consumption, and has an

addictive component (Becker, Grossman, and Murphy, 1991; Chaloupka, 1991). Furthermore,

smoking is a social behavior, in the sense that it depends on the behavior of relevant peers (Argys

and Rees, 2008; Lundborg, 2006; Duncan et al., 2005; Balsa and Diaz, 2018).1

In this paper, we study the smoking decisions of adolescents. In accordance with the empirical

literature, we account for the dynamic, forward-looking aspect of the decision problem, allow-

ing adolescents to consider the addictive characteristics of tobacco consumption in evaluating

the consequences of their behavior. Furthermore, we embed the dynamic choice of adolescents

regarding smoking in a school environment characterized by rich social interactions. The joint

consideration of dynamic choice and social interactions highlights interesting novel dimensions of

the choice problem, allowing students, e.g., to anticipate a change in their social network after

high school, which may affect the importance of peer effects over schooling age. More specifically,

we formulate and structurally estimate a dynamic social interactions model. Agents’ preferences

over choices at any time depend on their own previous decisions to capture habits and addiction.

Agents interact in their social reference group, the social network, and display preference external-

ities: each individual’s preferences depend on the current choices of the agents in their network

to capture preferences for conformity to the social reference group. This dynamic interaction

structure induces each individual’s choice to depend on previous choices and current preference

1See Cawley and Ruhm (2011) and Kenkel and Sindelar (2011) for extensive surveys.
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shocks of all peers.2 We bring the model to data in the context of students’ school networks

included in the Add Health. The data collected by this survey includes information about each

student’s health-risk behavior as well as his/her social network, repeatedly, in different school

years. We use the panel dimension of the data to estimate our dynamic social interaction model

structurally. We estimate the system of linear policy rules describing the equilibrium. In turn, the

equilibrium characterization of the dynamic game allows us to back out the structural preference

parameters from our estimates of the policy rules.

There are well-known inferential problems in the study of social interactions.3 In our context,

three main issues arise due to: (i) the endogeneity of previous choices as explanatory variables

for current choice, in the absence of any restrictions on the intertemporal correlation structure of

errors, (ii) the existence of common shocks or common unobserved factors affecting all individuals’

choices in a network, independently of social interactions, and (iii) the endogeneity of the network.

All these issues translate into a correlation between the regressors and the errors. For all three

issues, we offer solutions that allow us to construct a consistent estimator in our environment by

using the moment restrictions imposed by the dynamic equilibrium.

Our empirical analysis confirms the main thrust of our model regarding smoking behavior

in the adolescent population. The preference parameters driving the addiction effect and the

social interaction effect are estimated to be significantly different from zero. Furthermore, a

significant forward-looking component characterizes students’ decision-making: the discount rate

is also positive and significant. Indeed, we measure a relevant bias associated with estimating

(i) a mis-specified myopic model (which allows for addiction but not for forward looking choice);

as well as (ii) a mis-specified static model (with no addiction nor forward looking behavior).

Notably, the static model produces a much smaller estimate of the preference parameter driving

the social interaction effect.

In the dynamic model we estimate sizeable quantitative social interaction effects of potential

shocks to the observable covariates we use in our estimation - e.g., Tobacco at home or Family

income. Specifically, these effects are measured by i) the relative strength of the social component

of the effect of the shock with respect to the own direct effect;4 and by ii) the induced correlation

2Formally, the model is reduced to a dynamic game which, under our assumptions, we show has a unique
Subgame Perfect Equilibrium. We characterise equilibrium behavior as a system of linear non-stationary Markovian
policy rules, for each individual and in each time period.

3See e.g., Blume, Durlauf and Jayaraman (2015), Brock and Durlauf (2001b), and Manski (2008).
4This decomposition between the social and the own effect is related to the concept of social multiplier (Becker

and Murphy (2001), Glaeser and Scheinkman (2003)), though this concept is plagued by subtle identification issues,
as shown by Boucher and Fortin (2016); see Section 5.2 for a detailed discussion of this issues
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between the students’ choices across the network. Importantly, in our context, social interaction

effects have a fundamental dynamic component: a temporary (one-period) shock to agents’ pref-

erences in the 10th grade has effects on their behaviors in grades 10, 11, and 12 (the effects of

permanent shocks are naturally larger). Finally, our theoretical findings point to the importance

of the same-period effects of a temporary shock in the different grades encoding the importance

of the number of periods to the end of school in students’ choices. Students anticipate a change in

their social network after high school, which affects the importance of peer effects over schooling

age: as the time to the end of high-school increases, the students’ policy functions weigh more

heavily on future shocks and less heavily the current shock.5

Finally, we also implement a validation exercise of our empirical strategy and our structural

estimates. We use the structural estimates to make out-of-sample predictions of students’ equi-

librium behavior in networks that are not included in the estimation sample. More precisely, we

use the structural parameters off of our estimation sample consisting of grades 10, 11, and 12 to

predict equilibrium behavior for students in the sample consisting of grade 9. We compare pre-

dictions and actual choice data to validate the model and demonstrate that the model performs

very well in the validation exercise.

1.1 Related Literature

As we noted in the Introduction, risky health behaviors have been extensively studied in economics

and, more generally, in the social sciences. We refer to Cawley and Ruhm (2011) and Kenkel

and Sindelar (2011) for extensive and detailed surveys of the literature. A fundamental aspect of

both the theoretical and the empirical literatures in economics involves i) distinguishing rational

addiction models, as introduced by Becker and Murphy (1988) and developed by Orphanides and

Zervos (1995), from behavioral models, as in Gruber and Kosegi (2001), Bernheim and Rangel

(2004) and others; ii) dealing with the inferential problems plaguing the empirical study of social

interactions, as noticed by Manski (1993) and addressed by Blume, Durlauf and Jayaraman

(2015), Brock and Durlauf (2001b) and many others.

For rational and behavioral models of addiction, it should be noted that in both classes of

models, agents respond to dynamic incentives, such as, e.g., future price changes and anticipated

future consumption. But the implied responses are different along several dimensions. Agents’

5Interestingly, at the estimated parameter values, this effect is softened by a counteracting effect: forward-
looking rational agents smoothen consumption paths to the final period to minimize the convex costs of behavioral
change due to a very high addiction parameter estimate.
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choices in behavioral models are driven by preferences for immediate gratification, impulsivity,

and cue-triggered addiction which have no role in models of rational addiction. Therefore, the dis-

tinction between rational and behavioral addiction manifests itself most clearly in high-frequency

decisions over days. It is much less relevant when studying, as in our case, low-frequency choices

over the years. For this reason, we postulate rational agents in our analysis.

With respect to inference in social interactions models, as we noted in the Introduction, we

try and address the main issues in the literature: (i) the endogeneity of previous choices as

explanatory variables for current choice, in the absence of any restrictions on the intertemporal

correlation structure of errors, (ii) the existence of common shocks or common unobserved factors

affecting all individuals’ choices in a network, independently of social interactions, and (iii) the

endogeneity of the network.

First of all, regarding (i), in the absence of dynamics, the quest for valid instruments is

conducted necessarily at the cross-sectional level, and exclusion restrictions are translated into

necessary conditions on the structure of the adjacency matrix.6 In our dynamic environment, we

are not restricted to the cross-section. In particular, as we discuss in more detail in Section 4.2,

we have access, for each period, to a set of external instrumental variables from the information

set in the previous periods. These variables are informative for the lagged choice variables by

virtue of the intertemporal linkages formed by the moment restrictions of dynamic equilibrium

of our social interactions model. To sum up, exploiting the equilibrium restrictions that jointly

employ interactions in “space” as well as rational expectations interactions in “time” provides

us with much richer possibilities for identification. Finally, for (ii) and (iii), we tackle them by

exploiting quasi-random variation across cohorts within a school, given that the definition of

peers in this paper is all students of the same gender in the same grade and school. The idea

is to estimate a model with school and grade fixed effects by presuming that neither students

nor parents can anticipate perfectly the composition of schoolmates’ characteristics across grades

when choosing schools or residential neighborhoods. This is a well-known empirical strategy used

with AddHealth data because multiple cohorts are observed within schools. Furthermore, in our

model, each equation (i.e. each grade) contains a grade-specific intercept together with school

fixed effects. As a result, our model can account for time-varying common shocks at the school

level (Angrist, 2014). We explain the implementation of this strategy in-depth in Section 4.2.

6The characteristics of friends and friends of friends are valid instruments under appropriate restrictions on the
structure of the adjacency matrix; see, e.g., Bramoullé, Djebbari and Fortin (2009), Calvo-Armengol, Patacchini
and Zenou (2009).
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To provide a more satisfactory (less reduced-form solution to the endogeneity of the network

issue iii), a growing literature on social interactions has resorted to modeling the formation of

social networks, ; see e.g. Battaglini, Patacchini and Rainone (2021), Badev (2021), Boucher

(2020), Christakis et al. (2020), Hsieh and Lee (2015), Hsieh , König and Liu (2022), König

(2016), and Mele (2017a,b). Embedding network formation in a fully specified dynamic forward-

looking choice model is however theoretically daunting. Mele (2017a,b), for instance, estimates

a network formation model to fit the observed networks’ statistical properties, such as, e.g.,

homophily. But the paper does not study equilibrium in the network. Badev (2021), instead,

while estimating a network formation model where the network is allowed to change following an

evolutionary process, has to restrict the analysis by severely limiting the rationality of his agents’

choices.

Another important inference issue for social interaction models has been raised by Boucher and

Fortin (2016), with regards to the identification of pure conformity models with respect to models

displaying also social complementarities. This issue is important because when society displays

pure conformity (and there is no addiction effect), the preference parameter driving the social

interaction effect has no bearing on the total effect of an exogenous shock on agents’ behavior;

that is, in Boucher and Fortin (2016)’s definition, the social multiplier is zero. In this paper we

(do not attempt at identifying social complementarities and) postulate pure conformity, but we

exploit a decomposition of the own and the social effect of exogenous shocks to provide a measure

of social interaction effects, which is related to the social multiplier with social complementarities,

as in Becker and Murphy (2001) and Glaeser and Scheinkman (2003); we provide more details on

this issue in Section 5.2 and in an online Appendix.

From a theoretical point of view, this paper’s main novelty consists in studying the theoretical

properties of equilibrium in an economy displaying both dynamic, forward-looking agents and

social interactions. In this respect, a related model is introduced in Reif (2019), to characterize the

theoretical properties of addiction in a dynamic, forward-looking model with social interactions.

Social interactions, however, are modeled in a reduced form by having agents’ preferences depend

on the average action in the economy, without a specification of the structure of interactions on

the network. Differently from our model, therefore, in Reif (2019) agents need not anticipate

the effects of their actions on those of their peers in their decision problems. Various theoretical

properties of models of social interactions in linear dynamic economies are also studied in Özgür,

Bisin, and Bramoullé (2020). However, in the current paper, the analysis of social interactions is
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extended to allow for general network topology. This is important in particular because it changes

identification conditions. More specifically, an incomplete network structure provides a source of

non-linearity (intransitive triads) that can be exploited for identification purposes (Bramoullé,

Djebbari and Fortin, 2009; Calvo-Armengol, Patacchini and Zenou, 2009) in addition to lagged

values of exogenous variables as suggested by the moment restrictions of the dynamic equilibrium.

In terms of the empirical analysis, the main contribution of this paper still consists in es-

timating structurally a model that allows jointly for both dynamic forward-looking agents and

social interactions. Indeed, most studies of risky health behaviors have examined either peer

group effects or addiction and dynamic effects; see the literature surveyed by Cawley and Ruhm

(2011) and Kenkel and Sindelar (2011), and, more recently, e.g., Nakajima (2007), Card and

Giuliano (2013), Eisenberg, Golberstein and Whitlock (2014), Lee, Li and Lin (2014) and Hsieh

and Van Kippersluis (2018). In this dimension, the closest paper to ours is Dahl, Løoken, and

Mogstad (2014), on the influence of peers in the take-up of social programs (specifically, paid

paternity leave in Norway). Using information transmission as the channel for social interactions,

Dahl, Løoken, and Mogstad (2014) estimates “snowball effects”, that is, peer effects that have a

a dynamic component. Its analysis however does not allow for forward-looking behavior in the

dynamic choice of agents, and the dynamics of peer effects are due to the exogenous spreading of

interactions over the network.

2 Dynamic Interactions on Networks

This section introduces the theoretical structure we shall adopt in the paper to study dynamic

interactions on networks. Agents make choices over time. Their preferences over choices at any

time t depend on their own previous choices at t − 1. In the context of health risk behavior we

study in this paper, this dependence represents the costs associated with behavioral changes due,

e.g., to habits and addictions. Agents interact in their social reference group, the social network,

and display preference externalities: each agent’s preferences at any time t depend on the current

choices of agents in her network. In the context of health risk behavior, this effect represents

agents’ preferences for conformity with the social reference group. This dynamic interaction

structure induces each agent’s optimal choice to depend on all other agents’ previous choices and

current preference shocks.
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2.1 The Model

The economy is populated by N agents i = 1, . . . , N who live for t = 1, . . . , T periods. Each agent

i chooses an action yit at time t after having observed a preference shock θit ∈ Θ.7 Let yt and

θt denote the corresponding N -dimensional vectors stacking all agents’ choices and preference

shocks respectively. Let θ := (θt) := (θit)i=1,...,N, t≥1 be the stochastic process of agents’ preference

shocks.

The general social network embedded in our model is represented by an N ×N matrix G =

[gij ], where gij indicates the friendship relationship between i and j. We consider a directed

network, in which each agent interacts directly with her friends, and friendship of i with j does

not imply friendship of j with i. Following the convention in the social networks literature, i)

gij > 0 if i nominates j as one of her friends, otherwise gij = 0; ii) gij are row-normalised, i.e.,∑
j gij = 1; and iii) gii = 0. 8

In our empirical application, we use the following special case of this general network structure

as the friendship network:

gij =

 1
|NG(i)| , if i and j have the same gender and are in the same grade-school

0, otherwise,

where |NG(i)| denotes the number of students in the reference group of i.

The preferences of an agent i at time t are represented by the utility function

ui(yit−1,yt, θt,G) := −α1(yit−1 − yit)
2 − α2(θit − yit)

2 (1)

−α3

N∑
j=1

gij(yjt − yit)
2,

where α1, α2, α3 ≥ 0 are parameters. The utility function ui represents the trade-offs that each

agent i faces in her choice at time t. Each agent i obtains utility from matching her individual

choice yit with her previous choice yit−1, her preference shock θit, and with the current choices of

her peers {yjt}j:gij ̸=0. We refer to α1 as the addiction effect, to α2 as the own effect, and to α3

as the peer effect. While (α1, α2, α3) are restricted to be homogeneous across agents, preference

7See Appendix A for the formal introduction of the model, where all the technical assumptions are well-specified.
8The general theoretical results this model yields are all obtained under this general social network definition and

are presented in Appendices A, B, C, and D). By assuming a directed network, the matrix G is asymmetric. None
of our theoretical results, however, hinge on this assumption. That is, they hold also in the case of a symmetric
network structure.
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heterogeneity is captured in the formulation of the stochastic processes θit.
9

Agents maximize expected present discounted utility, with discount rate δ < 1. Before

her choice at time t, each agent observes i) the history of previous choice profiles, yt−1 =

(y0,y1, . . . ,yt−1), and ii) the history of preference shocks, θt = (θ1, . . . , θt) (including the period-t

realization).

2.2 Equilibrium

We consider Subgame Perfect Nash equilibria of this economy. At a Subgame Perfect Nash

equilibrium, agents make optimal choices simultaneously at each time t. The equilibrium is

represented by a family of maps {y∗i }Ni=1 such that for all i = 1, . . . , N and for all (yt−1, θt),

y∗it
(
yt−1, θt

)
∈ argmaxyit∈Y E

[
T∑
t=1

δt−1 ui(yit−1,yt, θt,G)

]
(2)

for (y0, θ1) given.

