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Abstract11

We propose two closely–related Lagrangian numerical methods for the12

simulation of physical processes involving advection, reaction and diffu-13

sion. The methods are intended to be used in settings where the flow is14

nearly incompressible and the Péclet numbers are so high that resolving15

all the scales of motion is unfeasible. This is commonplace in ocean flows.16

Our methods consist in augmenting the method of characteristics, which17

is suitable for advection–reaction problems, with couplings among nearby18

particles, producing fluxes that mimic diffusion, or unresolved small-scale19

transport. The methods conserve mass, obey the maximum principle,20

and allow to tune the strength of the diffusive terms down to zero, while21

avoiding unwanted numerical dissipation effects.22

Keywords: Ocean biogeochemistry; lagrangian methods; advection reaction23

diffusion; unresolved flows.24

1 Introduction25

Biogeochemical problems in oceanography are usually expressed in terms of26

coupled advection-reaction-diffusion equations involving scalar fields, sometimes27

in large number, representing chemical species, biological species, or functional28
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groups (see, e.g., [1]). These fields are advected by the ocean currents, are29

subject to diffusion, and interact nonlinearly with each other.30

A generic, abstract form of oceanographical biogeochemical equations is the
following

∂c1
∂t

+ u · ∇c1 =D1∇2c1 + f1(c1, . . . , cn)

... (1)
∂cn
∂t

+ u · ∇cn =Dn∇2cn + fn(c1, . . . , cn)

where c1, . . . , cn are the scalar fields, u is the water velocity field in the region of31

interest, which is assumed to be known, D1, . . . , Dn are the diffusion coefficients,32

and the functions f1, . . . , fn specify the local interactions among the scalar fields.33

The relative importance of the transport and diffusion terms is quantified34

by the Péclet numbers35

Pel =
UL

Dl

where U and L are, respectively, a characteristic speed and a characteristic36

length associated to the velocity field u. The relative importance of the trans-37

port and reaction terms is quantified by the Damköhler numbers38

Dal =
L

Uτl

where τl is a characteristic time scale associated with the reaction described by39

fl.40

The Damköhler number for phytoplankton may range from negligibly small41

up to O(10) [2]. While large values of the Damköhler number may amplify42

the patchiness of a reacting scalar as compared to a non–reacting one [3, 4] and43

make the problem stiff, the true source of numerical difficulties in biogeochemical44

applications lies in the enormous size of the Péclet number.45

If one takes the diffusivities to be the molecular ones (or computed from the46

mean square displacement of trajectories of individual plankton cells) then the47

Péclet numbers may easily exceed 1010. Such a large value is reflected in the fact48

that ocean tracers (temperature, salinity, etc.) show structures from the scale49

of ocean basins down to submillimetric scales. Even accounting for a continuing50

rapid pace of improvement in computer technologies, it is quite obvious that,51

in the foreseeable future, no numerical code will be able to resolve such a wide52

interval of scales.53

In the absence of reaction terms, a reasonable way to deal with unresolved54

small scales is to parameterize the advective fluxes due to the unresolved scales55

with diffusion operators (often in a more complicated form than simple Lapla-56

cians). To this end there is an impressive array of techniques, ranging from57

explicitly adding new terms to the equations (e.g. in turbulence closures), to58

using flux or slope limiters (e.g. in finite volume methods), to advection and59
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interpolation (e.g. in semi-lagrangian methods) or dealiasing and filters (e.g. in60

pseudo–spectral methods). A review of numerical methods used for geophysical61

flows is given in [5]. In all these cases, however, the strength of the diffusive62

terms is determined not just by the physical parameters of the problem, but63

also by the size of the mesh. In fact, all these techniques may be viewed as64

different ways to average out the subgrid scales. Thus, in the presence of un-65

resolved small scales, the values of the scalar fields at each grid node must be66

understood not as a pointwise evaluation of a function, but as an average over a67

spatial region having an extension comparable with the size of a computational68

mesh.69

Early studies already showed that changing the strength of the diffusive70

fluxes representing the unresolved scales may have a dramatic impact on the71

reaction terms [2, 6] and warned that a “mean field” approach might be inappro-72

priate for modeling plankton dynamics. Later studies, conducted using realistic73

ocean models, showed strong fluctuations in plankton productivity depending74

on the advection scheme used and, most importantly, on the resolution [7, 8, 9].75

The most recent assessment of the importance of the unresolved structures is76

found in [10].77

As a first step to understand these results we need to observe that, for the78

full set of equations (1), one faces the overwhelming difficulty that an averaging79

operator does not commute with nonlinear reaction terms: fl(c1, . . . , cn) 6=80

fl(c1, . . . , cn). Because reactions terms are formally evaluated pointwise one81

would need to compute fl(c1, . . . , cn), but all that current grid–based codes can82

do is to compute fl(c1, . . . , cn). The wide chasm of unresolved scales means83

that the mesh-averaged values c1, . . . , cn may be substantially different from84

their pointwise counterpart c1, . . . , cn. As we shall see in the following, the bias85

produced by this effect may have either sign, depending, among other things,86

on the initial conditions.87

In the absence of any diffusive effect, that is, setting D1,...,n = 0 in (1), it88

is arguably better to avoid any discretization involving an Eulerian grid, and89

use a straightforward implementation of the method of characteristics. This90

leads to the following conceptually simple Lagrangian numerical scheme (for an91

overview on Lagrangian dynamics the interested reader is referred to [11, 12]):92

we uniformly seed the domain Ω with M particles, having position xi, i =93

1, . . . ,M , and then numerically solve94 
ẋi = u(xi, t)

ċ1;i = f1(c1;i, . . . , cn;i)
...

ċn;i = fn(c1;i, . . . , cn;i)

(2)

with one among many viable ODE solvers. Here and in the following we use95

the shorthand notation cl;i = cl(xi, t) for the scalars sampled at the location96

of each particle (the notation is fully described in sec. 2). It is important to97

appreciate that, even when the number of particles is too small to fully sample98
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the small-scale structures present in the full solution of the PDEs, the values99

cl;i remain unaffected by the sparsity of the sampling, and are only affected by100

inaccuracies in the solution of the ODEs (2), due, e.g., to an imperfect knowledge101

of the velocity field u. This scheme is thus immune from the averaging problem102

discussed above. If, as is the case in oceanographic applications, the velocity103

field u is divergenceless, or nearly so, then an initially uniform sampling will104

remain uniform, or nearly so, at all future times. In this context the lack of a105

structured grid is just a nuisance: diagnostic and data analysis tasks may be106

performed after resampling the numerical solutions of (2) on a regular grid of107

choice, using, e.g., the methods discussed in [13, §5.3, p.128].108

Unfortunately, the method of characteristics is not directly applicable to109

biogeochemical problems: the complete absence of diffusive effects in (2) would110

lead to paradoxical effects. For instance, if a water mass containing some phy-111

toplankton but poor of nutrients were brought close to water masses devoid of112

phytoplankton but nutrient–rich, fluxes associated to small–scale motions would113

seed some plankton in the nutrient–rich water masses, leading, if the conditions114

are right, to a bloom. With the scheme (2) a particle full of phytoplankton115

could be brought arbitrarily close to a particle full of nutrients and yet there116