The economy displays a unique Subgame Perfect Equilibrium.10 The equilibrium choice profile

for period t can be written as

yt = α1Btyt−1 + α2Bt (Dt + θt) , t = 1, ..., T, (3)

where (y0, θ1) is given and the N × N matrix Bt and the N × 1 matrix Dt can be computed

recursively: Bt, t < T depends only on the future equilibrium coefficient matrices (Bτ )τ>t; while

Dt represents the discounted sum of the effects of expected future θτ ’s, τ > t.11

9While we model preferences for conformity directly as a preference externality, we intend this as a reduced form
of models of behavior in groups that induce indirect preferences for conformity, as e.g., Jones (1984) , Cole, Mailath
and Postlewaite (1992), Bernheim (1994), and Peski (2007). Furthermore, as already noticed, we postulate pure
conformity; that is, we do not add a component of preferences of the form

∑N
j=1 2γij yit yjt, which would capture

social complementarities, but with no distinguishable aggregate equilibrium behavior (Boucher and Fortin (2016)
show this in a static model but their result extends in our set-up).

10In Appendices B and C respectively, we formally state and prove the equilibrium existence and uniqueness
result, as well as the details of recursive algorithm to compute equilibria. Uniqueness requires α1 + α2 > 0 to
anchor agents’ preferences on their own private types or past choices. Clearly, without such an anchor, actions
are driven only by social interactions, own past behavior and types have no effect on the outcomes, and a large
multiplicity of equilibria would arise.

11See Appendices B and C for closed form characterizations of Bt and Dt, as well as a recursive algorithm to
compute them.
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3 Data

Our data source is the Add Health, a dataset on adolescents health’ behavior in the United States.

The dataset collects self-reported demographic and behavioral characteristics from students in

grades 7-12 from a nationally representative sample of roughly 130 private and public schools in

the years 1994-95.12

Every student attending the sampled schools on the interview day was asked to complete

a questionnaire (in-school questionnaire) containing questions on respondents’ demographic and

basic family background characteristics. A subset of students randomly selected from the rosters

of the sampled schools was then asked to complete at home a longer questionnaire containing

more sensitive individual and household information (in-home questionnaire), including detailed

questions about cigarette smoking behaviors. In 16 randomly selected schools, all students are

interviewed at home (the so-called saturated sample). Our analysis focuses on this data. Specifi-

cally, we restrict our sample to include all students in the schools where information on cigarette

smoking behaviors is collected for the entire school.13 Those subjects were interviewed again one

year apart in 1995–1996 (Wave II) so that each student’s information was collected twice, in two

waves in consecutive grades. Hence the sample has a panel dimension.

In our analysis, we define a student’s peers as all other students of the same gender in the same

grade at the same school. This definition is grounded in the sociological literature documenting

that adolescents are more likely to have same-gender friends (see, e.g. McPherson, 2001). Figure

1 depicts friendship linkages in the larger network in our data (286 nodes with a diameter of 24)

by using different colors for nodes indicating students of a different gender. The picture reveals

that, indeed, social interactions observed in the data are highly assortative by gender.14

To estimate our dynamic social interaction model (which we discuss in detail in Section 4),

12Add Health is funded by grant P01 HD31921 (Harris) from the Eunice Kennedy Shriver National Institute
of Child Health and Human Development (NICHD), with cooperative funding from 23 other federal agencies and
foundations. Add Health is currently directed by Robert A. Hummer and funded by the National Institute on Aging
cooperative agreements U01 AG071448 (Hummer) and U01AG071450 (Aiello and Hummer) at the University of
North Carolina at Chapel Hill. Add Health was designed by J. Richard Udry, Peter S. Bearman, and Kathleen
Mullan Harris at the University of North Carolina at Chapel Hill. Add Health data are restricted by contractual
agreement. Instructions on how to obtain them and all codes necessary for replication are available from the
authors. IRB approval: IRB0148126.

13This is done to avoid the complex inferential issues due to the missing observations in the peer characteristics
data for the schools where a random sampling scheme is adopted.

14In the Add Health questionnaire, the students are asked to identify their best friends from a school roster. This
paper does not use this information since unobserved characteristics may drive both behavior and friend choices.
Variations in the average peer characteristics of the same grade and gender schoolmates are instead reasonably
exogenous, as we will show in Section 4.2.
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we use the reduced-form linear system describing the equilibrium (Equation 3), which expresses

the vector of outcomes (cigarette smoking behavior) of individuals as a linear function of the

outcomes in the previous grade, and contemporaneous variables. In order to do that, we need

to measure cigarette smoking behavior. To measure it, we follow an approach close to that in

Badev (2021) and use the answers to the question “During the past 30 days, on how many days

did you smoke cigarettes?”. Figure 2 shows the distribution of students by the number of days

where they smoke cigarettes. Badev (2021) constructs a smoking indicator that is equal to one if

students answer one or more days (about 37% of the sample), and zero otherwise. In this paper,

we exploit the richness of the information in the Add Health questionnaire to classify further the

large mass of observations at 0 in Figure 2 (i.e., students who declare that they did not smoke in

the last 30 days). Specifically, we distinguish students who have never smoked a cigarette from

the behavior of students who happened not to smoke in the past 30 days but who have smoked

before. The former group is identified using the answers to the following question: “Have you

ever tried cigarette smoking, even just 1 or 2 puffs?”. To capture this distinction, we construct

a smoking behavior indicator which takes one of three possible values: 0 for students who report

to have never tried, 1 for the ones who report to have tried and not to have smoked in the last 30

days, and 2 for those who report to have smoked one or more days. We refer to these categories as

never tried smoking, occasionally smoking and regular smoking. Figure 3 shows the proportion of

students in each category. Students who have never tried are around 49 % and those who smoke

regularly are roughly 37% of the sample. We also run a number of robustness checks by changing

the definition of the smoking behavior indicator.15 The results of these robustness checks are

reported in Section 6.

Our set of control variables includes the variables indicated by the literature (see e.g., Cawley

and Ruhm, 2011; Lee, Li and Lin, 2014) as determinants of teenagers’ risky behavior, such as

age, gender, parental education, race, and indicators of the social structure of families as well

as variables measuring the susceptibility of a teenager to engage in smoking behavior (whether

15More specifically, we implement the following treatments: the binary smoking indicator in Badev (2021); an
indicator with a richer range where we add daily smoking as a category (this category is referred to students who
report smoking every day and make up around 35% of the regular smoking category); and finally a yet richer
indicator where the potential values encode the answers to the following question: “During the past 30 days, on
the days you smoked, how many cigarettes did you smoke each day?”: 0 for students who report to smoke zero
cigarettes, 1 for ones who report to smoke from 1 to 5, 2 for students who report to smoke from 6 to 10, and so on
up to values greater than 21.
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cigarettes are easily available at home and family income).161718 In addition, we control for

Peabody Picture Vocabulary Test (PVT) score from Wave I. Verbal IQ and cognitive skills are

found to be predictors of health behaviors (see, e.g., Cawley and Ruhm, 2011). Finally, we include

height since it has been indicated as a predictor of participation in social activities, such as team

sports (see Persico, Postlewaite, and Silverman, 2004).19 A unique feature of our data set is

that both survey respondents, as well as all other schoolmates, are interviewed, which allows us

to control for peers’ characteristics, thus disentangling the effects of endogenous from exogenous

effects. More precisely, peers’ characteristics are defined as the average value of the above controls

for all students of the same gender in the same grade at a given school.

The sample counts 1727 students excluding missing observations, about 415 of which are in

middle schools (grades 7, 8, and 9) and 1312 in high schools. We use the (larger) sample of high

school students to structurally estimate our model and data for other grades not employed in the

estimation sample for its validation. We report summary statistics for the entire sample (Table

10, Panel (a))) and for the sample without students who report to skip school without reason

for more than two days (see our IV strategy in Section 4.2.1 and Table 10, Panel (b)).20 It

appears that the composition of the sample is roughly unaffected, thus revealing that the average

student characteristics in the selected sample are not dissimilar to the average ones for the non-

selected. Our final sample of high school students counts 1,043 individuals. Consistently with the

epidemiological literature (see e.g., Jackson et al., 2002) which finds the persistence of smoking

behavior, our cigarette smoking indicator increases from wave I to wave II given the young age of

16In the wave I in-home questionnaire, students are asked for each parent to select how far each of their bio-
logical parents went in their education, with possible answers: “never went to school”, “not graduate from high
school”,“high school graduate”,“graduated from college or a university,” “professional training beyond a four-year
college”. If the information is available for both residential parents; we select the father level of education. We
construct a variable “Parents College degree”, which is coded as one if the parent is “graduated from college or a
university” or “professional training beyond a four-year college”. The base category is “never went to school”.

17We construct a variable “Two-parents family” using the respondent’s answers about household composition
from the wave I in-home questionnaire. In particular, this variable is coded as 1 if students report having two
parents (both biological or not) that are currently living in their household, and 0 otherwise.

18We pull information on family income using the declared total income from any sources before taxes. If family
income is missing, we imputed the family income as the mean of the sample conditional on gender, race, parental
education, and a dummy for missing family income. Students are asked to answer yes or no to the question “Are
cigarettes easily available to you in your home?”. We construct a variable “Tobacco at home”, which is coded
as 1 if the respondent answered yes to the question above, and 0 otherwise. The questions together measure the
accessibility to tobacco, either directly (i.e., stealing a cigarette from the mother’s purse) or indirectly, by buying
them and are also related to the price elasticities of demand for cigarettes (see e.g., Gallet and List, 2003; Cook
and More, 2000). We measure these variables in both waves I and Wave II, from the in-home questionnaire.

19The respondents’ height in feet and inches is available in both wave II and wave I in-home questionnaire.
20We dropped 375 students, which showed inconsistent time answers in the category never tried smoking between

waves I and II.
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students (from 0.61 to 0.88 on average). Girls make up about 52 percent of the sample. Around 63

percent of the sample is White, 14 percent is Black or African American, 16 percent is Hispanic,

and the remainder is Asian, American Indian, or unclear racial background. The average height

in the sample is 5.61 feet, and the average age is around 17 years old. Finally, around 28 percent

of our adolescents have cigarettes easily available at home. Regarding student family background,

about 76 percent of the adolescents in our sample have two parents living in the household, and

roughly 27 percent have parents who are college graduates or above. These percentages are in

line with data from other nationally representative surveys. We report in Table 11 in Appendix

H information from the 1994 Current Population Survey (CPS) that is re-weighted to match the

age distribution of the Add Health sample. As shown, the Add Health population is broadly

similar to the U.S. population as calculated from the CPS.21

4 Empirical Methodology

We use the panel nature of our data to structurally estimate our dynamic social interaction model.

The structural system of equations we estimate

ysgt = α1Bsgt ysgt−1 + α2Bsgt

[
Dsgt + θsgt

]
+ εsgt (4)

is the reduced-form system describing the equilibrium (Equation 3), implied by the intertemporal

first-order conditions of agents’ dynamic optimisation problems. Equation 4 expresses the vector

of outcomes ysgt (cigarette smoking behavior) of individuals in school s, with gender g, and

in grade t as a function of the outcomes in the previous grade, ysgt−1, and contemporaneous

variables (including expectations about the future, Dsgt).
22

Equation 3 depends on the structure of the stochastic process of preference shocks θT , which

captures the heterogeneity across agents in the model. In our empirical exercise, we implement

heterogeneous preference shocks as follows. Let the index k = 1, ...,K account for the k-th distinct

component of individual i’s observable characteristics (e.g. age, gender, parent’s education) and

let x
(k)
isgt denote its value for agent i at school s, with gender g and in grade t. The preference

shock θsgt is allowed to depend on individual i’s characteristics and on those of the member of

21The IPUMS-CPS database has been freely available since 1962. See Flood et al. (2018) for further information.
22The interpretation of this regression should naturally account for the discrete nature of the variable ysgt.
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her reference group. It is decomposed as follows:

θsgt := γt 1msg + κst 1msg + Xsgtβ + GsgXsgt ϕ︸ ︷︷ ︸
Observed exogenous heterogeneity (ait)

+ usgt,︸︷︷︸
Unobserved component

(5)

where β and ϕ are k×1 vectors of parameters, γt is an intercept, and κst is a school effect (specific

for each grade) with 1msg is a conformable vector of ones. More compactly the stochastic process

for preference shocks can be written as

θt = 1γt + ικt +Xtβ +GXt ϕ+ ut, (6)

where Xt = (X1m, . . . ,Xr̄m,X1f , . . . ,Xr̄f ) is an Nt × K matrix, ι = diag(1m1 , . . . ,1mr̄), 1 =

(1m1 , . . . ,1mr̄), Gg = diag(G1g, . . . ,Gr̄g) and G = diag(Gm,Gf ) with g = {m, f}, κt =

(κ1t, . . . , κr̄t), where r̄ denotes the number of schools, and Nt is the number of individuals at

grade t. The elements of the social interaction matrix G = [gij ] are row-normalized and the

interactions have the following group structure

gij =

 1
|NG(i)| , if i and j have the same gender and are in the same grade-school

0, otherwise,
(7)

where |NG(i)| denotes the number of students in the reference group of i.

Finally, the structural equation system we estimate, which defines the equilibrium of the

dynamic social interaction economy, is obtained by substituting the equation for the preference

shocks, Equation 6, into the general reduced-form system, Equation 4:

yt = Bt

[
α1 yt−1 + α2 (Dx

t + 1γt + ικt +Xtβ +GXt ϕ)
]
+ εt, t = 1, 2, . . . , T (8)

where yt = (y1m, . . . ,yr̄m,y1f , . . . ,yr̄f ) is Nt × 1 vector of outcomes and Dt represents the dis-

counted sum of the effects of expected future θτ , τ > t. The conditional expectations in Dt are

conveniently split into an observable and an unobservable component, respectively denoted Dx
t

and Du
t and εt = α2Bt (D

u
t + ut). Bt is a nonlinear function of α1, α2, α3, δ and G. It is com-

puted recursively starting from the last period where BT = (∆T I−α3G)−1 with ∆T =
∑3

i=1 αi.

Also Dx
t is computed recursively starting from the last period where it is assumed to be zero given

that there is no future. It is in general a nonlinear function of Bt, δ and E
[
(βI+ ϕG)XT |XT−1

]
,
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which is a function of XT−1 = (X1, . . . ,XT−1) observed by the econometrician. The detailed def-

initions of Bt and Dt and the description of the recursive algorithm can be found in Appendices

B and C. In the absence of future periods, the model in the last period is similar to a reduced

form of a static social interaction model

yT = (∆T I− α3G)−1
[
α1 yt−1 + α2 (1γT + ικT +XTβ +GXT ϕ)

]
+ εT. (9)

In our empirical exercise, the empirical counterpart of this equation system at time t = T is

constructed by considering students in grade 12 (t = 12) in wave II and the same individuals

in grade 11 (t = 11) at wave I. In other words, we use outcomes of 12th grade students as yT

and outcomes of the same students in the 11th grade as yT−1. The empirical counterpart of the

system at t = T − 1 is then constructed by considering individuals in grade t = 11 in wave II and

the same individuals in grade t = 10 in wave I; and so on until t = T − 3 with students in 9th

grade (wave II) and the 8th (wave I). In Table 1, we summarize the structure of our sample.

We estimate Equation 3 at t = T , t = T − 1 and t = T − 2 with data referring to high school

students (grades 10, 11, and 12). We then exploit the structural equation at t = T − 3 with data

referring to middle school students (grades 8, and 9) to validate the model.

4.1 Identification

In this section, we derive conditions under which the dynamic model with social interactions we

have introduced is identified when the number of individuals N is large enough so that sample

averages converge to population expectations, and the horizon of the economy T and the social

structure G, are fixed and known to the econometrician.

The parameters of the economy are the utility parameters (α1, α2, α3), the discount factor δ,

the own and social effects parameters β = (β1, . . . , βK)′ and ϕ = (ϕ1, . . . , ϕK)′. Utility functions

are unique up to positive affine transformations and hence (α1, α2, α3) are normalized so that∑
i αi = 1.

The main challenge we need to meet is the endogeneity of the lagged smoking choices. Our

solution to this challenge is by finding suitable instrumental variables that are correlated with

the endogenous lagged smoking choices, and at the same time would satisfy exclusion restrictions

by being independent of the unobservable component conditionally on other covariates.

Exogeneity: E[ut | (Xt, st−1)
T
t=1] = 0, for any t = 1, . . . , T .
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Full rank: The second moment matrix generated by the elements of {Xt, st}Tt=1 has full rank.