would be no exchanges between the two: the plankton would wither, and the117

nutrients would remain unused.118

In this paper we show how to augment the Lagrangian scheme (2) with119

couplings among nearby particles designed to mimic diffusive effects or, more120

generally, fluxes due to small-scale, unresolved transport processes. In order to121

be acceptable, such a coupling must possess the following three properties122

1. respect mass conservation;123

2. obey the maximum principle;124

3. allow to recover the scheme (2) in the limit Dl → 0.125

The importance of mass conservation is fairly obvious. Even for models using126

non–conserving reaction terms, there is no reason to introduce uncontrollable127

numerical sources and sinks of scalars. Schemes that do not obey the max-128

imum principle may create maxima and minima unbounded by the maxima129

and minima of the initial conditions. In particular, scalar fields that should be130

non-negative (e.g. the concentration of a chemical species) may locally develop131

negative values, which, in turn, yield meaningless results with most reaction132

models. Being able to recover the scheme (2) means that one is free to tune the133

strength of the diffusive effects on the basis of modeling considerations alone,134

and not because of numerical requirements. We propose two distinct couplers135

that satisfy all these three properties. Of the two methods that we propose, the136

first is based on an integral formulation, the second is an heuristic recipe based137

on physical considerations. The two methods are distinct in the way used to138

enforce mass conservation. In both cases, however, the maximum principle is a139

direct consequence of the fact that the concentration of each particle after a dif-140

fusive step is determined as an average involving the concentrations of nearby141
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particles. Free parameters, appearing in both methods, can be used to tune142

the strength of the diffusive effects to extremely low values, or to zero, thereby143

maintaining the particles uncoupled.144

Particle–based methods are not a novelty. Smoothed particle hydrodynam-145

ics (SPH) has proved to be very suitable for highly compressible astrophysical146

problems, but flexible enough to be applied in many other settings [14], includ-147

ing heat conduction [15]. However, we felt that achieving all three of the above148

properties might be not straightforward with an SPH–inspired approach, there-149

fore our methods are not based upon the differentiation of a smooth kernel.150

Other particle–based methods, closer to the spirit of the present work, have151

been proposed for diffusion and advection–diffusion equations [16, 17], but did152

not gain a large popularity.153

Few are the instances in which Lagrangian methods have been applied to154

geophysical problems. Nearly all numerical ocean models use grid–based meth-155

ods, with the notable exception of the so–called “slippery sack” model [18]. This156

was initially a purely adiabatic, Lagrangian scheme, which was later augmented157

with a diffusive coupling between nearby particles [19]. More recently, embed-158

ding Lagrangian “blobs” within an Eulerian Ocean Circulation Model has been159

proposed as an effective way to parameterize sub–grid–scale processes [20], much160

in the same spirit as in the present work. The Lagrangian scheme (2) has been161

successfully applied to explain some incongruences between ecological models162

and observations [21]. When augmented with a diffusive coupling it has been163

used to explain the Fourier spectrum of a plankton concentration field [22].164

We are not aware of other applications of Lagrangian schemes to ocean biogeo-165

chemistry. There exists more work on Lagrangian methods for modeling the166

atmosphere. In particular, a method based on contour advection and surgery167

has been highly successful in reproducing the observed distribution of strato-168

spheric ozone [23, 24]. Lagrangian methods have shown to have advantages with169

respect to the Eulerian ones for simulating cloud microphysics [25]. They have170

also been profitably employed for studying atmospheric convection [26, 27]. For171

a recent survey on Lagrangian methods in atmospheric sciences see [28].172

It is worth briefly mentioning that using stochastic processes for simulat-173

ing diffusion in reaction–diffusion systems, albeit possible, is highly non–trivial.174

In the absence of reaction, adding a Brownian component to the deterministic175

trajectory of an advected particle is an effective way to simulate an advected–176

diffused passive scalar. But in the presence of reactions, random walkers must177

be coupled in some way (otherwise, once again, we’d fall in the paradox that178

arbitrarily close particles won’t affect each other’s concentrations). In a micro-179

scopic, stochastic description of diffusion and reaction the coupling is obtained180

by branching processes (see e.g. [29, §4.7 p.82] for an example applied to the181

FKPP equation). Unfortunately, devising the correct form of the branching182

process corresponding to a given set of reaction terms is a daunting task, in183

particular if one wishes to retain the freedom to tune the parameters or modify184

those terms. Thus our couplers are purely deterministic. They assume that185

particles, although being so small with respect to the size of the computational186

domain as to be considered punctiform, nevertheless encompass a large enough187
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mass of water to justify a deterministic description based on the notion of con-188

centration of the scalars.189

The enormous potential of diffusively–coupled Lagrangian methods in bio-190

geochemistry is illustrated by a simple example, inspired by the results ob-191

tained with a much more realistic model in [30]. In (1) we set n = 2 and192

choose a two–dimensional, incompressible velocity field u = (−ψy, ψx) defined193

through the streamfunction ψ(x, y) = sin(x) sin(y) on the doubly–periodic do-194

main (x, y) ∈ [0, 2π)× [0, 2π). The reaction terms are195

f1(c1, c2) = −r c1c2, f2(c1, c2) = +r c1c2, (3)

with r = 0.2. We may see the scalar field c2 as the spatial density of a consumer196

that grows at the expense of a resource whose density is c1. The initial conditions197

are:198

c1(x, y, 0) = cos2(x/2), c2(x, y, 0) = 10−4. (4)

We compute six solutions of this problem for progressively smaller diffusivities199

and correspondingly higher resolutions. The six meshes have 128 · 2k points in200

each direction, and the diffusivities are D1 = D2 = 10−3 · 2−2k, k = 0, . . . , 5.201

At each resolution, using substantially lower diffusivities would lead to severe202

oscillations and numerical instabilities. The solid lines in Figure 1A show the203

time evolution of the spatial average of c2 (that is, the mean consumer density).204

The dots show the same quantity computed by using the Lagrangian scheme205

(2), solved with the standard fourth–order Runge-Kutta integrator, augmented206

with one of the two diffusive couplers that will be presented in the following207

(namely, that of section 2.2). The six Lagrangian solutions all use just 1282
208

particles, and they differ only in the strength of the diffusive coupling.209

In this particular example, because of the quadratic nonlinearity, the same210

amount of resource c1 is consumed faster if it is spatially concentrated than if211

it is spread out on a larger surface but at lower concentrations. Thus smaller212

diffusivities, which better preserve the concentration peaks of the resource, yield213

a faster growth of the spatially averaged field c2. In other words, they yield a214

higher productivity of the consumer.215

One might then be lead to hope that, just as unresolved turbulence can216

be usefully approximated by effective diffusion terms, in the same way effective217

reaction terms should be sought, representing the large–scale effects of the small–218

scale chemistry, with parameters tuned as a function of the resolution of the219

model. Here we give an example showing that this hope is unlikely to be fulfilled:220

we just change the initial conditions (4) with221

c1(x, y, 0) =
(

sin
(x

2

)
sin
(y

2

))4

, c2(x, y, 0) =
(

cos
(x

2

)
cos
(y

2

))
,4 (5)

and repeat the same calculations described above. Because the resource and the222

consumer are now initially segregated into two nearly non–overlapping blobs,223

larger diffusivities bring in contact the resource and the consumer more quickly.224

As a result, we obtain the opposite effect as before: the growth of the spa-225

tially averaged consumer is fastest at the lowest resolution, and declines as the226
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Figure 1: Spatial average of the field c2 as a function of time. The solid lines
are results obtained with a pseudo–spectral code, with progressively higher res-
olution and correspondingly lower diffusivity (see text). The dots are results
obtained with a Lagrangian code using the coupler of sec. 2.2 with 1282 parti-
cles, where the strength of the diffusive coupling between particles is set as to
match that of the pseudo–spectral computations. Panel A: calculations starting
from the initial condition (4). Panel B: calculations starting from the initial
condition (5).

resolution is increased (Figure 1B). Thus, hypothetical effective reaction terms227

intended to reproduce at low resolution the results obtained at highest resolution228

with the chemistry (3) should achieve the no small feat of adjusting the pro-229

ductivity that they yield not just to the resolution, but to the initial conditions,230

too.231

The diffusively–coupled Lagrangian scheme, having a diffusivity tunable in-232

dependently of the resolution, is not affected by these problems, and reproduces233

fairly well with just 1282 particles the results of the pseudo–spectral code using234

the same strengths of the diffusive coupler as those used for Figure 1A.235

The four panels of Figure 2 show the field c2 at time t = 100 as computed by236

the pseudo–spectral scheme with 128 and 4096 grid points (panels A, B), and237

by the Lagrangian scheme (panels C, D) with diffusivities matching those of the238

pseudo–spectral calculations. The Lagrangian solutions are visualized by plot-239

ting partially overlapping colored squares centered at the particles’ positions,240

rather than by resampling the solution on a regular grid. This choice makes241

evident that the Lagrangian solution in panel D), reproduces the same range242

of fluctuations as the solution in the panel B), even though it obviously cannot243

resolve the fine structures created by the advective dynamics.244

The rest of the paper is organized as follows: in the following section we245

describe the diffusive couplers; in section 3 we compare the results obtained246

through our Lagrangian methods against known exact solutions or numerical247

solutions obtained with a pseudo–spectral code at much higher resolution; in248

section 4 we briefly discuss how to efficiently implement the methods; finally249

some concluding remarks are offered in section 5.250
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Figure 2: Field c2 at time t = 100. One quarter of the whole domain is shown.
A) pseudo–spectral scheme on a 128 × 128 points grid. B) pseudo–spectral
scheme on a 4096× 4096 points grid. C) Lagrangian scheme with 1282 particles
and a diffusion matching that of A). D) Lagrangian scheme with 1282 particles
and a diffusion matching that of D). All cases use the initial conditions (5).
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2 Diffusive couplers251

We are not going to attempt a discretization of the Laplacian operator: evaluat-252

ing the second derivatives of a field on a set of randomly distributed points and253

then devising a numerical scheme that satisfies mass conservation and the maxi-254

mum principle would be quite challenging. Of the two methods that we propose,255

the first is the discrete counterpart of a convolution with the heat kernel; the256

second represents diffusive processes as exchanges of mass among nearby parti-257

cles. Both methods have free parameters, which determine the strength of the258

diffusive effects. More precisely, they determine the rate at which the variance259

of a scalar field is dissipated. In section 3.1 we give an objective, quantitative260

way to attach an effective diffusivity to a given set of parameters.261

We feel that the first coupler has a more mathematically elegant formulation.262

However, it requires an iterative procedure to converge, which may make it263

slow. The second coupler is little more than a recipe to destroy variance, but264

its computational cost scales linearly with the number of particles.265

In order to make precise the notation that we shall use, let us recall that,266

given the smooth and bounded velocity field u which appears in equations (1),267

the system of ordinary differential equations268

ẋ(t) = u(x(t), t) (6)

defines a flow (e.g. [11, §2.1, p.18]) that links in a unique, smooth and invertible269

way the position a of a fluid particle at the initial time t0 to the position x(t;a)270

of the same particle at time t. By seeding the domain of interest with M271

particles initially at the positions ai, (i = 1, . . . ,M), and using the shorthand272

xi = x(t;ai), and cl,i = cl(x(t;ai), t), we may numerically solve the system of273

ordinary differential equations (2) in order to evaluate the solution at time t274

and positions xi of the equations (1), when the diffusivities D1, . . . , Dn are all275

zero.276

The problem of introducing diffusive effects in this Lagrangian framework277

is greatly simplified if one takes a fractional step approach (e.g. [31, §17.1,278

p.377]). The reaction and advection terms are solved by integrating the ODEs279

(2) from time t to time t + τ , then a separate diffusive step, which solves the280

heat equation, is performed. During this diffusive substep the particles don’t281

move. Therefore, our methods for performing this step are more easily described282

in terms of the Eulerian coordinates xi of the particles, rather than in terms283

of their Lagrangian coordinates ai (which would be much harder). Even with284

this simplification, standard methods for solving the diffusion equation would be285

ill-suited for our purpose, because we cannot assume, in general, any regularity286

in the distribution of the particles.287

Here, for notational simplicity, we illustrate the methods for the case of288

a single scalar field c. Thus, we shall use the shorthands ci = c(xi, t) and289

ci(t+ τ) = c(xi, t+ τ). The generalization of the methods to the n scalar fields290

of the full PDEs (1) is straightforward.291
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2.1 First coupler292

In place of a discretized form of the heat equation, we seek a discretized form of293

its solution; the latter, for a scalar field c, is given by the following convolution294

integral295

c(x, t+ τ) =

ˆ
Ω

k(x,y, τ)c(y, t) dy (7)

where the kernel k is the fundamental solution of the heat equation in the296

domain Ω subject to the desired boundary conditions. In Rd the kernel is297

k(x,y, τ) =

(
1

4πDτ

) d
2

exp

(
−‖x− y‖2

4Dτ

)
(8)

where D is the diffusion coefficient of the heat equation.298

Given M points x1, . . . ,xM in Ω, let Wij;τ be the elements of a matrix299

representing a discrete counterpart of the convolution (7) evaluated at the points300

xi, xj and across a time interval τ . By analogy with the properties of the kernel301

(8), we shall assume W to be a non–negative, symmetric matrix. The simplest302

discretization of the convolution (7) is given by303

ci(t+ τ) =

M∑
j=1

Wij;τ cj (9)

where we use the shorthands defined above. If304

M∑
j=1

Wij;τ = 1, (10)

that is, each column of W sums to 1, then the expression (9) is just a weighted305

average of all the concentration values {ci}. Therefore, it satisfies the maximum306

principle in the form:307

min
i=1,...,M

{ci} ≤ ci(t+ τ) ≤ max
i=1,...,M

{ci}. (11)

If each row of W sums to 1, i.e.308

M∑
i=1

Wij;τ = 1 (12)

then the expression (9) satisfies the conservation of mass in the form309

M∑
i=1

ci(t+ τ) =

M∑
j=1

(
M∑
i=1

Wij;τ

)
cj =

M∑
j=1

cj . (13)