Regularity: E(yt−1|st−1) ̸= 0, for any t = 1, . . . , T .

Exogeneity requires the existence of variables in last period’s information set that are orthogonal

to the unobservables contemporaneously and intertemporally. Full rank requires lack of multi-

collinearity and enough intertemporal variation in the instrumental variables. Finally, Regularity

requires that the instrumental variables are potentially informative for the lagged choice variable

yt−1, which is the endogeneous variable, in the structural equation for period t. Importantly, all

these assumptions are consistent with substantial correlation over time and across the network,

both in observables and unobservables.

Under these assumptions, the structural equations of our dynamic model with social interac-

tion, Equation 8, for T ≥ 2, are identified.23

In the absence of dynamics, the quest for valid instruments is conducted necessarily at the

cross-sectional level and exclusion restrictions are translated into necessary conditions on the

structure of the adjacency matrix.24 In our dynamic environment, we are not restricted to

the cross-section. In particular, as we discuss in more detail in Section 4.2, we have access,

for each period, to a set of strictly exogenous lagged variables from the information set in the

previous periods. These variables are informative for the lagged choice variables by virtue of

the intertemporal linkages formed by the moment restrictions of dynamic equilibrium of our

social interactions model. To sum up, exploiting the equilibrium restrictions that jointly employ

interactions in “space” as well as rational expectations interactions in “time” provides us with

much richer possibilities for identification.

The proof of this identification result proceeds in two steps: i) we prove that the coefficients of

the structural equation, Equation 8, can be consistently estimated, and ii) we show that the map

from the structural parameters (α1, α2, α3, β, ϕ, δ) to the coefficients of Equation 8 is injective.

We provide here the main arguments and a general discussion of how we can implement step i)

of the identification result. Technical arguments needed for proving i) and a description of the

recursive algorithm for step ii) are detailed in Appendix D.

23More precisely,
Fp(y,X) = Fp′(y,X) ⇒ p = p′;

where p = (α1, α2, α3, β, ϕ, δ) and Fp(y,X) is the joint probability distribution of observables (y,X) induced by
the parameters p .

24The characteristics of friends and friends of friends are valid instruments under appropriate restrictions on the
structure of the adjacency matrix; see e.g. Bramoullé, Djebbari and Fortin (2009), Calvo-Armengol, Patacchini
and Zenou (2009).
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Consider the system in Equation 8 at t = T, T − 1. Because Dt contains expectations about

future shocks, DT = 0. The system in 8 can be reduced to

yT = α1BT yT−1 + α2BT (1γT + ικT +XTβ +GXT ϕ) + εT , (10)

yT−1 = α1BT−1 yT−2 + α2BT−1 (1γT−1 + ικT−1 +XT−1β +GXT−1 ϕ)

+α2BT−1D
x
T−1 + εT−1. (11)

The endogeneity of yT−1 in Equation 10 and of yT−2 in Equation 11 requires to find suitable

instrumental variables. Consider selecting qt = [Xt,GXt, st−1], t = T − 1, T . Predicted values of

yt−1 are formed by projecting them onto the space spanned by the set of instrumental variables

qt−1, t = T − 1, T . These are valid instruments by construction since: (i) Regularity implies

E[qt−1yt−1] ̸= 0, t = T − 1, T ; (ii) Full rank implies explanatory variables are not collinear; (iii)

Exogeneity guarantees that exclusion restrictions are satisfied, i.e., E[qt−1εt] = 0, t = T − 1, T .

Finally, Equation 10 is independent of δ and hence the condition T ≥ 2 is necessary to identify

it.

4.2 Estimation

We jointly estimate the reduced-form equilibrium equations (8), for t = T, T − 1, T − 2, which

are related to each other through the the dynamic recursive structure of the equilibrium.25 In

particular, we implement a nonlinear IV estimator (NLIV or nonlinear 2SLS, Amemiya, 1974)

where our target parameters are given by λ = [α1, α3, δ, β
′, ϕ′]′. Let zt = [yt−1,Xt,GXt] and

qt = [Xt,GXt, st−1] be vectors of explanatory variables and instruments, respectively.

More compactly, we stack all variables in matrix format as Y = [y′
T , . . . ,y

′
T−2]

′, Z =

[z′T , . . . , z
′
T−2]

′, Q = [q′
T , . . . ,q

′
T−2]

′, with qg = diag(q1g, . . . ,qr̄g) and qt = diag(qm,qf ) with

g = {m, f}. Finally, let

F (Z, λ) =


α1 BT yT−1 + α2 BT (1γT + ικT +XTβ +GXT ϕ) + εT

...

α1 BT−3 yT−3 + α2 BT−3 (1γT−3 + ικT−3 +XT−3β +GXT−3 ϕ) + α2 BT−3 D
x
T−3

 .

The moment conditions are then implied by the exogeneity assumption

E(Q′[Y − F (Z, λ)]) = E(Q′ε) = 0.

25See Table 1 to see how we link the structural equations and the sample
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The nonlinear IV objective function is the following

QN (λ) =
1

N
ε′Q(Q′Q)−1Q′ε. (12)

In practice, we implement it in three steps.

Step 1 Estimate model 9 (i.e., using only the last period) using as starting values estimates from

OLS estimation of a reduced form model where the smoking behavior is regressed on its

lag, individual’s and peers’ characteristics controlling for grade dummies and school fixed

effects. Results are reported in Table 2. To constraint α1, α3, we reparameterize them using

the function

αi =
1

π

(
arctan(ψi) +

(π
2

))
∈ [0, 1] (13)

and then we minimize w.r.t. ψi. The starting values of α1 and α3 (hence also that of α2)

are set uniformly to 0.3333 for each.

Step 2 Estimate model 8 using as starting values the estimates from Step 1.26 We recover

α̂2 = 1− α̂1 − α̂3. Also δ is reparameterized using the mapping in equation 13.

Step 3 For inference, we use the standard asymptotic variance (clustered at the group level)

for the NLIV estimator where the Jacobian is estimated numerically because no closed

form expression is available. In particular, let Ŝt =
∑Nt

i=1

∑
s=1

∑
g=1 ε̂

2
isgqisgq

′
isg with

ε̂isgt = yisgt − F (zisgt, λ̂) , AA = D̂′Q(QQ)−1Q′D̂, and B = D̂′Q(QQ)−1Ŝ(QQ)−1Q′D̂

where D̂ = ∂ε
∂λ evaluated at λ = λ̂ and Ŝ = N−1(Ŝ1, . . . , ŜT )

′. The estimated asymptotic

covariance matrix is V̂ = N
(
AA−1BAA−1

)
.27

The statistical properties of the NLIV estimator are based on standard high-level assumptions in

the recent literature on clustered samples (Hansen and Lee, 2019).28

For the main parameters, we test the hypotheses that αi = 0 (δ = 0) versus αi > 0 (δ > 0).

We performed the t-test as one-sided, given that the parameters cannot take negative values.

For α1 and α3, the standard errors are computed using the Jacobian of the function ψi w.r.t αi.

26We set the starting value of δ = 0.9.
27The variance of α2 is estimated using the variance of a linear combination, that is var(α2) = var(1−α1−α3) =

var(α1) + var(α3) + 2cov(α1, α3).
28In this framework, the asymptotic approximation holds for a large number of independent groups with relatively

small group sizes. In our empirical application, we have almost 60 groups with median size of 6 students.
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Observe that for the case of singular hypothesis one-sided t-test inference is valid, even if the null

is on the boundary of the parameter space (Kodde and Palm, 1986).

4.2.1 Empirical Challenges

There are two main empirical challenges in the estimation of model 8: the endogeneity of the

social interaction structure and the endogeneity of lagged choices. We tackle the first issue by

defining peers as all schoolmates in the same cohort and exploiting quasi-random variation of

peers’ characteristics across cohorts within a school.29 The idea is to estimate a model with

school and grade fixed effects by presuming that neither students nor parents can anticipate

perfectly the composition of schoolmates’ characteristics in a given grade when choosing schools

or residential neighborhoods. This is a well-known empirical strategy used with AddHealth data

since multiple cohorts are observed within schools.30 The challenge in our case is that each

FOC represents equilibrium choices of agents in a given grade and so to have variation within

grade we define peer groups by gender exploiting the differential exposure to peers with a given

characteristic within grade and gender.31 We, indeed, show that the variation in the average peer

characteristics of same grade and gender schoolmates are unrelated to the variation in a number

of predetermined student characteristics in Table 12 in Appendix G. We run separate regressions

with each of students’ background characteristics on peers’ average characteristics controlling for

the corresponding individual characteristic. Each regression includes a gender indicator, grade

dummies and school fixed effects to control for differences in average student characteristics across

schools as well as for other aspects of school quality. As we present in Table 12, almost none of

the estimated correlations appear to be significantly different from zero, supporting the notion

that our model specification identifies an exogenous source of variation.

For the second challenge, namely the endogeneity of the lagged choices, we adopt an identi-

fication strategy based on external instrumental variables. We consider each student’s exposure

29In the Addhealth questionnaire, respondents can nominate up to ten best friends. However, the use of self-
reported friends’ nominations to define social networks yields endogeneity issues in the estimation of network effects
that are difficult to solve.

30This approach has been first proposed by Hoxby (2000a) to estimate the impact of class size, and subsequently
widely used in studying peer effects in education (e.g. Angrist and Lang, 2004; Friesen and Krauth, 2007; Hanushek,
Kain, and Rivkin, 2002; Lavy and Schlosser, 2011; Lavy, Paserman, and Schlosser, 2012; Olivetti, Patacchini, and
Zenou, 2020). Also, Patacchini and Zenou (2016) and use a similar approach to investigate the impact of peer
religiosity in the intergenerational transmission of religion. In health economics and using the same data, this
strategy has been implemented by Arduini, Iorio, and Patacchini (2019) to study the relationship between peers’
body size through interpersonal comparisons and the development of eating disorders.

31In Section 6, we investigate the robustness of our results to an alternate definition of peers.
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to mandatory school-level “Tobacco Use Prevention” programs measured using school absence.

First, we collect information on whether the school offers a “Tobacco Use Prevention” program

using the information on the mandatory programs in terms of health education, health services,

and health policies in each state contained in the School Health Policies and Programs Study

(SHPPS).32 For each school we then construct an indicator variable that assumes the value of

one if the school had a tobacco use prevention program in place, and zero otherwise.33 Next,

for each student, we measure her/his exposure to the program by interacting the program indi-

cator with an indicator of school attendance. The Add Health questionnaire asks about school

attendance using two questions: “how many times have you been absent from school for a full

day with an excuse- for example, because you were sick or out of town?”; and “how many times

did you skip school for a full day without an excuse?”. The school-attendance index is the av-

erage number of school days in the survey period, that is 180 days, minus the sum of the days

reported by respondents in the answers to the two questions. We refine our identification strategy

by leveraging the unique information contained in the AddHealth data on attendance and risky

behaviors. As mentioned in above, we have information on the reasons underlying absence from

school. We construct two indicators: excused absence and truancy. The dummy excused absence

equals one if the respondent skips school with an excuse. The dummy truancy is equal to one

if the respondent is absent without reason for more than two days (75th percentile).34 Table

13 shows that while truancy is correlated with other risky behaviors potentially associated with

smoking, excused absence is not.35 Therefore, we focus on the sample when excluding students

who report truancy (269 observations).

Table 2, column (3) reports linear 2SLS estimates of model 9 for high-school students con-

trolling for grade dummies, school fixed effects, and setting α3 = 0 and α2 = 1.36 The first-stage

F-test has a value 16.60, supporting the instrument relevance. In Table 2, we also report the

Anderson-Rubin (AR) test (Anderson and Rubin, 1949) for the significance of α1 since this test

is robust to a potential weak instrument problem (see also Kleine and Neil, 2023). The value of

32The Add Health contains SHPPS data for Wave I. Data collection was conducted via mail from March to June
1994. All 51 state education agencies completed the questionnaires. At the beginning of 1994, the Centers for
Disease Control and Prevention (CDC) guidelines required all the states to offer a tobacco use prevention program
at school, but in 1994 not all the states (37 out of 51) had time to adhere to the guideline (CDC, 1994b).

33For robustness check, we repeated our analysis when excluding schools in states that did not adhere. Results
remain qualitatively unchanged. They are available upon request.

34The fraction of truants in the sample is roughly 20%
35Regression samples are smaller due to missing values in risky behavior variables. The construction of the risky

behavior indicators is detailed in Appendix G.
36Table 2, column (1) and (2) reports OLS estimates without and with peers’ characteristics.
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the AR test is equal to 24.14, confirming that α1 is statistically significant at 1% level.

5 Empirical Network Effects

Estimating our structural model of dynamic interaction on networks allows us to recover individ-

ual preferences from health risk behavior data. The main preference parameters in the model are

the discount rate δ, the addiction effect parameter α1, the own effect parameter α2, and the peer

effects parameter α3, which we normalize without loss of generality so that
∑3

i=1 αi = 1.

Table 3 presents the estimates of the structural parameters: in Column 1 the peers’ average

characteristics (contextual effects) are not included, whereas in column two they are. In both

columns, estimates follow the embedded preference shock structure in equation (5) as we explain

carefully in Section 4. Standard errors are clustered at the school level. Our main findings below

are consistent across columns.

We find evidence of rational forward-looking behavior: the estimate for δ is positive, large,

significant and relatively stable, independently of our multiple treatments (See Table 9 for ro-

bustness checks). Interestingly, the estimate for the own effect, α2, is very small compared to the

other deep parameters. Note that the estimated model imposes the structure of the stochastic

process of preference shocks in Equation 5. Hence, we also estimate the vector of parameters

multiplying different components of individuals’ observable characteristics, some of which are

very significant and large, and report them in Table 14.37 Moreover, as we report in Section

5.2, the standard metric (social multiplier) used to represent the implications of peer effects is

not directly affected by the value of the own effect estimates; and we report compelling evidence

pointing to the existence of strong interaction effects in the data. Perhaps, most importantly,

the peer effect α3 and the addiction effect α1 are also significant. The combined evidence shows

that dynamics generated by addiction effects (α1 > 0) and social interactions (α3 > 0) are im-

portant, quantitatively large, and statistically significant. The validation exercise we implement

next in Section 5.1 gives statistical support to the prediction power of our model: comparing

out-of-sample predicted equilibrium smoking behavior to actual behavior using data for different

grades not employed in the estimation sample, we see that the actual proportions in the data and

the predicted ones are remarkably close.

37A small estimate of the own effect, α2, also implies that the heterogeneity induced by the stochastic component
of θit has relatively small direct effects. The stochastic component of θit, however, affects agents’ choices also
indirectly through the addiction effect of yi,t on yi,t+1, and the peer effect of yi,t on all yj,t. Both of these effect
then amplify via the equilibrium dynamics.
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5.1 Out-of-sample Validation

In this section, we validate the structural estimates of our dynamic recursive model, comparing

out-of-sample predicted equilibrium smoking behavior to actual behavioral data across different

grades, not employed in the estimation sample. We believe that by demonstrating that our

dynamic model’s predictions perform well when applied to pertinent new data, this validation

exercise would give the reader more confidence that a mechanism of social interactions (the

underlying structure) is uncovered from the data rather than imposed on the data.

To fulfill this objective, we follow an approach inspired by Todd and Wolpin (2006).38 More

precisely, as we explain in Section 4.2, we first estimate the structural parameters using the

(larger) sample of students in grades 10, 11, and 12 under two specification: using the reduced-

form equilibrium equations 8 jointly, for t = T, T − 1, T − 2, by linking the structural equations

and the sample as in Table 1, with and without contextual effects. Those parameter estimates

under both specifications are reported in Table 3.

Next, we predict equilibrium smoking behavior for students in the hold-out sample consisting

of grade 9. Specifically, we use the reduced-form equilibrium equations (8), for t = T − 3,

by linking the structural equations and the sample as in Table 1. For both specifications, the

predicted student behaviors are generated recursively, using the estimated parameters in Table 3,

the baseline controls (and network G) for grades 8 and 9, and students’ initial smoking behavior

values for t = T − 4, as reported in the data.