Thus, if the discrete kernel W is a doubly–stochastic matrix [32], i.e. it satis-310

fies both (10) and (12), then the discrete model (9) obeys both the maximum311

principle and the conservation of mass.312
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Let us now describe how to construct such a discrete kernel W . Initially we313

define a crude discretization of the exact kernel (8) as follows314

Kij;τ =

{
exp

(
−‖xi−xj‖2

4Dτ

)
, ‖xi − xj‖ < m

√
2Dτ

0, ‖xi − xj‖ ≥ m
√

2Dτ
(14)

where the nominal diffusivity D must be intended as a free parameter. The315

kernel K has a cut–off determined by m, also a free parameter, to avoid com-316

puting the negligible contribution of pairs of particles too far away from each317

other. Because K is not, in general, a doubly–stochastic matrix, we need to find318

a doubly–stochastic surrogate of K.319

The problem of rescaling a given matrix into a doubly–stochastic one is320

named balancing, and dates back to the 1930s. Since then, a large number of321

applications has been solved by resorting to the balance of matrices (see, e.g.,322

[33] for a rich list of examples).323

We say that a matrix K can be balanced if there exist two diagonal matrices,324

diag(a) and diag(b), such that325

W = diag(a)K diag(b) (15)

is doubly–stochastic. The fundamental theorem addressing this problem for326

non–negative matrices is due to Sinkhorn and Knopp [32]. Starting from any327

vector a0 with positive elements, they propose the following iteration:328

bk+1 =
(
KTak

)−1
; ak+1 = (Kbk)

−1 (16)

where the reciprocal is intended to be applied element–wise. Their theorem then329

states that the process converges to a doubly–stochastic matrix of the form (15)330

with a = limk→∞ ak, b = limk→∞ bk, if K has total support. A matrix K is said331

to have total support if every positive entry inK can be permuted into a positive332

diagonal with a column permutation. Under the conditions of the theorem the333

balancing is unique: K can be turned into one and only one doubly–stochastic334

matrix by means of multiplication by diagonal matrices (which are themselves335

unique up to a scalar factor).336

Our crude discretization of the Gaussian kernel, the matrix (14), has total337

support, because it is symmetric and has a positive main diagonal. Therefore,338

if Kij is a non–zero element, then the column permutation that swaps column i339

with column j brings to the main diagonal Kij , Kji, and no other element; the340

main diagonal thus remains positive. We can then define the discrete convolu-341

tion kernel W that appears in (9) as the balancing of K. For our purposes it is342

important to note that K and W have the same pattern of zeros, therefore the343

particle pairs coupled by W are all and only those coupled by K.344

2.2 Second coupler345

A way to represent small-scale irreversible mixing processes is suggested by346

physical intuition, along the following heuristic argument, similar to those used347
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in [19, 22]. When two fluid particles happen to be close enough, they will348

exchange some portion of their mass, and, thus, of their advected scalars. Let349

qij ≥ 0 be the mass fraction exchanged between the i−th and the j−th particle,350

which are assumed to have the same mass. This fraction may be a function351

of the distance ‖xi − xj‖ and may be assumed to be zero when the distance352

exceeds some fixed threshold. Thus the concentration of the scalar c after a353

diffusion step at the position of the i−th particle will be354

ci(t+ τ) = ci −
M∑
j=1

qijci +

M∑
j=1

qijcj (17)

where the first sum represents the losses to other particles, and the second355

sum represents the gains from other particles. The above expression can be356

re-arranged as357

ci(t+ τ) =

1−
M∑
j=1

qij

 ci +

 M∑
j=1

qij

 ci (18)

where the overline denotes the weighted average ci =
∑M
j=1 qijcj/

∑M
j=1 qij . If358

0 ≤
M∑
j=1

qij ≤ 1 (19)

equation (18) shows that ci(t + τ) is a linear interpolation between ci and ci,359

and therefore the maximum principle is satisfied.360

In addition, it is straightforward to verify that
∑
i ci(t + τ) =

∑
ici, and361

therefore the expression (17) conserves mass.362

As exchange fraction we shall use363

qij =


p

(4πDτ)
d
2

exp
(
−‖xi−xj‖2

4Dτ

)
, ‖xi − xj‖ < m

√
2Dτ

0, ‖xi − xj‖ ≥ m
√

2Dτ
(20)

where p, D and m are free parameters and d is the dimensionality of the space.364

This particular choice is loosely suggested by the fact that if the scalar field365

carried by the i−th particle at time t were represented by a delta function,366

a diffusion process having diffusivity D, after a time τ would spread out the367

scalar over the whole domain with a resulting concentration proportional to368

exp
(
−‖xi − xj‖2 /(4Dτ)

)
. The cut–off for large distances is also physically369

motivated: the small-scale, unresolved advective motions that this diffusion370

process is supposed to represent, cannot occur at an arbitrarily large speed;371

therefore, in a finite time τ only particles closer than some threshold length372

may exchange mass.373

Special care must be taken in choosing p small enough as to enforce the374

condition (19). A useful rule of thumb is:375

p

(4πDτ)d/2
<

1

N(m
√

2Dτ)
, (21)
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where N(h) is the average number of particles that fall into a sphere of radius376

h.377

2.3 Boundary conditions378

So far we have discussed the diffusive couplers as if the computational domain379

were unbounded. When the domain is limited, any condition enforced along its380

boundaries is reflected in the kernel k appearing in the convolution solution (7),381

which ceases to be a simple Gaussian function.382

In the case of periodic boundary conditions, the kernel is an infinite sum of383

Gaussians, one for each of the periodic images. For example, on the segment384

[0, 2π) the kernel is385

k(x, y, τ) =
∑
n∈Z

1√
4πDτ

exp

(
− (x− y + 2nπ)

2

4Dτ

)
. (22)

If m
√

2Dτ < π, and we accept to approximate to zero the exponential when its386

argument is larger than or equal to m (as we do in (14) and in (20)), then only387

one term gives a non–zero contribution in the sum. This shows that the ex-388

pressions (14) and (20) remain valid for periodic boundary conditions, provided389

that the norms ‖xi − xj‖ which appear in those expressions are considered as390

the minimum distance in the periodic domain between the particle i and the391

particle j.392

Another common boundary condition prescribes that the flux of tracers393

across any portion of the boundary has to be zero. When no particle is seeded394

outside of the domain, this condition is automatically enforced by both the dif-395

fusive couplers presented here. There is, however, a pitfall that needs to be396

brought to light. This is most easily illustrated in a one–dimensional domain.397

Let us consider the half–line [0,∞). If we impose no–flux (a.k.a Neumann)398

boundary conditions at x = 0, then the heat kernel is399

k(x, y, τ) =
1√

4πDτ

[
exp

(
− (x− y)

2

4Dτ

)
+ exp

(
− (x+ y)

2

4Dτ

)]
. (23)

This can be deduced by imposing an even symmetry to the initial condition400

which extends the problem to the whole line, and then restricting the solution401

back to the half–line. The even symmetry enforces the boundary condition.402

This implies that the points at x > 0 do exchange fluxes across the boundary403

with their mirror images at x < 0, but do so as to keep equal to zero the net flux404

at x = 0. If these virtual fluxes across the boundary are not taken into account,405

then, in proximity of the boundaries, the diffusivity of the scalar field is underes-406

timated, even though the no–flux boundary condition is still correctly enforced.407