Table 4 reports the percentage of choices correctly predicted. Predicted choices are generated

by splitting the interval [0, 2] uniformly of the mean predicted outcomes for the 9th grader’s sample

and several subgroups defined by student characteristics. We believe the reported percentages

(around 70% for the unconditional sample) deliver enough confidence in our dynamic model and

its out-of-sample prediction power.

5.2 Social Interaction Effects

In economies where individual preferences incorporate conformity effects, including the current

model, a change in the value of an exogenous variable yields a direct effect on behavior and an

infinite cascade of indirect effects of the same sign. That is because each agent’s action changes

38In the context of a randomized social experiment in Mexico, Todd and Wolpin (2006) estimate a dynamic
model without using post-program data and then compare the model’s predictions about program impacts to the
experimental impact estimates.
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not only because of the change in the exogenous variable, but also because of the change in the

behavior of her peers, and that of their peers and so on. In this section we construct a conceptual

measure of these social interaction effects and evaluate it at the estimated parameter values of

our dynamic structural model.

As we have already noticed, however, this construction is quite subtle. We discuss all details

and produce all relevant computations and results in Appendix E. As an illustration, considering

social interaction effects in the last period t = T , so as to silence any dynamic effects. Consider

an exogenous shock to θi,T , say by ∆θi,T = 1, for all agents i. This shock could represent,

e.g., the outcome of a policy geared towards affecting students’ behavior directly or indirectly

through information or preferences. From the structural equation 3, the total change on the

smoking behavior values at T , ∆yT, can be decomposed into a direct effect, ∆yt |direct and a

social effect, accounting for peer interaction effects in the network at equilibrium, ∆yt |social.

such that ∆yT = ∆yt |social ×∆yt |direct. It is then straightforward to show that ∆yt |direct= α2

and ∆yt |social= 1
α1+α2

. Therefore, ∆yT = 1 when preferences do not account for addiction,

α1 = 0. In this case, then, the total effect is independent of preferences for conformity parameter

α3 and the social multiplier as defined by Boucher and Fortin (2016), ∆yi,T − 1, is equal to zero.

But if we add complementarity effects, that is, if we add a term
∑N

j=1 2γ yit yjt to preferences, as

discussed in footnote 9, the social multiplier as defined by Boucher and Fortin (2016) is equal to

α2
α1+α2−γ − 1, and hence it might be positive and always increasing in α3. Therefore, while the

preference parameter driving complementarities γ - and hence the social multiplier as defined by

Boucher and Fortin (2016) - cannot be identified with aggregate behavior (and indeed we therefore

postulate γ = 0), the ratio of the total effect and the social effect, ∆yt

∆yt|direct = ∆yt |social can be

interpreted as a measure of the social interaction effects in the economy we study.39 This is in

fact how we proceed in this paper.

Going back to the dynamic economy, in this section we report on the social interaction effects

implied by our structural estimates, taking into account contextual effects. Importantly, these

effects, in our context, have a fundamental dynamic component: a shock to agents’ preferences

in the 10th grade has social effects in all grades 10, 11, and 12. The summary of the estimated

parameters for the dynamic, myopic, and static models we use are in Table 5. See Section 5.3 for

a discussion of the myopic and static model specifications. Consider again an exogenous shock to

39This is the sense in which in fact both Becker and Murphy (2001) and Glaeser and Scheinkman (2003) use the
term social multiplier.
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θi,t, say by ∆θi,t = π, for all agents i. Let then social interaction effects at t on behavior at t be

defined as

mt,t =
∆yt

∆yt |direct
.

From the structural equation (3) for τ = t, . . . , T , we have mt,t = Bt1. Iterating, we trace the

(dynamic forward-looking) social effects of an exogenous preference shock at t at τ :

mt,τ = ατ−t
1 (Bt × · · · ×Bτ )1 (14)

for any period τ = t, . . . , T .40 Similarly, for a permanent shock from time t to the end-time τ ,

we can compute the social effect as:

mt,τ =
τ∑

s=t

ατ−s
1 (Bτ × · · · ×Bs)

(
1+ D̃s

)
(15)

Now, consider a shock to one of the components of students’ observable covariates, e.g., a shock

to Tobacco at home, Family income, or to other observable covariates we use in our estimation, as

reported in Table 10. As we expressions above show, the social effects are not directly affected by

the own effect parameter α2. They are affected by two channels: (i) the addiction channel (α1)

which transmits shocks across periods thanks to intertemporally optimising individuals, and (ii)

the peer effects channel (α3) that transmits them across the social network thanks to individuals

conforming to their peers optimally. The sample means of the social effects (m̄t,τ ) are reported

in Table 6.

Several interesting properties of the calibrated social effects are worth noticing. First of all,

the effects of a temporary preference shock at t decline over time: mt,τ decreases with τ , for all

t. The effects of permanent shocks instead increase over time. Furthermore, permanent shocks

have larger effects than temporary shocks, both instantaneously and over time.41 Perhaps most

interestingly, the same-period effect decreases with the number of periods to the end of high-

school T : m̄10,10 < m̄11,11 < m̄12,12. This is the case for both temporary and permanent shocks.

In the case of permanent shocks, our estimates imply that the same-period social effect in grade

12 (the last year of high-school) is about 1.1220, whereas it is 2.1256 and 3.0231, respectively, in

40Please see Appendix F for the detailed derivation of and the recursive algorithm to compute the dynamic social
multiplier.

41Note that, obviously, a permanent shock at T = 12 is equivalent to a temporary shock and hence the social
effects are the same.
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grades 11 and 10. The same-period social effects in the different grades encode the importance

of the number of periods to the end of school in students’ choice. Our estimates, therefore, are

evidence that students anticipate a change in their social network after high-school and that this

affects the importance of peer effects over schooling age: as the time to the end of high-school

T − t increases, the students’ policy functions weigh more heavily future shocks and the current

shock has a smaller social effect. As demonstrated by the analogous social effects, the myopic

and static models cannot generate this effect, since agents are assumed not to care about future

consequences of their actions; an important distinction that we discuss further in Section 5.3.

Social effects operate also through an expectations channel: forward-looking agents change

their contemporaneous behavior in response to an anticipated shock in the future. Namely, we

can compute the social effect of an exogenous preference shock at a future date t on behavior at

τ < t:

mt,τ = BtD̃t (16)

where D̃t capture the sum of the expected effects on period τ marginal utility of a unit future

shock that is anticipated to change the random component of preferences, θt.
42

We consider an anticipated shock to the future real disposable income of a student at time

τ > t. As much as one needs to be careful about the income and substitution effects, this is

a rough proxy for a decrease in the price of cigarette. A forward-looking agent anticipates this

change and changes his/her behavior today. Neither the static nor the myopic model can generate

any social effects here, since by definition, they do not care about the future.

In Table 7, we report the expected social effects, in grade 10, 11 and 12 , induced by an

anticipated shock to the preferences of all agents in grades 11 and 12; that is, we report mt,τ

for t = 11, 12 and τ = 10, 11, 12. In anticipation of an increased preference for risky behavior in

grades 11 or 12, agents increase risky behavior in grades 10 and 11 (all values are positive). These

42D̃t’s can be computed recursively. The explicit formula for D̃t = π−1∆Dt is given using

∆Dt :=

t∑
s=t+1

δs−t

(
− α1 diag (Λt,s−1 − Λt,s) (∆Γt,s−1 −∆Γt,s)

+diag (Λt,s)
(
∆θ̄s −∆Γt,s

)
−α3

N∑
k=1

diag
(
G•k ι

′
N

)
diag (ιN Λk•,t,s − Λt,s) (∆Γk,t,s1−∆Γt,s)

)
(17)

Please see Appendix F for the explicit derivation of the multiplier formulas recursively.
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effects are subtle but can be intuitively be explained as follows. In grade 10, agents anticipate

that they will increase risky behavior at 12 and anticipate that so will do all their peers in the

network (m̄12,12 = 1.1220, from Table 6). This entails an adjustment cost in terms of utility,

because the addiction effect penalizes behavioral changes over time. As a consequence, with

strictly concave preferences, the agents will have an incentive to smooth these adjustment costs

over time, increasing risky behavior starting from grade 10 and then in grade 11 and 12 optimally.

Interestingly, however, a dampening effect could occur in grade 10 inducing the agents to shade

the increase in their risky behavior more in the earlier periods and then to increase in grades 11

and 12 at faster rates. This occurs in particular at the estimated parameter values, and more

generally when peer effects are particularly strong, that is, α3 is relatively large. Indeed, peer

effects induce agents to engage in more risky behavior than their own preferences would induce

them to in grade 12; the more so the stronger the peer effects. This risky behavior smoothening

is due to an adjustment cost in terms of utility for the agents: There is a trade-off between

smoothing the adjustment costs via the addiction channel and via the own preference channel in

the presence of large peer effects.

5.3 Static and Myopic Bias

The main thrust of our theoretical analysis consists in modeling health risk behavior as the

outcome of dynamic choice by forward looking agents. Empirically, the dynamic choice component

of this approach is validated by the fact that the addiction effect α1 is estimated to be significantly

different than 0. The forward looking (as opposed to myopic) component of this approach is

instead validated by the fact that the discount rate δ is estimated to be significantly different

than 0.

To better gauge at the relevance of dynamic forward looking behavior, in this section we

estimate (i) a myopic model, obtained by restricting the structural equation (3) by imposing

δ = 0; (ii) a static model, obtained restricting the structural equation (3) by imposing δ = α1 = 0.

We then compare the goodness of fit of these models with those of our dynamic baseline model

with no restrictions. Results are reported in Table 8.

Although the parameters of both the static and myopic models are imprecise estimates, we

begin our analysis with a qualitative comment. Since agents are by definition myopic in the myopic

model, the expectations channel of future peer interactions is not captured in the parameter

estimates. This absence is compensated by a higher own effect estimate (α̂2 = 0.0441), relative
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to the dynamic benchmark.

The crucial test to appreciate our contribution with respect to the static peer effect model—

which is the go-to model used in the literature— is to compare the fit of the model to the data

across the two models. We estimate the static model (no addiction, no forward looking behavior)

and demonstrate in Table 8 that there is a substantial jump in goodness of fit from the static to

the dynamic.

In addition to this evidence, observe that the restrictions imposed by both the static and

the myopic models may induce a bias in the estimation of the social multipliers. Firstly, as can

be seen immediately from the construction of the multiplier measures in (14), (16) and (15), a

misspecified static model cannot generate any intertemporal social effects since the link across

two consecutive periods is broken by setting α1 = 0. Second and perhaps more importantly, if

a shock in question has not realized yet but will in the future, forward-looking agents anticipate

that shock and change their contemporaneous behavior accordingly. However, myopic agents

do not care about their future behavioral paths and consequently do not change their behavior

accordingly. For a misspecified myopicmodel, as the discount factor δ → 0, the difference between

the last period (t = T ) and period-t equilibrium maps |BT −Bt| → 0 for any period t, and the

model becomes one of a sequence of myopic period economies. Consequently, the instantaneous

social effect generated under this specification is constant across periods (see Tables 6 and 7),

yielding a bias, which is increasing in the time-to-end T − t, relative to our benchmark dynamic

specification.

6 Robustness

Next, we check if our main results are robust when we use alternate definitions of smoking

behavior, and change the peer group definition.

Dependent Variable definition. Table 9 reports NLIV estimates of the structural models

8 under these alternative definitions. In the first column, the dependent variable is the binary

smoking indicator in Badev (2021) (37% of students smoke one or more days), which bunches the

group of students who report occasionally smoking together with the students who report never

tried smoking. The second column uses a refinement of our baseline definition where we add one

more category to our baseline dependent variable: daily smoking. This category refers to students

who report to smoke every day (they are around 35% of the occasional smokers). Finally, the
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third column uses the finest definition of smoking by using the answers to the following question:

“During the past 30 days, on the days you smoked, how many cigarettes did you smoke each

day?” Hence, we construct a cigarette number indicator which takes 6 potential values: 0 for

students who report to smoke zero cigarettes, 1 for those who report to smoke from 1 to 5, 2 for

students who report to smoke from 6 to 10, and so on up to values greater than 21 (students

smoke daily 2.9 cigarettes on average). The main message of Table 9 is that, as in our benchmark

dynamic model, the estimate for δ is positive, large, and stable across outcomes although the

effect is not statistically significant. More importantly, the estimates for peer effect α3 and the

addiction effect α1 are also significant across columns, independent of the definition of smoking

we use, which is evidence that equilibrium dynamics generated by addiction effects (α1 > 0) and

social interactions (α3 > 0) are important, quantitatively large, and statistically significant.

Peer definition. We use gender to define groups within cohorts because homophily in

friendship networks among adolescents is especially strong along the gender and race dimensions

(Shrum, Cheek, and Mac, 1988; Currarini, Jackson, and Pin, 2009). We focus on gender because

we need non-overlapping groups and the AddHealth questionnaire allows to report multiple races.

For robustness, we have repeated our analysis when defining peer groups by race and using the

first reported race for multiracial students. Specifically, we define students’ peers as all other

students of the same race in the same grade at the same school. Results are reported in Table 9.

Table 9, column (4) shows that the results remain qualitatively unchanged.

7 Concluding Remarks

Dynamic social interactions provide a rationale for several important phenomena at the intersec-

tion of economics and sociology. The theoretical and empirical study of economies with long-lived

social interactions has been hindered by both mathematical and conceptual problems.

In this paper, we show how some of these obstacles can be overcome while studying adoles-

cents’ risky behavior. We formulate and structurally estimate a dynamic social interaction model

in the context of students’ school networks included in Add Health. The equilibrium characteriza-

tion of the dynamic game allows us to offer solutions to the well-known inferential problems in the

study of social interactions. We construct a consistent estimator in our environment by using the

moment restrictions imposed by the dynamic equilibrium to back out the structural preference

parameters. Our empirical analysis confirms the main thrust of our exercise regarding smoking
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and alcohol use in the adolescent population. We find strong evidence for forward-looking dy-

namics, addiction, and social interaction effects. Social interactions in the estimated dynamic

model are indeed quantitatively large.

The importance of social interactions for policy analysis relies on the fact that when social

interactions are quantitatively meaningful, well-targeted policy interventions at a smaller scale

might have much larger effects at the aggregate through the social multiplier channel for those

interactions. In this respect, we show that a misspecified static model would have a much smaller

estimate of the social interaction effect than the dynamic model. Furthermore, our empirical

analysis implies that the impact of policy interventions on adolescents’ risky behavior increases

over time when policy interventions are permanent. Finally, it also implies that the design of

policy interventions should depend on the students’ network structure and consider the network’s

dynamics, as students anticipate its natural breaks.
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Figures and Tables

Figure 1: Gender assortativeness

This figure depicts friendship linkages in the larger network in our data (286 nodes with diameter 24) by using

different colors for nodes indicating students of different gender. The picture reveals that indeed social interactions

are assortative by gender. Nodes represented by a red (resp., blue) dot correspond to female students (resp., male

students).
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Table 1: Linking the structural equations and the sample

YT−5 YT−4 YT−3 YT−2 YT−1 YT

Eq’n 3 at t = T g11 WI g12 WII

Eq’n 3 at t = T − 1 g10 WI g11 WII

Eq’n 3 at t = T − 2 g9 WI g10 WII

Eq’n 3 at t = T − 3 g8 WI g9 WII

Eq’n 3 at t = T − 4 g7 WI g8 WII

This table summarizes the structure of our sample.

38



Table 2: Reduced form IV model

Dep var.: (1) (2) (3)
Smoking behavior (Wave 2) OLS OLS 2SLS

Smoking behavior 0.7147*** 0.7101*** 1.0224***
(0.0703) (0.0717) (0.1572)

Female -0.0005 0.0212 0.1200
(0.0369) (0.1709) (0.2183)

Black or African American -0.1582* -0.1530* -0.0652
(0.0790) (0.0752) (0.0566)

Asian -0.0822 -0.0846* -0.0579
(0.0454) (0.0451) (0.0367)

Hispanic -0.1491** -0.1517** -0.1273**
(0.0531) (0.0548) (0.0433)

Indian 0.0453 0.0493 0.0441
(0.0284) (0.0311) (0.0429)

PVT test score -0.0502*** -0.0479*** -0.0344***
(0.0114) (0.0085) (0.0079)

Parents College degree 0.0418 0.0449 0.0849**
(0.0390) (0.0343) (0.0268)

Two-parent family 0.1096*** 0.1070*** 0.1051***
(0.0284) (0.0257) (0.0302)

Log(family income) -0.2288** -0.2208** -0.3708***
(0.0910) (0.0843) (0.0667)

Age (WII) -0.0206 -0.0097 -0.0005
(0.0190) (0.0192) (0.0274)

Tobacco at home (WII) 0.0308 0.0297 -0.0317
(0.0233) (0.0242) (0.0268)

Height (WII) 0.3398* 0.3264* 0.4221
(0.1586) (0.1706) (0.2835)

Attendance (WII) -0.0103 -0.0102 0.0016
(0.0058) (0.0058) (0.0117)

Peers’ characteristics No Yes Yes
School fixed effects Yes Yes Yes
Grade indicators Yes Yes Yes

First-stage F-test 16.60
Anderson-Rubin test 24.14

N. Obs. 1,043 1,043 1,043

This table reports reduced form Ols and 2SLS estimates of
model 9 for high-school students controlling for grade dum-
mies and setting α3 = 0 and α2 = 1. First-stage F-test of
excluded instruments statistics and AR test (Anderson and
Rubin, 1949) are reported. The peers’ characteristics are cal-
culated as friends’ averages of the included variables. cluster-
robust numerical standard errors in parentheses. Clusters are
defined at school level. *** p<0.01, ** p<0.05, * p<0.1.
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Table 3: Dynamic recursive model

Dep. Var. Smoking Behavior Index
(1) (2)

Addiction effect (α1) 0.8840*** 0.8912***
(0.0327) (0.0273)

Own effect (α2) 0.0001 0.0001
(0.0000) (0.0000)

Peer effect (α3) 0.1159*** 0.1087***
(0.0327) (0.0273)

Discount factor (δ) 0.8987*** 0.8948***
(0.2175) (0.2175)

Student characteristics Yes Yes
Peers’ characteristics No Yes
Grade indicators Yes Yes
School fixed effects Yes Yes
N. Obs. 1,043 1,043

This table reports NLIV estimates of the structural models 8. Students’ characteristics
are listed in Table 10. The peers’ characteristics are calculated as friends’ averages of the
included variables. cluster-robust numerical standard errors in parentheses. Clusters
are defined at school level. *** p<0.01, ** p<0.05, * p<0.1.

Table 4: Model validation

Overall 0.6927

If female = 1 0.6602

If Parent college degree = 1 0.72

If two-parents = 1 0.7051

If black and african american =1 0.75

if Alcohol/tobacco at home = 1 0.7143

If height > median 0.7207

If income > median 0.6529

If PVT score > median 0.6972

N. Obs. 218

This table reports the percentage of choices
correctly predicted for the 9th grader sample
and for several subgroups defined by gender,
race, parental education, and others. Pre-
dicted choices are generated by splitting the
interval [0, 2] uniformly of mean predicted out-
comes for the 9th grader’s sample and several
subgroups defined by student characteristics.
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Table 5: Parameter Estimates

Static Myopic Dynamic

Addiction effect (α1) 0 0.8480 0.8912
Own effect (α2) 0.3408 0.0441 0.0001
Peer effect (α3) 0.6592 0.1079 0.1087
Discount factor (δ) 0 0 0.8948

Table 6: The social effects

m̄10,10 m̄10,11 m̄10,12 m̄11,11 m̄11,12 m̄12,12

Temporary Dynamic 1.1217 1.1215 1.1214 1.1218 1.1217 1.1220
Temporary Myopic 1.1210 1.0655 1.0129 1.1210 1.0655 1.1141
Temporary Static 2.9343 0 0 2.9343 0 2.9343

Permanent Dynamic 3.0231 5.1480 6.2694 2.1256 3.2472 1.1220
Permanent Myopic 1.1210 2.1865 3.1994 1.1210 2.1865 1.1210
Permanent Static 2.9343 2.9343 2.9343 2.9343 2.9343 2.9343

This table reports the sample means of the social effects (m̄t,τ ) for the three
alternative models’ estimated parameter values, as summarised in Table 5 .

Table 7: The expectation multiplier

m̄12,10 m̄12,11 m̄11,10 m̄per10

Dynamic 0.8979 1.0035 1.9014 1.0037
Myopic 0 0 0 0
Static 0 0 0 0

This table reports the sample means of multiplier values
(m̄t,τ ) in grade 10, 11 and 12 induced by an anticipated
shock to the preferences of all agents in grades 11 and
12, calibrated to the estimated parameters of the three
models in Table 3, Column 2.
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Table 8: Myopic and static vs. dynamic baseline estimates

Dep. Var. Risky Behavior Index Endogenous network
Static Myopic Dynamic baseline

α1 = 0, δ = 0 δ = 0
(1) (2) (3)

Addiction effect (α1) 0.8480*** 0.8912***
(0.0419) (0.0273)

Own effect (α2) 0.3408 0.0441 0.0001***
(0.4176) (0.1038) (0.0000)

Peer effect (α3) 0.6592 0.1079 0.1087***
(0.5143) (0.0970) (0.0273)

Discount factor (δ) 0.8948***
(0.2175)

Mean Squared Error 2.2907 0.3776 0.3801
Percentage of correct predictions 0.4957 0.7526 0.7632

Student characteristics Yes Yes Yes
Peers’ characteristics Yes Yes Yes
Grade indicators Yes Yes Yes
School fixed effects Yes Yes Yes
N. Obs. 1,043 1,043 1,043

This table reports NLIV estimates of the structural model 8. In Column 1 we
restrict the model by setting α1 = 0 and δ = 0, while in Column 2 we restrict the
model by setting δ = 0. Column 3 reports baseline estimates presented in Table 3
Column 2. Students’ characteristics are listed in Table 10. The peers’ character-
istics are calculated as friends’ averages of the included variables. cluster-robust
numerical standard errors in parentheses. Clusters are defined at peer groups
level. *** p<0.01, ** p<0.05, * p<0.1.
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Table 9: Robustness

Badev Daily Cigarette Peer
indicator smoking numbers Definition

(1) (2) (3) (4)

Addiction effect (α1) 0.8050*** 0.9061*** 0.8335*** 0.8786***
(0.0690) (0.0584) (0.0762) (0.0352)

Own effect (α2) 0.0244 0.0031 0.0462 0.0001
(0.0756) (0.0504) (0.1031) (0.0009)

Peer effect (α3) 0.1706** 0.0909* 0.1203 0.1212***
(0.0910) (0.0629) (0.1133) (0.0352)

Discount factor (δ) 0.8991 0.8946 0.8986 0.8945***
(0.7229) (0.8959) (0.7236) (0.2186)

Student characteristics Yes Yes Yes Yes
Peers’ characteristics Yes Yes Yes Yes
Grade indicators Yes Yes Yes Yes
School fixed effects Yes Yes Yes Yes
N. Obs. 1,043 1,043 1,042 1,024

This table reports NLIV estimates of the structural models 8. In the first column,
we recode students classified as occasionally smoking into students who never tried
smoking using the same dependent variable as in Badev (2021). In the second
column, we add one category to our baseline dependent variable: daily smoking.
This category is referred to students who report to smoke every day. In the third
column, we also use the answers to the following question: “During the past 30
days, on the days you smoked, how many cigarettes did you smoke each day?”. We
construct a cigarette number indicator which takes 6 values: 0 for students who
report to smoke zero cigarettes, 1 for ones who report to smoke from 1 to 5, 2 for
students who report to smoke from 6 to 10, and so on up to values greater than 21.
In the fourth column, we define student’s peers as all other students of the same
racial background in the same grade at the same school. For multiracial students
we consider the first race reported. Students’ characteristics are listed in Table
10. The peers’ characteristics are calculated as friends’ averages of the included
variables. cluster-robust numerical standard errors in parentheses. Clusters are
defined at school level. *** p<0.01, ** p<0.05, * p<0.1.
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Technical Appendix

A Formal Model under the General Network Topology

A dynamic linear economy with social interactions is populated by a finite number of agents i = 1, . . . , N .

Agents live for the whole duration of the economy t = 1, . . . , T . Each agent i chooses an action yit at

time t from a closed and convex set Y ⊂ R after having observed a preference shock θit ∈ Θ ⊂ R,

a closed and convex set of possible types (we denote with yt ∈ Y and θt ∈ Θ the corresponding N -

dimensional vectors stacking all agents).43 Let θ := (θt) := (θit)i=1,...,N, t≥1 be the stochastic process of

agents’ types, which is assumed, with no loss of generality, to be defined, on the canonical probability

space (Θ,F ,P), where Θ :=
{
(θ1, θ2, · · · ) : θt ∈ ΘN , t = 1, 2, · · · , T

}
is the space of sample paths. The

sequence (F1,F2, · · · ,FT ) of Borel sub-σ-fields of F is a filtration in (Θ,F), that is F1 ⊆ F2 ⊆ · · · ⊆ F .

Finally, the process θ = (θ1, θ2, · · · , θT) is adapted to the filtration (Ft : t ≥ 1), that is, for each t, θt is

measurable with respect to Ft. Finally, P : F → [0, 1] is a probability measure where P ((θ1, . . . , θt ∈
A) := P ({θ ∈ Θ : (θ1, . . . , θt) ∈ A}), all A ∈ Ft.

The social network is represented by an N × N matrix G = [gij ], where gij indicates the friendship

relationship between i and j. Following the convention in the social networks literature, G has a main

diagonal of zeros. We consider row-normalized G’s, i.e., if i nominates j as one of his friends, then gij > 0,

otherwise gij = 0, and
∑

j gij = 1. In other words, we consider a directed network, in which each agent

interacts directly with his friends, and friendship of i with j does not imply friendship of j with i.

The instantaneous preferences of an agent i ∈ N are represented by the utility function

ui(yit−1,yt, θt,G) := −α1(yit−1 − yit)
2 − α2(θit − yit)

2 (A.1)

−α3

N∑
j=1

gij(yjt − yit)
2

and α1, α2, α3 ≥ 0 are parameters. We require that either α1 or α2 be strictly positive.

The precise timing of events is as follows: Before each agent’s time t choice, the history of previous

choices, yt−1 = (y0,y1, . . . ,yt−1), and the history of preference shocks, θt = (θ1, . . . , θt) (including the

period-t realization), are observed by all agents. After time t choices are made, yt = (yit)
N
i=1 becomes

common knowledge and the economy moves to time t+ 1.

Each agent i chooses strategy yi = (yit), where for each t, yit : Y
t ×Θt → Y , to maximize

E

[
T∑

t=1

δt−1 ui(yit−1,yt, θt,G)
∣∣∣ (y0, θ1)

]
(A.2)

given {yj}j ̸=i, the strategies of other agents, and any finite initial history (y0, θ1) ∈ Y ×Θ.

43All of our results are easily extended to the case in which choice and type variables are multidimensional.
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Definition A. 1 A Subgame Perfect Equilibrium of a dynamic linear conformity economy is a family of

maps {y∗i }Ni=1 such that for all i = 1, . . . , N and for all (yt−1, θt) ∈ Yt ×Θt

y∗it
(
yt−1, θt

)
∈ argmaxyit∈Y E

[
T∑

t=1

δt−1 ui(yit−1,
(
yit, {y∗jt}j ̸=i

)
, θt,G)

∣∣∣ (y0, θ1)

]
(A.3)

B Existence and Uniqueness of Equilibrium

Proposition 1 (Equilibrium Existence and Uniqueness) Consider a dynamic linear economy with

social interactions and preferences for conformity, with α1+α2 > 0. There exists a unique subgame perfect

equilibrium. Individuals’ equilibrium choices at time T are uniquely determined by

yT = [∆T I− α3 G]
−1︸ ︷︷ ︸

BT

× (α1 yT−1 + α2 θT ) (B.1)

where BT := [bijT ] is an N ×N matrix of equilibrium coefficients. For any t = 1, . . . , T − 1, individuals’

optimal choices in equilibrium are uniquely given by

yt = Bt (α1 yt−1 + α2 θt + α2 Dt) . (B.2)

Each Bt, t < T , depends only on the future equilibrium coefficient matrices (Bτ )τ>t and is computed

recursively as the unique fixed point of contraction maps induced by the first-order conditions of problem

(A.3).

Proof: - Step 1: Existence and uniqueness at t = T . Let any history of previous choices, yT−1 =

(y0,y1, . . . ,yT−1) and of preference shocks, θT = (θ1, . . . , θT ), and other agents’ choices (yjT )j ̸=i be given.

Agent i solves

max
yiT∈Y

−α1(yiT−1 − yiT )
2 − α2(θiT − yiT )

2 − α3

N∑
j=1

gij(yjT − yiT )
2

 (B.3)

The first order condition

2

α1 (yiT−1 − yiT ) + α2 (θiT − yiT ) + α3

N∑
j=1

gij(yjT − yiT )

 = 0

implies that

yiT = ∆−1
T

α1 yiT−1 + α2 θiT + α3

N∑
j=1

gij yjT

 (B.4)

where ∆T := α1+α2+α3 > 0. This choice is feasible (in Y ) since it is a convex combination of elements of
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Y , a convex set by assumption. The objective function (B.3) is strictly concave in yiT , thus the right-hand

side of (B.4) is the unique optimizer.

Let B be the class of bounded FT -measurable functions y : (Y ×Θ)T → Y . The right hand side of

(B.4) can be seen as an operator, call it FOCiT , that maps any given collection f = {fj} of bounded and

FT -measurable functions in B to the FT -measurable function FOCiT (f), defined as

FOCiT (f)(y
T−1, θT ) := ∆−1

T

α1 yiT−1 + α2θiT + α3

N∑
j=1

gij fj(y
T−1, θT )

 (B.5)

FOCiT is a self-map for any i. Thus, the map FOCT := (FOCiT )i : Bn → Bn. Endow both B

and Bn with the sup norm which makes (Bn, || · ||∞) a Banach space. Showing the existence of an

equilibrium in the continuation given history (yT−1, θT ) is equivalent to finding the fixed point of the

operator FOCT := (FOCiT )i : B
n → Bn. To that end, we show next that the map FOCT is a contraction

map. Pick f, f̂ ∈ Bn. We have for all
(
yT−1, θT

)
∣∣∣FOCiT (f)

(
yT−1, θT

)
− FOCiT

(
f̂
) (

yT−1, θT
) ∣∣∣

= ∆−1
T

∣∣∣α1 yiT−1 + α2 θiT + α3

N∑
j=1

gij fj(y
T−1, θT )

−α1 yiT−1 − α2 θiT − α3

N∑
j=1

gij f̂j(y
T−1, θT )

∣∣∣
=

(
α3

∆T

) ∣∣∣ N∑
j=1

gij

(
fj(y

T−1, θT )− f̂j(y
T−1, θT )

) ∣∣∣
The coefficient

(
α3

∆T

)
< 1 since either α1 or α2 is nonzero by assumption. But then the expression in the

last line

(
α3

∆T

) ∣∣∣ N∑
j=1

gij

(
fj(y

T−1, θT )− f̂j(y
T−1, θT )

) ∣∣∣
≤
(
α3

∆T

) N∑
j=1

gij

∣∣∣fj(yT−1, θT )− f̂j(y
T−1, θT )

∣∣∣
≤
(
α3

∆T

) N∑
j=1

gij

∥∥∥fj − f̂j

∥∥∥
∞

≤
(
α3

∆T

)∥∥∥f − f̂
∥∥∥
∞

Hence FOCT is a contraction mapping on (Bn, || · ||∞). Thus, by Banach Fixed Point Theorem (see e.g.,

Aliprantis and Border (2006), p.95), FOCT has a unique fixed point f∗ in Bn.
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Consider now Bc the subset of B that includes families of bounded measurable linear maps as in

Bc :=


f : yt−1, θt → Y s.t.

f(yt−1, θt) =
∑N

j=1 cj yj,t−1 +
∑N

j=1 dj θj,t +
∑T

τ=t+1

∑N
j=1 ej,τ−tE [θj,τ |θt]

with cj , dj , ej ≥ 0 and
∑N

j=1

(
cj + dj +

∑T
τ=t+1 ej,τ−t

)
≤ 1

 (B.6)

where each element is a linear combination of one-period before history, current and expected future

preference shocks. Thanks to the linearity and inequality constraints, Bn
c is a closed subset of Bn and

that FOCT in (B.4) maps Bn
c into itself. Since FOCT is a contraction mapping, its unique fixed point

then lies necessarily in Bn
c . Moreover, the existence of the unique fixed point for FOCT in (B.4) written

in matrix form

∆TyT = α1 yT−1 + α2 θT + α3 GyT (B.7)

is equivalent to the invertibility of this matrix equation.44 Hence, the equilibrium choices vector takes the

form

yT = [∆T I− α3 G]
−1︸ ︷︷ ︸

BT

× (α1 yT−1 + α2 θT ) (B.8)

This proves that the statement of the Proposition is true for the last period (1-period economies). Next,

we demonstrate that this result holds for any finite-horizon, T -period economy. Hence, the rest of the

proof will use an induction argument. In any period t = 1, . . . , T − 1, future equilibrium policy matrices

Bt+1, . . . ,BT are known. The first-order condition for agent i’s problem takes the form

0 = α1 (yi,t−1 − yi,t) + α2 (θi,t − yi,t) + α3

N∑
j=1

gij (yj,t − yi,t)

+E

[
T∑

τ=t+1

δτ−t

(
− α1 (yi,τ−1 − yi,τ )

(
∂yi,τ−1

∂yi,t
− ∂yi,τ
∂yi,t

)
+ α2 (θi,τ − yi,τ )

∂yi,τ
∂yi,t

−α3

N∑
j=1

gij (yj,τ − yi,τ )

(
∂yj,τ
∂yi,t

− ∂yi,τ
∂yi,t

))]
(B.9)

44Another way to see this is that since α3
∆T

< 1, ∆T I− α3 G is invertible. See Case (1991), footnote 5.
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By iterating through future policy functions, we can write yτ , for τ = t+ 1, . . . , T , as

yτ = Bτ [α1 yτ−1 + α2 θτ + α2 Dτ ]

= α2
1 (Bτ ×Bτ−1) yτ−2 + α1 α2 Bτ ×Bτ−1 (θτ−1 +Dτ−1) + α2 Bτ (θτ +Dτ )

...