A solution to this problem might consist in using ghost particles strategically408

placed outside the domain so as to represent an even–symmetric field across it.409

In more than one dimension, this would be relatively straightforward only for410

straight boundaries, and would quickly escalate to a challenging problem for411
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boundaries of arbitrary shape. However, the contribution of the mirror images412

is important only within a distance of O(
√

2Dτ) from the boundary. In high–413

Péclet number, under–resolved simulations, this distance would be comparable414

to or smaller than the inter–particle distance. We thus feel that attempting to415

fix this issue may not be worth the effort. In the following when we mention416

“no–flux boundary condition” we refer to the straightforward case in which no417

ghost particles are used.418

In the test cases we have not used the Dirichlet boundary condition. However419

we anticipate no difficulties in implementing this condition by distributing par-420

ticles along the boundary and fixing their concentrations to a prescribed value.421

The same considerations about mirror images and ghost particles, subject to422

the appropriate symmetry, apply to this case as well.423

3 Results424

3.1 Advection and diffusion425

A first test for the diffusive couplers introduced in the previous section is to426

compare their performance for advection–diffusion problems in cases in which427

small–scale structures are progressively formed and eventually become under–428

resolved. An analytically–solvable, well–known, but non trivial test case is the429

following [34]:430

∂c

∂t
+ y

∂c

∂x
= D∇2c (24)

with initial condition431

c(x, y, 0) = cos(x). (25)

In a domain vertically unbounded and horizontally periodic with period of 2π,432

the problem (24,25) has the exact solution433

c(x, y, t) = e
−D

(
t+ t3

3

)
cos (x− yt) (26)

which develops arbitrarily high wavenumbers in the y−direction as times pro-434

gresses due to the tipping over of the tracer streaks operated by the shearing435

flow (Figure 3). Multiplying (24) by c, averaging, and using (26) after an in-436

tegration by parts, one finds the following explicit expression for the rate of437

dissipation of scalar variance438

− d

dt

〈
c2

2

〉
= D

〈
|∇c|2

〉
=
D

2

(
1 + t2

)
e
−2D

(
t+ t3

3

)
. (27)

Where the angular brackets denote a spatial average over one horizontal period439

and an arbitrary vertical length.440

In Figure 4 this expression is compared with the results obtained using the441

two couplers discussed in sec. 2. The numerical computations use the domain442

[0, 2π)× [−π, 3π], periodic in x and with no–flux boundary conditions in y. The443
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Figure 3: Numerical solution of (24,25) using the first coupler (§2.1). The
parameters of the discretized kernel (14) are d = 2, m = 8,

√
2Dτ = π/512,

τ = 0.1. The second coupler, with the parameters of Figure 4, produces visually
indistinguishable results.
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Figure 4: Rate of dissipation of scalar variance for the problem (24,25). Blue
curve: results from the numerical simulation of Figure 3. Green curve: results
using the second coupler (§2.2), with parameters p = 1.38·10−5,m = 4,

√
2Dτ =

π/256, τ = 0.1 for the exchange fraction (20). Red curve: expression (27) with
D = 3.23 · 10−6. Cyan curve: expression (27) with D = 10−3; the curve peaks
off-scale at ≈ 0.0254.

number of particles is 128×256. The averages are computed in the central part444

of the domain, shown in Figure 3. The left–hand side of (27) is then computed445

from the particles’ concentrations. The value of the diffusivity D in the right–446

hand side of (27) is least–squares fitted to the numerical results. The fit extends447

from the beginning of the simulation up to the time of maximum dissipation.448

The value of the parameter p in the second coupler is tuned in order to match449

the fitted value of D = 3.23 . . . · 10−6 obtained with the first coupler with at450

least two significant digits.451

The match with the exact dissipation rate becomes inaccurate at later times,452

because when the stripes become under–resolved the tracer variance is aliased453

to lower wave numbers, and thus it is not damped as quickly as it should have454

been: obviously, an under–resolved computation does not perfectly reproduce455

the exact result. But the advantage of the Lagrangian approach should become456

clear by contrasting its results with those that could be attained by Eulerian457

methods. For example, with a pseudo–spectral code at a comparable resolution,458

the lowest diffusivity must be D ≈ 10−3 in order to avoid significant spurious459

oscillations. With that diffusivity one obtains the cyan curve in Figure 4: the460

dissipation rate peaks at time t ≈ 10 instead than t ≈ 70, by which time461

the streaks have all but disappeared. Thus, for a given resolution, when the462

diffusivity is as small as to make the computation under–resolved, with the463

Lagrangian approach we can obtain a dissipation curve that, albeit inaccurate,464

however peaks roughly at the right time and has roughly the correct dissipation465

strength; with pseudo–spectral or similar Eulerian methods we could obtain466

much more accurate shapes of the dissipation curves, but they would inevitably467
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Figure 5: Effective diffusivity D as a function of nominal diffusivity D for the
first coupler (§2.1). Different symbols correspond to different values of the cut–
off radius h. Different points with the same symbol correspond to different
values of m. The nominal diffusivity is then given by (28). The black dashed
line is the identity D = D.

correspond to diffusivity values determined by the resolution of the grid, which468

may be orders of magnitude larger than the physically relevant one.469

In fact, for each choice of the parameters, we can define the effective diffu-470

sivity of the method as the value D in the right-hand side of (27) that best fits471

the growing part of the numerical dissipation curve. This value, in general, does472

not coincide with the nominal diffusivity D, which appears in (14) and (20) and473

depends on the parameters as we shall discuss below.474

Using the first coupler, in the discrete kernel (14) we set the cut–off radius475

m
√

2Dτ = h to be h = π/8, π/16, π/32, π/64. For each of these values we consider476

m = 3, 4, 6, 8, 12, 16. Fixing the value of the time step (we use τ = 0.1) the477

nominal diffusivity is then determined as478

D =
h2

2τm2
. (28)

Figure 5 shows the effective diffusivity as a function of the nominal diffusivity479

for the above values of h and m. Points that have the same h/m ratio yield480

nearly the same effective diffusivity. In other words, for fixed D, the effective481

diffusivity is fairly insensitive to the cut-off radius h, even when this is so small482

that only very few particles are involved: when h = π/64 only π particles, on483

average, fall within a disc of radius h.484

At high nominal diffusivities, the effective diffusivity nearly coincides with485

the nominal one: D(D) ≈ D. At low nominal diffusivities the effective diffusivity486

appears to be proportional to the square of the nominal one: D(D) ∝ D2.487

Further tests suggest that the constant of proportionality scales as the square488

root of the particle density, and that the switch between the two regimes occurs489
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Figure 6: Effective diffusivityD as a function of nominal diffusivityD for the sec-
ond coupler (§2.2). Symbols have the same meaning as in Figure 5. Blue markers
refer to computations with p = 10−4, red to p = 10−5, green to p = 10−6. The
black dashed lines are the functions D = 10nD, with n = −5,−4, . . . , 0.