= ατ−t
1 (Bτ × · · · ×Bt+1) yt +

τ∑
s=t+1

ατ−s
1 α2 (Bτ × · · · ×Bs)︸ ︷︷ ︸

τ−s+1 terms

(θs +Ds) (B.10)

Define Λt,τ , for any τ = t+ 1, . . . , T , as

Λt,τ := ατ−t
1 Bτ × . . .×Bt+1 (B.11)

with the convention that Λt,t := IN , the identity matrix. Using this latter, one can obtain the intertemporal

partial derivatives as

∂yj,τ
∂yi,t

= ατ−t
1 Bj•,τ × · · · ×B•i,t+1 = Λji,t,τ (B.12)

where Bj•,τ denotes the j’th row of the N × N matrix Bτ and B•i,t+1 denotes the i’th column of the

N ×N matrix Bt+1, and Λji,t,τ denotes the entry at the j’th row and i’th column of the N ×N matrix

Λt,τ . Similarly, define Γt,τ , for any τ = t+ 1, . . . , T , as

Γt,τ :=

τ∑
s=t+1

ατ−s
1 (Bτ × · · · ×Bs)

(
θ̄s +Ds

)
(B.13)

with the convention that Γt,t := 0N , the N × 1 matrix of zeros, and where for notational simplicity, θ̄s is

the expected value of θs, conditional on period-t information. The first-order condition is linear hence we

know that the total coefficient of yj,t is going to be given by the cross partial derivative of the objective

function with respect to yj,t and yi,t, i.e.,

∆ii,t := α1 + α2 + α3 +

T∑
τ=t+1

δτ−t

(
α1

(
∂

∂yi,t
(yi,τ−1 − yi,τ )

)2

+ α2

(
∂

∂yi,t
yi,τ

)2

+α3

N∑
k=1

gik

(
∂yk,τ
∂yi,t

− ∂yi,τ
∂yi,t

)2
)

= α1 + α2 + α3 (B.14)

+

T∑
τ=t+1

δτ−t
(
α1 (Λii,t,τ−1 − Λii,t,τ )

2
+ α2 (Λii,t,τ )

2
+ α3

N∑
k=1

gik (Λki,t,τ − Λii,t,τ )
2

)
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Similarly, for any j ̸= i,

∆ij,t := α3 gij −
T∑

τ=t+1

δτ−t

[
α1

(
∂

∂yj,t
(yi,τ−1 − yi,τ )

∂

∂yi,t
(yi,τ−1 − yi,τ )

)
+ α2

(
∂

∂yj,t
yi,τ

∂

∂yi,t
yi,τ

)
+α3

N∑
k=1

gik

(
∂yk,τ
∂yj,t

− ∂yi,τ
∂yj,t

)(
∂yk,τ
∂yi,t

− ∂yi,τ
∂yi,t

)]
= α3 gij (B.15)

−
T∑

τ=t+1

δτ−t

[
α1 (Λij,t,τ−1 − Λij,t,τ ) (Λii,t,τ−1 − Λii,t,τ ) + α2 Λij,t,τ Λii,t,τ

+ α3

N∑
k=1

gik (Λkj,t,τ − Λij,t,τ ) (Λki,t,τ − Λii,t,τ )

]

Let diag (A) be the N ×N diagonal matrix whose non-zero entries are the diagonal elements of the matrix

A. So, in matrix form the matrix ∆t is defined in two-steps as

∆̃t := −
T∑

τ=t+1

δτ−t

[
α1 diag (Λt,τ−1 − Λt,τ ) (Λt,τ−1 − Λt,τ ) + α2 diag (Λt,τ ) Λt,τ

+ α3

N∑
k=1

diag (G•k ι
′
N ) diag (ιN Λk•,t,τ − Λt,τ ) (ιN Λk•,t,τ − Λt,τ )

]
(B.16)

where ιN is an N × 1 column-vector of ones and ι′N is an 1×N row-vector of ones; G•k is the k’th column

of the N ×N matrix G; Λk•,t,τ is the k’th row of the N ×N matrix Λt,τ . Now,

∆t := α3 G+ (α1 + α2 + α3) IN + ∆̃t − 2 diag
(
∆̃t

)
(B.17)

Finally, let Dt capture the sum of the effects on the current period (period t) marginal utility of future

θτ ’s. Dt’s can be computed recursively beginning with t = T , setting DT = 0, N × 1 vector of zeros (no

future period). Then, for t < T , let Dt be defined as

α2Di,t := α2

T∑
τ=t+1

δτ−t

(
− α1 (Γi,t,τ−1 − Γi,t,τ ) (Λii,t,τ−1 − Λii,t,τ )

+
(
θ̄i,τ − Γi,t,τ

)
Λii,t,τ

−α3

N∑
k=1

gik (Γk,t,τ − Γi,t,τ ) (Λki,t,τ − Λii,t,τ )

)
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Hence, in matrix form

Dt :=

T∑
τ=t+1

δτ−t

(
− α1 diag (Λt,τ−1 − Λt,τ ) (Γt,τ−1 − Γt,τ )

+diag (Λt,τ )
(
θ̄τ − Γt,τ

)
−α3

N∑
k=1

diag (G•k ι
′
N ) diag (ιN Λk•,t,τ − Λt,τ ) (Γk,t,τ1− Γt,τ )

)
(B.18)

where 1 is an N × 1 column vector of ones. For t = T − 1, this translates into

Now define

∆̄t := diag(∆t)

and

¯̄∆t := ∆t − ∆̄t

using which we can rewrite the system of first-order conditions in matrix form as

∆̄tyt = α1 yt−1 + α2 θt + α2 Dt +
¯̄∆tyt (B.19)

As we did in the beginning of the proof for the final period (t = T ), the right hand side of (B.19) can

be seen as an operator, call it FOCit, that maps any given collection f = {fj} of bounded and Ft-

measurable functions in B to the Ft-measurable function FOCit(f). Hence, showing the existence of a

linear equilibrium policy for the first period of a T − t+1-period economy is equivalent to finding the fixed

point of the operator FOCit. Using straightforward modifications of the arguments in the proof for the

last period, FOCit is a contraction mapping and that it maps the closed subset Bn
c of Bn into itself; hence

its unique fixed point then lies necessarily in Bn
c . Thus, the equilibrium choice vector is linear in period

t − 1 choices, period-t shocks, and future expected shocks. Moreover, the existence of the unique fixed

point for FOCt in (B.19) is equivalent to the invertibility of this matrix equation. Hence, the equilibrium

choices vector takes the form

(
∆̄t − ¯̄∆t

)
yt = α1 yt−1 + α2 θt + α2 Dt (B.20)

and the optimal policy then is given by

yt =
(
∆̄t − ¯̄∆t

)−1

︸ ︷︷ ︸
Bt

(α1 yt−1 + α2 θt + α2 Dt) (B.21)

where Bt := [bij,t] is an N × N matrix of equilibrium coefficients for period t. Therefore, in any period
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t = 1, . . . , T − 1, the system of first-order conditions in matrix form can be written as

(
∆̄t − ¯̄∆t

)
yt = [α1 yt−1 + α2 θt + α2 Dt] (B.22)

and the optimal policy then is given by

yt =
(
∆̄t − ¯̄∆t

)−1

︸ ︷︷ ︸
Bt

(α1 yt−1 + α2 θt + α2 Dt) ; (B.23)

which concludes the proof of the Proposition. In the next section of this appendix we provide a recursive

algorithm to compute ∆̄t,
¯̄∆t (and hence Bt =

(
∆̄t − ¯̄∆t

)
, and Dt.

■

C Recursive Algorithm

Below is the recursive algorithm that follows the steps of the recursive characterization argument of the

last section. We use this algorithm to compute the equilibrium policy weights when we simulate our model.

1. Compute BT from the last period (T = 12), assuming that DT = 0 is the N × 1 vector of zeros.

2. Define θ̄t := Xtβ +GXtϕ+ η ιN as the N × 1 vector of non-stochastic part of period-t shocks, for

all t = 8, . . . , 12.

3. Let t = 11.

4. Compute Λt,t+1, . . . ,Λt,T using equation (F.1).

5. Compute Γt,t+1, . . . ,Γt,T using equation ( B.13).

6. Compute ∆t using (B.17).

7. Compute Dt using (B.18).

8. Compute ∆̄t := diag(∆t) and
¯̄∆t := ∆t − diag(∆t).

9. Compute Bt from (B.21).

10. Let t = t− 1. If t ̸= 8 then go to Step 3. Otherwise Stop.

D Identification of Social Interactions

Proposition 2 Suppose that T ≥ 2, and Full Rank, Exogeneity, and Regularity assumptions of Section

4.1 are satisfied. Then, our dynamic linear economy with social interactions is identified.
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Proof: : Based on the equilibrium characterization in Proposition 1 and using the decomposition of

the stochastic process of preference shocks as in (6), the following reduced-form equations hold

yT = [∆T I− α3 G]
−1 ×

[
α1 yT−1 + α2

(
K∑

k=1

(βkI+ ϕkG)x
(k)
T + uT

)]

yT−1 =
[
∆̄T−1 − ¯̄∆T−1

]−1
(
α1 yT−2 + α2

(
K∑

k=1

(βkI+ ϕkG)x
(k)
T−1 + uT−1

)
+DT−1

)

We split the term DT−1 that includes the conditional expectations given period-T − 1 information into

observable and unobservable (by the econometrician) parts, namely, E
[∑K

k=1 (βkI+ ϕkG)x
(k)
T |XT−1

]
and E

[
uT |uT−1

]
. Unlike the econometrician, agents observe both X and u; and these two are not

correlated by the Exogeneity Assumption. Furthermore, E
[∑K

k=1 (βkI+ ϕkG)x
(k)
T |XT−1

]
is a function

of XT−1 which is known by the econometrician. Hence, using the definition of DT−1 in equation (B.18)

in Appendix B and letting θ̄xT := E
[∑K

k=1 (βkI+ ϕkG)x
(k)
T |XT−1

]
and θ̄uT := E

[
uT |uT−1

]
,

DT−1 := Dx
T−1 + Du

T−1

= δ

(
− α1 diag (IN − α1BT )

(
−BT θ̄

x
T

)
+ diag (α1BT )

(
θ̄xT −BT θ̄

x
T

)
−α3

N∑
l=1

diag (G•l ι
′
N )α1diag (ιN Bl•,T −BT )

(
(BT θ̄

x
T )l,•1−BT θ̄

x
T

))

+ δ

(
− α1 diag (IN − α1BT )

(
−BT θ̄

u
T

)
+ diag (α1BT )

(
θ̄uT −BT θ̄

u
T

)
−α3

N∑
l=1

diag (G•l ι
′
N )α1diag (ιN Bl•,T −BT )

(
(BT θ̄

u
T )l,•1−BT θ̄

u
T

))

Substituting these back into the reduced-form equation for T − 1 above, we get the following system of

linear simultaneous econometric equations with N endogenous variables on the right hand side of each

equation,

yT = α1 BT yT−1 + α2 BT

(
K∑

k=1

(βkI+ ϕkG)x
(k)
T

)
+ εT (D.1)

εT = BT α2 uT.

yT−1 = α1 BT−1 yT−2 + α2 BT−1

(
K∑

k=1

(βkI+ ϕkG)x
(k)
T−1

)
+ α2 BT−1D

x
T−1 + εT−1 (D.2)

εT−1 = BT−1 α2 uT−1 +BT−1 α2D
u
T−1.

where the error terms εT−1, εT are known linear combinations of own and friends’ current unobservables

and expectations of future unobservables.
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The endogeneity of yT−1 in equation (D.1) and of yT−2 in equation (D.2) require us to find suitable

instrumental variables. Thanks to the Regularity Assumption, our choices of instruments, sT−1 and sT−2,

do affect the choice variables yT−1 and yT−2, respectively. This way, we have N instruments for each

period. These are valid instruments by construction since:

1. They are uncorrelated with the errors, hence satisfy exclusion restrictions: Thanks to the Exogeneity

Assumption and using iterated expectations, for t = T

E[εT | sT−1] = α2BT E[E[uT | (XT , sT−1)
T
t=1] | sT−1] = E[0 | sT−1] = 0

and for t = T − 1, similar arguments lead to

E[εT−1 | sT−2] = α2BT−1E[E[uT−1 +Du
T−1 | (XT , sT−1)

T
t=1] | sT−2]

Note that εt is a linear function of two sets of variables: ut and E [uτ |ut]. By the Exogeneity

Assumption and since E [uτ |ut] is a function of ut, E
[
E [uτ |ut] | (XT , sT−1)

T
t=1

]
= 0.

2. They are informative about the explanatory variable, i.e. E[sT−1yT−1] ̸= 0, thanks to the Regularity

Assumption.

Moreover, they are not collinear with (Xt)
T
t=1 thanks to the Full Rank Assumption. Therefore, thanks to

the hypothesis that T ≥ 2, we can consistently estimate BT and BT−1 using the constructed instrumental

variables.

So far, we have demonstrated that we can estimate the reduced form equilibrium coefficients con-

sistently under the stated assumptions. In the second part, we show that the map from the utility

parameters into the reduced form coefficients is injective. Consider now two sets of structural parameters

γ = (α1, α2, α3, β, ϕ) and γ′ = (α′
1, α

′
2, α

′
3, β

′, ϕ′) leading to the same reduced form in equation (10).45

Coefficient estimates would imply

α1 BT (γ)yT−1 = α′
1 BT (γ

′)yT−1 =⇒ α1 BT (γ) = α′
1 BT (γ

′)

due to observational equivalence, where BT (γ) := [∆T I− α3 G]
−1

, and BT (γ
′) := [∆′

T I− α′
3 G]

−1
. Since

α1, α
′
1 ̸= 0 by the Regularity assumption, and BT (γ) and BT (γ

′) are invertible, we obtain

1

α1
[∆T I− α3 G] =

1

α′
1

[∆′
T I− α′

3 G] (D.3)

Since gii = 0, the diagonal entries on left and right hand sides of the equation give ∆T /α1 = ∆′
T /α

′
1.