when the standard deviation
√

2Dτ of the discrete kernel (14) is of the same490

order of magnitude as the average distance between nearest particles. We did491

not further investigate the reasons of this change of slope and postpone an492

in-depth examination of the issue to a further work.493

Figure 6 shows the effective diffusivity obtained with the second coupler as494

a function of the coupler’s parameters appearing in the exchange fraction (20).495

The markers relative to h = π/64, m = 12, 16 are absent, because with those496

parameters the condition (19) does not hold: thus, the method violates mass497

conservation and blows up.498

The cut-off radius is determined as specified above for the first coupler, and499

the expression (28) for the nominal diffusivity still holds. As in that case, the500

effective diffusivity is fairly insensitive to the cut-off radius h when the ratio501

h/m is kept fixed. In contrast with the first coupler, the effective diffusivity502

appears to be roughly proportional to the nominal one across the whole range503

of diffusivities that we have tested. The effective diffusivity also appears to be504

roughly proportional to the parameter p.505

The effective diffusivity of the second coupler also depends on the density of506

the particles. If, keeping all other parameters the same, we double the average507

number of particles that fall within a disk of radius h, we find, from (17) and508

(20), that the average mass exchanged on a time step by each particle with its509

neighbors doubles. Thus the effective diffusivity is proportional to the particle510

density.511
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3.2 Reaction and diffusion512

The methods described in the present work are designed for cases in which the513

Péclet numbers are extremely high. However, it cannot be excluded that some514

geophysical flows may, occasionally, be characterized by less extreme Péclet515

numbers. It is thus of interest to verify what may be the performance of the516

methods when the advection terms are not dominant over the diffusion ones. In517

the limit of zero Péclet numbers, the equations (1) reduce to reaction–diffusion518

equations. Even though we are not proposing our methods for this class of519

problems, we found informative to use one of them as a test case.520

Here we will consider the well-known Fisher–Kolmogorov–Petrovskii–Piskunov521

equation, namely522

∂c

∂t
= D∇2c+ c(1− c). (29)

For non-negative c, this equation describes the propagation of fronts joining a523

stable (c = 1) and an unstable (c = 0) region (e.g. [35] §13.2, p.439). There524

exist solutions with fronts propagating at any speed V ≥ 2
√
D. However, for525

a very large class of initial conditions, in particular those whose derivative has526

compact support, the propagation speed is the minimal one [36]: V = 2
√
D.527

When the function c assumes negative values the solution generally blows–528

up to minus infinity in a finite time. It is thus important to avoid numerical529

solution methods that generate spurious oscillations. In particular, this may be530

a problem when the diffusion coefficient is small, because the thickness of the531

front is also proportional to
√
D. Thus, low diffusivities imply high gradients in532

the traveling front.533

We produce a numerical approximation of (29) by uniformly random seeding534

1282 particles in the square [0, 2π]× [0, 2π]. We use no–flux boundary condition.535

Initially, all particles have a concentration of zero, except those having a coor-536

dinate x < 0.2, whose concentration is set to one. We then advance the solution537

with time steps of length τ = 0.1 by alternating one of the diffusive couplers of538

sec. 2 and the evaluation of the exact solution of the equation ċ = c(1− c).539

In Figure 7 we plot the propagation speed of the front as a function of540

the effective diffusivity of the method, evaluated as detailed in the previous541

subsection. The first coupler gives the best results, while the second coupler542

overestimates the speeds by about a factor 2.5. With both couplers the front543

propagation speed appears to be proportional to the square root of the diffu-544

sivity, as in the exact solution, except at very low diffusivities, where the front545

speed declines somewhat faster than the exact scaling. This excessive slow–546

down is in qualitative agreement with what was found in a stochastically forced547

version of equation (29). The primary effect of the random forcing was that of548

damping the leading tail of the propagating front, thus slowing it down [37].549

We speculate that the random arrangement of the particles may play the role550

of the stochastic forcing.551

The front is well–resolved only at the lowest diffusivities. When D ≈ 10−3
552

the thickness of the front becomes comparable with the interparticle distance.553

Thus, most of the results of Figure 7 refer to runs in which the front is poorly554
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Figure 7: Speed of propagation of the front in the solution of equation (29) as a
function of the effective diffusivity. Symbols have the same meaning as in Figure
5. Blue markers refer to computations using the first coupler (sec.2.1) and the
the green ones to computations using the second coupler (2.2) with p = 10−5.
The black dashed line is the theoretical speed V = 2

√
D.

resolved or not resolved at all. When the front is not resolved, the separation555

between the region where c = 1 and c = 0 appears as a jagged line, with556

meanders of characteristic size determined by the interparticle distance.557

We could not run this test case with a cut–off radius h = π/64, because this558

length results to be smaller than the percolation threshold: due to the random559

inhomogeneities in the distribution of the particles, after a short transient, no560

particle with concentration zero is found at a distance less than h from a particle561

with concentration higher than zero, thus the front stops propagating. In figure562

7, we used h = π/48, instead. This elucidates the disadvantage of not having563

a velocity field stirring the particles: although Poissonian random gaps in the564

distribution of particles exist even in the presence of a stirring velocity field,565

they open and close as time progresses, rather than remaining static, and are566

thus far less damaging, as the results of the other tests should clearly illustrate.567

While we consider fitting the dissipation curve (27) as the best way to es-568

timate the diffusivity of our proposed couplers when they are used for under–569

resolved flows at high Péclet number (that is, for their intended usage), it is nev-570

ertheless interesting to assess the performance of the couplers for approximating571

well–resolved diffusive processes. To this end, we seed the doubly–periodic do-572

main [0, 2π)×[0, π/8) with 2500 particles, placed at uniformly random positions.573

We initially set the concentration of the i−th particle to ci = cos(kxi), with in-574

teger k. We perform one step with each of the two couplers. For the coupler of575

section 2.1 we use h = π/8, m = 4.7, τ = 0.1; for the coupler of section 2.2 we576
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Figure 8: Diffusivity Dk (see eq. 30) for the exact solution of the heat equation
(black horizontal line); for the BTCS finite difference discretization (red line);
for the coupler of section 2.1 (blue squares); and for the coupler of section 2.2
(green circles). See text for parameters.

use h = π/16, m = 1, p = 10−3, τ = 0.1. Then we compute577

Dk =
log σ(0)

σ(τ)

k2τ
(30)

where σ(0), σ(τ) are, respectively the standard deviation of the concentration578

field at time t = 0 and t = τ . Using in the above expression the exact solution of579

the diffusion equation, ∂tc = D∇2c, with initial condition c(x, 0) = cos(kx), one580

finds Dk = D for all k. However, for most numerical approximations of the heat581

equation Dk is a non–constant function of k. Figure 8 shows a comparison of582

the exact result, and of the approximations obtained by using our two couplers583

and one step of the BTCS (backward time, centered space) finite difference584

approximation with 200 equally–spaced nodes in [0, 2π), and a time step τ = 0.1.585

At low wavenumber, the above parameters are consistent with a diffusion586

coefficient D ≈ 0.035, although the random sampling of the domain produces587

a noticeable scatter between each wavenumber and the next. As a further test,588

we then use our couplers to produce numerical approximations of the solution589

of the following Turing instability problem [38]:590

∂

∂t

(
c1
c2

)
= q

(
1 −3
2 −5

)(
c1
c2

)
+

(
D1∇2c1
D2∇2c2

)
. (31)

A linear stability analysis of these equations is readily performed, and it shows591

that, with D1 = D2/23 and D2 = 0.035, for q = 5 · 10−3, only the wavenumber592

k = 1 is unstable, with a growth rate λ ≈ 0.0010 · · · ; for q = 5 · 10−2, the593

wavenumbers k = 2, 3, 4 are unstable, and the fastest growing one is k = 3594

with a growth rate λ ≈ 0.010 · · · ; for q = 5 · 10−1, the wavenumbers k =595
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Figure 9: Panel A: standard deviation of the numerical solution of equations (31)
as a function of time; dashed lines refer to the coupler of section 2.1 and dotted
lines to the coupler of section 2.2; solid lines are plotted for reference and have a
slope corresponding to the growth rate of the maximally unstable wavenumber;
red, green, blue lines refer, respectively, to q = 5 · 10−1, 5 · 10−2, 5 · 10−3. Panel
B: concentration field c1 at time t = 1000 in the calculation with q = 5 · 10−3.
Panel C: concentration field c1 at time t = 500 in the calculation with q =
5 · 10−2. Panel D: concentration field c1 at time t = 100 in the calculation with
q = 5 · 10−1. The calculations of panels B, C, D refer to the coupler of section
2.2. For the other coupler the results are analogous.
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5, . . . , 15 are unstable, and the fastest growing one is k = 10 with a growth596

rate λ ≈ 0.10 · · · . Perturbations along the y−direction are always damped597

when using these parameters in the domain of the previous test. The couplers598

use the same domain, number of particles and parameters as for the previous599

test, except that for the field c1 we set m = 17.5 when using the coupler of600

section 2.1, and p = 10−3/23 when using the coupler of section 2.2. The initial601

concentrations of each particle are independently and randomly chosen with602

a Gaussian distribution with zero mean and unit variance. The results are603

summarized in Figure 9. In all cases Turing patterns emerge from the random604

initial conditions, and grow at a rate very close to that of the exact solution. The605

wavenumber that emerges is the correct one for q = 5 ·10−3 and for q = 5 ·10−2.606

For q = 5 · 10−1 the pattern is a mixture of wavenumber k = 11 and k = 12.607

There are no appreciable differences neither in the patterns nor in the growth608

rate between the two couplers.609

3.3 Advection, reaction and diffusion at different Damköh-610

ler numbers611

We now return to the simple resource–consumer model (3) to test the perfor-612

mance of the Lagrangian couplers when the Damköhler number is changed. Here613

we do so by letting the reaction rate assume the values r = 0.04, 0.2, 1, 5, while614

keeping in all cases the same velocity field, which is defined by the following615

streamfunction616

ψ(x, y, t) = [(n mod 2) sin(x+ φn)− (1− (n mod 2)) sin(y + φn)] (32)

where n = btc (the largest integer smaller than t), “ mod ” denotes the remainder617

of the integer division, and φn is a uniformly random phase chosen in [0, 2π).618

This is an example of a “random renewing flow” (see e.g. [39] §11.1, p.320)619

which is very effective at mixing an advected scalar field. The characteristic620

spatial scale of this laminar flow is constant, but an advected field is subject621

to a continuous process of stretching and folding that produces a cascade of622

progressively smaller scales.623

Our benchmarks are numerical solutions of the problem (1) with the chem-624

istry (3) and the velocity field induced by (32), solved on a uniform grid with625

40962 nodes, on the doubly–periodic domain [0, 2π) × [0, 2π), with a Fourier–626

Galerkin pseudo–spectral code, and a diffusion coefficient D = 0.003/322 ≈627

2.9 · 10−6. A slightly larger diffusivity was used than in the computations of628

Figure 1 at the same resolution, because at higher reaction rates the solution629

develops higher gradients in the concentration fields. We thus have tuned D so630

as to obtain a solution free of spurious oscillations at r = 5, and we have kept631

that value for all the reaction rates. We use both the uniform consumer initial632

condition (4) and the non overlapping blobs initial condition (5).633

Against the benchmark we compare the results obtained using the Lagrangian634

method with the couplers of section 2. For the first coupler we use a cut–off635

radius h = π/64 and m = 5.8. For the second coupler we use h = π/32, m = 4,636
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Figure 10: Mean (panels A,B) and standard deviation (panels C,D) of the con-
sumer concentration field as a function of time using the chemistry (3) and the
stirring field (32). Panels A,C refer to the initial conditions (4); panels B,D
to the initial conditions (5). Different colors denote different reaction rates, as
specified in the legend of panel D. Solid lines refer to results obtained with a
pseudo–spectral code on a grid with 40962 nodes. Dotted and dashed lines refer
to the Lagrangian method with 1282 particles and respectively, the coupler of
section 2.1 and of section 2.2.
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Figure 11: Consumer concentration field at time t = 50 for the numerical solu-
tions of Figure 10 with r = 0.04 (panels A, B, C) and r = 5 (panels D, E, F),
and initial conditions (5). Panels A, D are obtained with the pseudo–spectral
code; panels B, E are obtained with the coupler of section 2.1; panels C, F are
obtained with the coupler of section 2.2.

p = 10−5. In both cases 1282 particles were used, the time step is τ = 0.1 and637

the ODEs (2) are solved with the standard fourth–order Runge–Kutta scheme.638

The results are summarized in Figure 10.639

Both Lagrangian methods reproduce very well the time evolution of the mean640

of the chemical fields, and reasonably well their standard deviation, even though641

the small–scale filaments produced by the stretching and folding dynamics of642

the flow are not resolved in the Lagrangian calculations. This is illustrated in643

Figure 11 which compares the consumer concentration field at time t = 50 for six644

of the numerical solutions summarized in Figure 10. Because the advecting flow645

is the same for all cases, solutions corresponding to the same reaction rate show646

the same large–scale pattern. Obviously, the delicate small–scale interleaving647

of filaments which is very well captured by the high–resolution pseudo–spectral648

calculations is missing in the low–resolution ones. The low–resolution computa-649

tions severely undersample the filaments. However, owing to their Lagrangian650

nature, they do not produce any spurious mixing between nearby low– and651

high–concentration regions. Therefore they are able to reproduce almost ex-652

actly the same average and range of fluctuations observed in the fully–resolved,653

high–resolution calculations.654

Of course, the inability to resolve small scales inevitably produces undesir-655

able side effects, so that a perfect match of the scalar statistics between resolved656

and unresolved calculations is impossible. In particular, if measured with the657
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criterion of section 3.1, the parameters used for the Lagrangian calculations658

yield an effective diffusivity slightly higher ( D ≈ 1.1 · 10−5) than the diffusivity659

of the pseudo–spectral code (the criterion suggests m ≈ 8 for the first coupler660

and m ≈ 7.5 for the second). When the effective diffusivity matches that of the661

pseudo–spectral code, in the later stages of the simulation the standard devia-662

tion remains too high and decays at a slower rate than in the pseudo–spectral663

benchmark. This occurs because, as stirring cascades the chemical tracers to664

unresolved small scales, the variance relative to those scales is aliased back to665

larger scales, where it is damped at an incorrect, lower rate. Using an ad-hoc666

higher effective diffusivity initially gives a slight underestimation of the standard667

deviation and, later on, a slight overestimation, while producing what we con-668

sider to be an acceptable approximation of a dynamics that requires a resolution669