Moreover, the row sums on both sides off the diagonal yield α3/α1 = α′
3/α

′
1. Under the normalization

45If needed, one can simply add a constant term to the structural equations to make the comparison with the
previous works easier. This addition would not alter any of the results or the proof argument.
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∆T =
∑

i αi = 1, we obtain

α1

∆T
= α1 = α′

1 =
α′
1

∆′
T

which would in turn imply, by substituting back into (D.3), that α3 = α′
3. Therefore, α2 = 1− α1 − α2.

Consistent estimate of the reduced form equation (10) yields further observable equivalence restrictions,

namely, for k = 1, . . . ,K

(βkI+ ϕkG)x
(k)
T = (β′

kI+ ϕ′kG)x
(k)
T =⇒ (βkI+ ϕkG) = (β′

kI+ ϕ′kG)

which is equivalent to

(βk − β′
k) I + (ϕk − ϕ′k)G = 0 (D.4)

Since I and G are linearly independent (remember that gii = 0), this yields βk = β′
k and ϕk = ϕ′k.

Similarly, for t = T − 1, we obtain consistent coefficient estimates in equation (11) and can recover

BT−1 since we already recovered the true α1 using (10) above. We can then recover ∆T−1 by reversing

the operations in Step 8 of the recursive algorithm we used to obtain BT−1 from ∆T−1, that we presented

in Section F, namely by

∆T−1 = diag(B−1
T−1)−

(
B−1

T−1 − diag(B−1
T−1)

)
and using the expression in (B.17), we can also recover

Λ := ∆̃T−1 − 2 diag
(
∆̃T−1

)
= ∆T−1 − α3 G− (α1 + α2 + α3) IN (D.5)

since we already recovered everything to the right of the second equality sign. Hence, we can also obtain

∆̃T−1 by reverse operations, namely by ∆̃T−1 = Λ − 2 diag (Λ). Moreover, we know by substituting

period-T equilibrium into (B.16 )that, ∆̃T−1 takes the form

∆̃T−1 := −δ

[
α1 diag (IN − α1BT ) (IN − α1 BT ) + α2 diag (α1BT ) α1BT

+ α3

N∑
l=1

diag (G•l ι
′
N ) diag (ιN Bl•,T −BT ) (ιN Bl•,T − BT )

]
= −δM

where M represents everything inside the brackets, which we recovered using period-T equilibrium restric-

tions. Hence, δ is recovered as well. This concludes the proof. ■
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E Social Multiplier in Economies with Conformity and Complementarities

As we have briefly noticed in the text, the notion of social multiplier is quite subtle in the class of economies

we study. It is easier to illustrate why by considering the social interaction effects in the last period t = T ,

so as to silence any dynamic effects.

Consider first the pure conformity economy we have studied in the paper. Consider an exogenous

shock to θi,T , say by ∆θi,T = 1, for all agents i. From individual i’s first-order condition in Equation

(B.7) which we copy here for ease of readability

yT = α1 yT−1 + α2 θT + α3 GyT

under the identification assumption that
∑3

i=1 αi = 1, the total equilibrium change on the smoking be-

havior values at T , ∆yT is given by the expression

∆yT = α2 [I− α3G]
−1

1 (E.1)

and incorporates changes due to the change in the exogenous variable, as well as changes arising from the

change in the behavior of her peers, and that of their peers and so on. To demonstrate this explicitly, we

use a power series expansion of the equilibrium change in (E.1) as

∆yT = α2 [I− α3G]
−1

1

= α2

∞∑
k=0

(α3G)
k
1

= α2 1︸︷︷︸
direct effect

+(α3G) 1+ (α3G)
2
1+ · · ·+ (α3G)

k
1+ · · ·︸ ︷︷ ︸

indirect social interaction effects

=
α2

α1 + α2
1︸ ︷︷ ︸

total effect

which in turn reveals that the total equilibrium change, ∆yT = α2

α1+α2
1, incorporates a direct effect on

behavior, ∆yT |direct= α2 1, and an infinite cascade of indirect social interaction effects of the same sign.

The result of all these indirect effects is what is called the social multiplier and can be defined as

∆yT |social =
∆yT

∆yT |direct
=

α2

α1+α2

α2
= =

1

α1 + α2
> 1

It follows than that ∆yT = 1 when preferences do not account for addiction; that is, when α1 = 0.

Importantly, when α1 = 0, the total effect is independent of preferences for conformity parameter α3

and the social multiplier as defined by Boucher and Fortin (2016), ∆yi,T − 1, is equal to zero. With
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addiction effects, that is, when α1 > 0, the multiplier is negative, but it is increasing in the preferences for

conformity parameter α3. In fact, it is proportional to the ratio of the total effect and the social effect,
∆yt

∆yt|direct = 1
1−α3

.

Consider now adding a complementarity factor to preferences, as discussed in Footnote 9 in the text;

that is, consider adding a term
∑N

j=1 2γ yit yjt to preferences. In this case, the social multiplier as defined

by Boucher and Fortin (2016) is equal to α2

α1+α2−γ − 1, and hence it might be positive and it is always

increasing in α3. Therefore, while the preference parameter driving complementarities γ - and hence the

social multiplier as defined by Boucher and Fortin (2016) - cannot be identified with aggregate behavior

(and indeed we therefore postulate γ = 0 in the text), the ratio of the total effect and the social effect,
∆yT

∆yT|direct = ∆yT |social can be interpreted as a measure of social interaction effects in the economy we

study.46

E.1 General Model of Social Interactions

In this section, we report the results we obtain by allowing both for conformity as well as positive comple-

mentarity. The contemporaneous utility specification takes the form:

u(yit−1, yit, {yjt}j∈N(i), θit) :=

Private︷ ︸︸ ︷
−α1(yit−1 − yit)

2 − α2(θit − yit)
2

−α3

N∑
j=1

gij(yjt − yit)
2

︸ ︷︷ ︸
Conformity

+ 2

N∑
j=1

γij yit yjt︸ ︷︷ ︸
Complementarity

(E.2)

where αi ≥ 0, i = 1, 2, 3, and γij ≥ 0, for i, j = 1, . . . , N .

As we have briefly noticed above, the notion of social multiplier is quite subtle in the class of economies

we study. It is easier to illustrate why by considering the social interaction effects in the last period t = T ,

so as to silence any dynamic effects. Following the exact same recursive induction arguments we used

in the Equilibrium Existence proof in Appendix B, these structural ideas extend to earlier periods of a

dynamic economy.

The marginal utility takes the form

MU(yiT−1, {yjT }Nj=1, θiT ) := 2

[
α1 yiT−1 + α2 θiT + α3

N∑
j=1

gijyjT

+

N∑
j=1

γijyjT − (α1 + α2 + α3) yiT

]

which means this specification has strategic complementarities built into it, since the marginal utility of an

46This is the sense in which in fact both Becker and Murphy (2001) and Glaeser and Scheinkman (2003) use the
term social multiplier.
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agent for an action increases as other agents increase their actions, i.e., MU
∂yjT

> 0 for any j where gij ̸= 0

or γij ≥ 0.47. Next, we derive the optimal choice of agent i using her FOC and write her best response

function as

BRi (yiT−1, θiT ,y−iT , ) =

(
α1

∆1

)
yi,T−1 +

(
α2

∆1

)
θi,T +

(
α3

∆1

) N∑
j=1

gijyj,T +

N∑
j=1

(
γij
∆1

)
yj,T

where ∆1 := α1 + α2 + α3 and y−iT := (yjT )j ̸=i. We stack all these best responses for i = 1, . . . , N into

an (N × 1) vector BR as

BR(yT−1, θT ,yT ) =
(
BR1 (y1T−1, θ1T ,y−1T ) , . . . , BR

N (yNT−1, θNT ,y−NT )
)

=

(
α1

∆1

)
yT−1 +

(
α2

∆1

)
θT +

(
α3

∆1

)
GyT +

(
1

∆1

)
ΓyT

Define now the function F as

F (yT−1, θT ,yT ) := yT −BR(yT−1, θT ,yT ) (E.3)

An equilibrium of the last period exists when F (yT−1, θT ,yT ) = 0 for all (yT−1, θT ). More precisely, the

equilibrium is where

yT −
(
α1

∆1

)
yT−1 −

(
α2

∆1

)
θT −

(
α3

∆1

)
GyT −

(
1

∆1

)
ΓyT = 0

=⇒
[
I−

(
α3

∆1

)
G−

(
1

∆1

)
Γ

]
yT =

(
α1

∆1

)
yT−1 +

(
α2

∆1

)
θT (E.4)

A big chunk of what we will demonstrate depends on the structure of the matrix[
I−

(
α3

∆1

)
G−

(
1

∆1

)
Γ

]
. (E.5)

First, we present equilibrium behavior when preferences are of the pure conformity form. Namely, we

set Γ = 0. After presenting the results for pure conformity, in the rest, we present results when we allow

both for conformity as well as positive complementarity.

Under the assumption α1 + α2 > 0, our economy has a unique equilibrium. Hence, there exists a

unique solution to equation (E.3). The matrix of partial derivatives w.r.t yT obtained from that equation

47See Bulow, Geanokoplos, and Klemperer (1985) who have coined the term; see also Cooper and John (1988)

57



has the following structure

F3(yT−1, θT ,yT ) =


1 −

(
α3

∆1

)
g12 . . . −

(
α3

∆1

)
g1N

−
(

α3

∆1

)
g21 1 . . . −

(
α3

∆1

)
g2N

...
...

. . . 0

−
(

α3

∆1

)
gN1 −

(
α3

∆1

)
gN2 . . . 1


Consider w.l.o.g. an exogenous change say by ∆θi,T = 1, for all i = 1, . . . , N . In equilibrium, the change

in the equilibrium choices w.r.t. the exogenous change is given by

∂yT

∂θT
= (F3)

−1
(yT−1, θT ,yT )

(
∂BR1

∂θT
, . . . ,

∂BRN

∂θT

)′

Since F3 has a dominant diagonal that is equal to one, we may use the Neumann expansion to write:

(F3)
−1

= I + (I− F3) + (I− F3)
2
+ . . .

Note that all diagonal elements of (I−F3) are zero and the off-diagonal elements are −F3,ij =
(

α3

∆1

)
gij >

0. Each of the terms in this infinite series is a matrix with non-negative entries, and can be represented as

∂yT

∂θT
= (I + H)

(
∂BR1

∂θT
, . . . ,

∂BRN

∂θT

)′

where H is a matrix with non-negative elements. The non-negativity of the matrix H, means that there

is a social multiplier. In economies where individual preferences incorporate strategic complementarity,

including the current model, a change in the value of an exogenous variable yields a direct effect on behavior

and an infinite cascade of indirect effects of the same sign. That is because each agent’s action changes

not only because of the change in the exogenous variable, but also because of the change in the behavior

of her peers, and that of their peers and so on. The result of all these indirect effects is what is called the

social multiplier.

To quantify this multiplier effect, we measure the ratio of the total (equilibrium) effect (I + H) ∂BR
∂θT

=[
I−

(
α3

∆1

)
G
]−1 (

α2

∆1

)
to the direct effect ∂BR

∂θT
=
(

α2

∆1

)
I (as in Becker and Murphy (2001) and Glaeser

and Scheinkman (2003)).

Definition 1 The social multiplier of an exogenous preference shock ∆θT := θ′T − θT , at t = T , on

behavior at t = T is given by

m =
∆yT

∆yT |direct
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Proposition 3 There exists a social multiplier given by

m =

[
I−

(
α3

∆1

)
G

]−1

u =

(
1

α1 + α2

)
u

and it has the following properties:

(i) It is larger than 1 if and only if α3 > 0

(ii) It is a monotone increasing function of the strength of interactions α3.

(iii) limα3→0mi = 1 and limα3→1mi = ∞, for any i = 1, . . . , N .

Now is the time to present results allowing both for conformity as well as positive complementarity.

Hence, Γ ̸= 0 anymore. To match the same peer group definition we employ in the paper, we assume that

the network structure satisfies, similar to Boucher et al. (2022), the following:

Assumption 1 The coefficients of complementarity γij are uniform across agents. Namely,

γij =

 γ
N−1 > 0 if i ̸= j

0 otherwise

As we defined before (in equation (E.4) above), an equilibrium of the last period exists when[
I−

(
α3

∆1

)
G−

(
1

∆1

)
Γ

]
︸ ︷︷ ︸

A

yT =

(
α1

∆1

)
yT−1 +

(
α2

∆1

)
θT (E.6)

Proposition 4 Assume that Assumption 1 holds and that α3

∆1
+ γ

∆1
< 1. Then, the following are true:

(i) The matrix A in (E.6) is nonsingular. Hence, the unique equilibrium policy is given by

yT =

[
I−

(
α3

∆1

)
G−

(
1

∆1

)
Γ

]−1 [(
α1

∆1

)
yT−1 +

(
α2

∆1

)
θT

]
(E.7)

(ii) The mean outcome is increasing in the strength of complementarity γ. Namely, the average choice

can be solved as

yT (γ) =

(
α1

α1 + α2 − γ

)
yT−1 +

(
α2

α1 + α2 − γ

)
θT (E.8)

which is independent of α3 as long as the relative ratio
(

α1

α2

)
stays intact.

(iii) The effect on the mean action of a change to a common exogenous variable, say ∆θT = u or
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∆yT−1 = u is increasing in γ. More formally,

∆yT =

 α1

α1+α2−γ , if ∆yT−1 = u

α2

α1+α2−γ if ∆θT = u

Proposition 5 Assume that Assumption 1 holds and that α3

∆1
+ γ

∆1
< 1. There exists a social multiplier

of an exogenous preference shock at t = T on behavior at t = T given by

m =
∆yt

∆yt |direct
=

[
I−

(
α3

∆1

)
G−

(
1

∆1

)
Γ

]−1

u =

(
1

α1 + α2 − γ

)
u.

and it has the following properties:

(i) It is larger than 1 if and only if α3 > 0 or γ > 0.

(ii) It is a monotone increasing function of the strength of interactions α3 as well as the strength of

complementarity γ.

(iii) Social multiplier with complementarity (γ > 0) is larger than the social multiplier without.

(iv) Moreover, limα3→0mi =
1

1−γ and lim(α3+γ)→1mi = ∞, for any i = 1, . . . , N .

E.2 Proofs of All Results

Proof: [Proposition 3] We know from the existence proof in Appendix B of the paper that the unique fixed

point of the operator induced by the first-order condition written in matrix form ∆1yT = α1 yT−1+α2 θT +

α3 GyT exists. Moreover, this existence is equivalent to the invertibility of this matrix equation. Another

way to see this is that since α3

∆T
< 1, ∆1I−α3 G is invertible (see Case (1991), footnote 5). Hence, the social

multiplier is well defined. Using a series expansion of the inverse
[
I−

(
α3

∆1

)
G
]−1

=
∑∞

k=0

(
α3

∆1

)k
Gk,

and using the fact that Gk u = u for any k ≥ 1, we can show that

[
I−

(
α3

∆1

)
G

]−1

u =

∞∑
k=0

(
α3

∆1

)k

Gk u

=

∞∑
k=0

(
α3

∆1

)k

u

=

(
1

1− α3

∆1

)
u =

(
1

α1 + α2

)
u.

where the last step uses the identification condition ∆1 = α1 + α2 + α3 = 1. Result (i) follows from the

fact that ∆1 := α1 + α2 + α3 = 1 hence α1 + α2 < 1 if and only if α3 > 0. Result (ii) follows from the

fact that ∆1 := α1 +α2 +α3 = 1 hence α1 +α2 goes down when α3 goes up. Result (iii) similarly follows

from the fact that as α3 → 0, α1 + α2 → 1 and as α3 → 1, α1 + α2 → 0.
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■

Proof: [Proposition 4] The nonsingularity of the matrix A is obtained using the exact same arguments

as in the Proof of Proposition 3. Hence the unique equilibrium policy is given by (E.7) as stated. Observe

that we can write (
α3

∆1

)
G+

(
1

∆1

)
Γ =

(
α3 + γ

∆1

)
G.

With this observation, the average choice is given by 1
N u′ yT where u′ is a 1 ×N row vector. Therefore,

using a power series expansion of the inverse
[
I−

(
α3+γ
∆1

)
G
]−1

=
∑∞

k=0

(
α3+γ
∆1

)k
Gk, and using the fact

that u′ Gk = u′ for any k ≥ 1 since G is symmetric, and that α3

∆1
+ γ

∆1
< 1, we can show that

yT (γ) =
1

N
u′ yT

=
1

N
u′

( ∞∑
k=0

(
α3 + γ

∆1

)k

Gk

)[(
α1

∆1

)
yT−1 +

(
α2

∆1

)
θT

]

=
1

N

∞∑
k=0

(
α3 + γ

∆1

)k

u′Gk

[(
α1

∆1

)
yT−1 +

(
α2

∆1

)
θT

]

=

∞∑
k=0

(
α3 + γ

∆1

)k

u′ 1

N

[(
α1

∆1

)
yT−1 +

(
α2

∆1

)
θT

]

=

∞∑
k=0

(
α3 + γ

∆1

)k [(
α1

∆1

)
yT−1 +

(
α2

∆1

)
θT

]

=

(
1

1− α3+γ
∆1

)[(
α1

∆1

)
yT−1 +

(
α2

∆1

)
θT

]
yT (γ) =

(
1

α1 + α2 − γ

)[(
α1

∆1

)
yT−1 +

(
α2

∆1

)
θT

]
hence result (ii) obtains. Moreover, since the fraction is increasing in γ, as stated in the Proposition, the

mean outcome is increasing in the strength of complementarity γ, and is independent of α3 as long as the

relative ratio
(

α1

α2

)
stays intact. Finally, result (iii) obtains because of the monotonicity argument we just

made.

■

Proof: [Proposition 5] Using a series expansion of the inverse
[
I−

(
α3+γ
∆1

)
G
]−1

=
∑∞

k=0

(
α3+γ
∆1

)k
Gk,

61



the social multiplier of an exogenous preference shock at t = T on behavior at t = T is given by

m =

[
I−

(
α3

∆1

)
G−

(
1

∆1

)
Γ

]−1

u =

∞∑
k=0

(
α3 + γ

∆1

)k

Gk u

=

∞∑
k=0

(
α3 + γ

∆1

)k

u

=

(
1

1− α3+γ
∆1

)
u

=

(
1

α1 + α2 − γ

)
u.

Result (i) is obtained as follows:
(

1
α1+α2−γ

)
> 1 if and only if (α1 + α2 − γ) < 1 if and only if α3 =

1 − α1 − α2 > 0 or γ > 0 (or both). Result (ii) follows from the fact that ∆1 = α1 + α2 + α3 = 1 hence

α1 + α2 goes down when α3 goes up and the fraction goes up when γ goes up. Result (iii) is obtained by

observing that the fraction is monotone increasing in the value of γ. Result (iv) follows from the fact that

as α3 → 0, α1 + α2 → 1 and as α3 + γ → 1, α1 + α2 − γ = 1− α3 − γ → 0.

■

F Recursive Algorithm to Compute the Dynamic Multiplier

We defined Λt,τ , for any τ = t+ 1, . . . , T , in Appendix B, as

Λt,τ := ατ−t
1 Bτ × . . .×Bt+1 (F.1)

with the convention that Λt,t := IN , the identity matrix. Similarly, from Appendix B, the definition of

Γt,τ , for any τ = t+ 1, . . . , T , is

∆Γt,τ :=

τ∑
s=t+1

ατ−s
1 (Bτ × · · · ×Bs)

(
∆θ̄s +∆Ds

)
(F.2)

with the convention that Γt,t := 0N , the N × 1 matrix of zeros, and where θ̄s is the expected value of θs,

conditional on period-t information. Finally, equation (B.17) yields

∆Dt :=

T∑
τ=t+1

δτ−t

(
− α1 diag (Λt,τ−1 − Λt,τ ) (∆Γt,τ−1 −∆Γt,τ )

+diag (Λt,τ )
(
∆θ̄τ −∆Γt,τ

)
−α3

N∑
k=1

diag (G•k ι
′
N ) diag (ιN Λk•,t,τ − Λt,τ ) (∆Γk,t,τ1−∆Γt,τ )

)
(F.3)
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where 1 is an N × 1 column vector of ones. These are the two variables we need for the computation.

For t = T , ∆DT = 0 by construction. For t = T − 1, (F.2) simplifies to

∆ΓT−1,T = BT ∆θ̄T = πBT 1 (F.4)

Hence, ∆DT−1, for example, can be obtained as

∆DT−1 = π δ

(
α1 diag (ΛT−1,T−1 − ΛT−1,T )BT1

+diag (ΛT−1,T ) (1−BT1)

−α3

N∑
k=1

diag (G•k ι
′
N ) diag (ιN Λk•,t,τ − ΛT−1,T ) ((BT 1)k•1−BT 1)

)

So, to sum all this up, here is the recursive algorithm to compute these variables for the remaining

periods t = 1, . . . , T − 1:

1. Compute ∆Γt,τ , τ = t+ 1, . . . , T using equation (F.2).

2. Compute ∆Dt using equation (F.3).

3. Repeat until t = 0.

G Risky Behaviors Indices

Risky behaviors indices are constructed using answers to the questions in the Tobacco, Alcohol, Drugs,

and Delinquency scale Sections in the Wave I in-home questionnaire. In particular, following the existing

literature, we consider variables indicating if students have been attempting alcohol, and indices of how

often students participate in a fight, paint graffiti, or steal something.48 We construct an alcohol con-

sumption indicator using answers to the question: “Have you had a drink of beer, wine, or liquor—not

just a sip or a taste of someone else’s drink—more than 2 or 3 times in your life?” The variable Drink ever

is coded as one if students report drinking beer, wine, or liquor and 0 otherwise. We construct indices of

how often students participate in a fight, paint graffiti, or steal something using respondent answers to the

following questions: “In the past 12 months, how often did you take part in a fight where a group of your

friends was against another group? How often did you paint graffiti or signs on someone else’s property

or in a public place? How often did you steal something worth more than $50?. Specifically, we code the

indices Fight, Graffiti, and Steal as 0,1,2 if students report never; 1 or 2 times; 2 or 4 times, respectively.

48Baker, Sigman, and Nugent (2001) consider truancy an early warning sign for potential delinquent activity,
social isolation, and educational failure. Roebuck, French and Dennis (2004) find that school absenteeism or
truancy is a risk factor for substance abuse.
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H Additional Figures and Tables

Figure 2: Distribution of how many days students smoked

This figure graphs the empirical density of the answers to the question “During the past 30 days, on how many
days did you smoke cigarettes?”. Density is estimated using a histogram density estimator.
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Figure 3: Proportion of students by smoking status

This figure graphs the proportion of students in our sample who have never tried smoking, who have tried but have
reported not to have smoked cigarettes in the last month, and finally who have smoked one or more days in the
last month.
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Table 10: Sample selection

Years 1994 (WI)-1995 (WII) Panel (a) Panel (b)
Saturated sample Sample without

missing values
(N. obs.: 1312) (N. obs.: 1,043)

Female 0.5038 0.5002 0.5158 0.5000
Black or African American 0.1395 0.3466 0.1371 0.3441
White 0.5930 0.4915 0.6337 0.4820
Asian 0.1631 0.3696 0.1419 0.3491
Hispanic 0.1913 0.3935 0.1592 0.3660
Indian 0.0366 0.1878 0.0345 0.1826
PVT test score 0.0107 0.9196 0.0762 0.9213
Parents College degree 0.2614 0.4396 0.2694 0.4439
Two-parent family 0.7431 0.4371 0.7622 0.4259
Log(family income) 0.3490 0.1738 0.3577 0.1708
Age (WII) 16.9558 0.9517 16.8782 0.9576
Tobacco at home (WII) 0.2980 0.4576 0.2848 0.4515
Height (WII) 1.7065 0.0999 1.7067 0.1003
Attendance (WII) 175.6319 7.9931 176.9808 4.6614

This table reports means and standard deviations of students’ character-
istics for the saturated sample (Panel (a)), and for the sample without
missing values in observations (Panel (b)).

Table 11: Sample representativeness

Add Health CPS
(N. obs.: 16361) (N. obs.: 14257)

Variable Mean SD Mean SD
Female 0.5158 0.5000 0.5046 0.5000
Black or African American 0.1371 0.3441 0.1270 0.3330
White 0.6337 0.4820 0.6582 0.4743
Hispanic or Latino 0.1592 0.3660 0.1645 0.3707
Parents College degree 0.2694 0.4439 0.2292 0.4204

This table reports summary statistics for the Add Health data sample used
in the paper and the 1994 CPS. Person weights are used in the 1994 Current
Population Surveys (CPS). The CPS sample is restricted to those aged 14-
20 and re-weighted to match the age distribution of the Add Health sample.
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Table 12: Balancing tests
(1) (2) (3) (4) (5) (6)

Two-parent family Parents College degree Tobacco at home Black or African American Income PVT test score

Peers characteristics:
Parents College degree -0.1393 -0.0374 0.0393 -0.0815 0.2700

(0.1490) (0.1657) (0.1369) (0.0915) (0.3332)
Black or African American -0.2924 0.8223*** 0.6204** 0.1218 0.9507*

(0.3050) (0.2599) (0.2423) (0.1072) (0.5275)
PVT test score 0.0210 0.1100 0.0062 -0.0032 -0.0107

(0.0775) (0.0943) (0.0829) (0.0475) (0.0422)
Income 0.2337 -0.1226 -0.7999** -0.0273 -0.4136

(0.2995) (0.3689) (0.3556) (0.1713) (0.6977)
Tobacco at home 0.0460 0.1817 0.1292** -0.0191 0.2470

(0.1576) (0.1434) (0.0605) (0.0612) (0.2950)
Two-parent family -0.2255 -0.0702 -0.0593 -0.0537 -0.2663

(0.1534) (0.1710) (0.1019) (0.0583) (0.4277)

Individual characteristics Yes Yes Yes Yes Yes Yes
Gender indcator Yes Yes Yes Yes Yes Yes
School fixed effects Yes Yes Yes Yes Yes Yes

The figures in each row and columns are coefficients from separate regressions of students’ background characteristics (parent college degree, two
parent family, black or African American, Income, tobacco at home and PVT scores) on peers’ average characteristics controlling for the corresponding
individual characteristic for a total of 6outcomes× 5 peers’ characteristics regressions. Each regression includes a gender indicator, grade indicators,
and school fixed effects. Heteroskedasticity-robust numerical standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 13: Truancy vs. excused absence: correlated risky behaviors

Risky behavior controls
Dep. Var Drink ever Fight Graffiti Steal

Skipping school with an excuse 0.0280 0.0190 0.0321* 0.0295
(0.0208) (0.0151) (0.0179) (0.0204)

Obs. 1,040 1,040 1,040 1,040

Truancy 0.1860*** 0.1185*** 0.1121*** 0.1853***
(0.0223) (0.0166) (0.0258) (0.0380)

Obs. 1,304 1,305 1,305 1,306

Individual characteristics Yes Yes Yes Yes
Grade indicators Yes Yes Yes Yes
School fixed effects Yes Yes Yes Yes

This table reports OLS estimates of attendance correlated risky behaviors. The depen-
dent variables are skipping school with an excuse and without (truancy). Definitions of
the risky behaviors variables are in Section 6. We drop from the sample in the top panel
students with more than 2 days of unexcused absences from school. Students’ character-
istics are listed in Table 10. heteroschedasticity-robust standard errors in parentheses.
*** p<0.01, ** p<0.05, * p<0.1.
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Table 14: Dynamic recursive model- Controls

Dep. Var. Risky Behavior Index
(1) (2)

Addiction effect (α1) 0.8649*** 0.8853***
(0.0346) (0.0305)

Own effect (α2) 0.0001*** 0.0001***
(0.0000) (0.0000)

Peer effect (α3) 0.1350*** 0.1147***
(0.0346) (0.0305)

Discount factor (δ) 0.8980*** 0.8950***
(0.2153) (0.2208)

Female 0.6774*** -0.7153***
(0.0000) (0.0000)

Black or African American -0.0524*** 0.1027***
(0.0000) (0.0000)

Asian -1.6245*** -0.9000***
(0.0000) (0.0000)

Hispanic -1.3635*** -0.5038***
(0.0000) (0.0000)

Indian 0.4200*** 0.2810***
(0.0000) (0.0000)

Age (WII) 1.0812*** 0.9274***
(0.0004) (0.0002)

PVT test score 1.2358*** -0.7623***
(0.0001) (0.0001)

Height (WII) 0.7874*** 0.3613***
(0.0000) (0.0000)

Parents College degree 0.4431*** 0.5663***
(0.0000) (0.0000)

Log(family income) -0.3793*** -0.4402***
(0.0000) (0.0000)

Two-parent family -1.2863*** -0.6308***
(0.0000) (0.0000)

Attendance (WII) 5.7596*** 4.3002***
(0.0000) (0.0001)

Tobacco at home (WII) 3.7696*** 1.9790***
(0.0000) (0.0000)

Student characteristics Yes Yes
Peers’ characteristics No Yes
Grade indicators Yes Yes
School fixed effects Yes Yes
N. Obs. 1,043 1,043

This table reports NLIV estimates of the structural models 8. Students’ characteristics
are listed in Table 10. The peers’ characteristics are calculated as friends’ averages of the
included variables. cluster-robust numerical standard errors in parentheses. Clusters
are defined at school level. *** p<0.01, ** p<0.05, * p<0.1.
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Table 15: Constrained “myopic” and “static” models- Controls

Dep. Var. Risky Behavior Index Static Myopic Dynamic
α1 = 0, δ = 0 δ = 0

(1) (2) (3)

Addiction effect (α1) 0.8566*** 0.8853 ***
(0.0421) (0.0305)

Own effect (α2) 0.3520 0.0410 0.0001 ***
(0.4128) (0.1011) (0.0000)

Peer effect (α3) 0.6480 0.1024 0.1147 ***
(0.5115) (0.0929) (0.0305)

Discount factor (δ) 0.8950 ***
(0.2208)

Female -0.2965 -0.4836 -0.7153***
(0.4909) (1.9694) (0.0000)

Black or African American -0.4972 -0.7890 0.1027***
(0.6809) (2.5548) (0.0000)

Asian 0.0113 -0.7897 -0.9000***
(0.4209) (2.4980) (0.0000)

Hispanic -0.1007 0.4059 -0.5038***
(0.1765) (2.5280) (0.0000)

Indian -0.1990 -0.2124 0.2810***
(0.2621) (0.8677) (0.0000)

Age (WII) -0.0605 -1.4366 0.9274***
(1.0918) (3.4260) (0.0002)

PVT test score -0.2233 0.5045 -0.7623***
(0.2596) (6.3798) (0.0001)

Height (WII) 0.2335 0.3253 0.3613***
(0.5198) (1.4983) (0.0000)

Parents College degree 0.2431 -0.7001 0.5663***
(0.3431) (3.2942) (0.0000)

Log(family income) -0.1079 0.3445 -0.4402***
(0.1355) (1.3343) (0.0000)

Two-parent family 0.4896 -0.1076 -0.6308***
(0.5854) (0.2496) (0.0000)

Attendance (WII) 0.1702 1.9800 4.3002***
(1.0188) (4.5968) (0.0001)

Tobacco at home (WII) -0.1072 -0.6083 1.9790***
(0.7256) (3.2156) (0.0000)

Student characteristics Yes Yes Yes
Peers’ characteristics Yes Yes Yes
Grade indicators Yes Yes Yes
School fixed effects Yes Yes Yes
N. Obs. 1,043 1,043 1,043

This table reports NLIV estimates of the structural model 8. In Column 1 we restrict
the model by setting α1 = 0 and δ = 0, while in Column 2 we restrict the model by
setting δ = 0. Column 3 reports baseline estimates presented in Table 3 Column 2.
Students’ characteristics are listed in Table 10. The peers’ characteristics are calculated
as friends’ averages of the included variables. cluster-robust numerical standard errors
in parentheses. Clusters are defined at school level. *** p<0.01, ** p<0.05, * p<0.1.
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