32 times higher to be fully resolved.670

4 Implementation details671

An efficient implementation of the diffusive couplers of section 2 requires a672

fast algorithm for finding all the particles falling within a distance h from any673

given particle. This fixed–radius near neighbors search is a classic problem in674

computational geometry. For arbitrary distribution of points, it can be solved675

by arranging the points in tree data structures such as quad–trees or Kd–trees676

(see e.g. [40] chap. 5, p.95). The use of trees leads to algorithms with a677

computational cost of O (M log(M)), where M is the number of points. When,678

as in our case, the particles are uniformly distributed, it is more convenient to679

use a lattice and hashing method, which has a computational cost of O(M) [41].680

The computational domain is overlaid with a regular lattice with square681

meshes of size h. To each mesh is assigned a unique index. For simplicity we682

use row–order indexing, although the Z–order indexing might improve cache683

efficiency. The particles are kept in a list, sorted according to the index of the684

mesh that contains each particle, which is easily computed from the particle’s685

position. The sorting is performed by means of the counting algorithm (e.g. [42]686

§8.2, p.194), which does not use pairwise comparisons, and has a complexity of687

O(M). A hash table associates each mesh index with the first particle in the688

sorted list having that index. Thus, accessing all particles within the same mesh689

is an O(1) operation, because each mesh, on average, contains the same number690

of particles, due to their uniform distribution. To find all the particles within691

a distance h from a given one, one needs to compute the distance of the given692

particle from all the particles in the same mesh and in some of the adjacent693

meshes (three in 2D or four in 3D). After each time step, the particle list is694

sorted again, and the hash table is updated. If the size of the mesh h is decreased695

as the number of particles M increases in such a way as to maintain constant696

the average number of particles in each mesh, then the fixed–radius neighbor697

search problem is solved in O(M) time. We did not attempt yet to produce a698

parallel version of our prototype code. However we don’t expect to face unusual699

difficulties or harsh performance penalties by pursuing a straightforward domain700
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partitioning strategy, in which each processor takes care of a contiguous block701

of meshes.702

In the case of the coupler of section 2.2, the computation of the exchange703

fraction (20) only increases the prefactor in the asymptotic scaling of the fixed–704

radius neighbor search. The overall algorithm is thus O(M).705

In the case of the coupler of section 2.1, an analysis of the computational706

cost is more complicated, because it needs to take into account the cost of707

balancing the discrete kernel (14). The analysis of balancing algorithms is still an708

open problem, and we settled for the venerable Sinkhorn–Knopp algorithm only709

because it is extremely simple to implement. An assessment of the performances710

and of the relative merits of balancing algorithms, in particular on distributed–711

memory parallel architectures, is beyond the scope of this paper, and might712

become the subject of a future work.713

5 Discussion and conclusions714

In this paper we have investigated the viability of Lagrangian numerical methods715

to approximate the solution of advection–reaction–diffusion equations in cases716

where it is impossible to resolve all the scales of motion, as is commonplace for717

biogeochemical problems.718

The methods consist in alternating a purely Lagrangian step that solves the719

advection–reaction part of the equations with the method of characteristics,720

with a diffusive step that couples the particles moving along the characteristic721

lines of the advection–reaction problem. Two such couplers have been proposed.722

One amounts to a discrete version of the convolution with a Gaussian kernel,723

the other prescribes the exchanges between nearby particles of small portions724

of the mass carried by each. In both cases the resulting scheme conserves mass,725

respects the maximum principle and allows to tune the diffusivity down to zero,726

where the couplers have no effect, and the method of characteristics is recovered.727

We have carried several tests comparing the methods against exact solu-728

tions of advection–diffusion and reaction–diffusion problems, and against fully729

resolved numerical solutions of advection–reaction–diffusion problems obtained730

using a pseudo–spectral method run at significantly higher resolution than that731

of the Lagrangian code. In all cases the results have been fairly good, except in732

the case of the reaction–diffusion test, where the lack of an advection term that733

stirs the particles hampers the performance of the method. However, even in734

this unfavorable case, the methods are able to recover in a roughly correct way735

the main features of the solution and their scaling as a function of the diffusivity.736

Of course, when it is impossible to resolve all the spatial scales present in the737

solution, no method should be considered as completely satisfactory, and it is738

very likely that special cases could be found where it would perform far from well.739

For example, we don’t expect our Lagrangian method to perform brilliantly in740

reproducing the propagation of chemical fronts stirred by steady cellular flows.741

The speed of those fronts critically depends on an accurate description of the742

tails of the tracer distribution in proximity of the hyperbolic stagnation points at743
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the cell boundaries [43]. When the spatial structures are severely under resolved744

those tails are not reproducible, and the resulting speed is then unlikely to be745

correct. On the other hand, chemical fronts of that kind are not present in746

the oceans, and stagnation points, albeit present, are not steady; typical ocean747

mixing processes involve shearing, or stretching and folding dynamics, and in748

those cases our approach seems to be satisfactory.749

This paper does not suggest that our Lagrangian methods are competitive750

with, or even comparable to, a fully resolved numerical solution obtained with751

an Eulerian method, but rather that, by allowing to control the diffusivity in-752

dependently of the resolution, the Lagrangian methods offer, when resolution753

can’t be further increased, a much better compromise than equally unresolved754

Eulerian methods. In this respect, diffusive couplers like those presented here755

could be seen more as a subgrid–scale parameterization of sorts, rather than as756

a discretization of a diffusion operator such as the Laplacian that appears in757

(1).758

While we believe that the present work is a successful proof–of–concept,759

some additional steps will be required in order to incorporate it into a realistic760

ocean circulation model. A first, necessary step is that of assessing the impact of761

interpolation schemes: here we conceded ourselves the luxury of using explicit762

expressions for the velocity fields and evaluate those at the position of each763

particle. A Lagrangian biogeochemistry module based on the schemes proposed764

here would need to acquire the velocity field from an Ocean Circulation Model.765

With probably the sole exception of the Lagrangian “Slippery Sacks” Model, this766

implies interpolating a velocity field known only on the nodes of an Eulerian767

grid. In addition, the current prototype implementation needs to be extended to768

three spatial dimensions and to distributed–memory parallel architectures. In769

the present form the couplers only represent homogeneous and isotropic diffusive770

processes. In ocean models, anisotropy is necessary, at least in the vertical771

direction, and the possibility to allow for spatially–dependent diffusivities is772

desirable. Finally, the existing Eulerian parameterizations for the sources and773

sinks of tracers, due to interactions with the bottom, with the air, and through774

river run–off must be adapted to the Lagrangian framework. These goals will775

probably be easier to achieve by modifying the coupler of section 2.2 where776

subgrid–scale fluxes are represented explicitly and locally as exchanges of mass777

between particles. They may be more demanding with the coupler of section778

2.1, which requires the balancing of a matrix, a process that involves all particles779

simultaneously, even when the discretized kernel that couples them has a cut–off780

at a finite distance.781
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