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Abstract

We propose two closely—related Lagrangian numerical methods for the
simulation of physical processes involving advection, reaction and diffu-
sion. The methods are intended to be used in settings where the flow is
nearly incompressible and the Péclet numbers are so high that resolving
all the scales of motion is unfeasible. This is commonplace in ocean flows.
Our methods consist in augmenting the method of characteristics, which
is suitable for advection-reaction problems, with couplings among nearby
particles, producing fluxes that mimic diffusion, or unresolved small-scale
transport. The methods conserve mass, obey the maximum principle,
and allow to tune the strength of the diffusive terms down to zero, while
avoiding unwanted numerical dissipation effects.

Keywords: Ocean biogeochemistry; lagrangian methods; advection reaction
diffusion; unresolved flows.

1 Introduction

Biogeochemical problems in oceanography are usually expressed in terms of
coupled advection-reaction-diffusion equations involving scalar fields, sometimes
in large number, representing chemical species, biological species, or functional
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groups (see, e.g., [1]). These fields are advected by the ocean currents, are
subject to diffusion, and interact nonlinearly with each other.

A generic, abstract form of oceanographical biogeochemical equations is the
following

0
% +u- VC1 :D1v201 +f1(cla"'7c’n)

(1)
Ocn 9
E +u-Ve, =D, Vi, +fn(cla .. '7671)
where c1, ..., ¢, are the scalar fields, u is the water velocity field in the region of
interest, which is assumed to be known, Dy, ..., D,, are the diffusion coefficients,
and the functions f1, ..., f, specify the local interactions among the scalar fields.
The relative importance of the transport and diffusion terms is quantified

by the Péclet numbers
UL
Pep = —
l D
where U and L are, respectively, a characteristic speed and a characteristic
length associated to the velocity field w. The relative importance of the trans-

port and reaction terms is quantified by the Damkoéhler numbers

Da; = —
“ UTZ

where 7; is a characteristic time scale associated with the reaction described by
fi-

The Damkohler number for phytoplankton may range from negligibly small
up to O(10) [2]. While large values of the Damkohler number may amplify
the patchiness of a reacting scalar as compared to a non-reacting one [3, 4] and
make the problem stiff, the true source of numerical difficulties in biogeochemical
applications lies in the enormous size of the Péclet number.

If one takes the diffusivities to be the molecular ones (or computed from the
mean square displacement of trajectories of individual plankton cells) then the
Péclet numbers may easily exceed 10'°. Such a large value is reflected in the fact
that ocean tracers (temperature, salinity, etc.) show structures from the scale
of ocean basins down to submillimetric scales. Even accounting for a continuing
rapid pace of improvement in computer technologies, it is quite obvious that,
in the foreseeable future, no numerical code will be able to resolve such a wide
interval of scales.

In the absence of reaction terms, a reasonable way to deal with unresolved
small scales is to parameterize the advective fluxes due to the unresolved scales
with diffusion operators (often in a more complicated form than simple Lapla-
cians). To this end there is an impressive array of techniques, ranging from
explicitly adding new terms to the equations (e.g. in turbulence closures), to
using flux or slope limiters (e.g. in finite volume methods), to advection and
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interpolation (e.g. in semi-lagrangian methods) or dealiasing and filters (e.g. in
pseudo-spectral methods). A review of numerical methods used for geophysical
flows is given in [5]. In all these cases, however, the strength of the diffusive
terms is determined not just by the physical parameters of the problem, but
also by the size of the mesh. In fact, all these techniques may be viewed as
different ways to average out the subgrid scales. Thus, in the presence of un-
resolved small scales, the values of the scalar fields at each grid node must be
understood not as a pointwise evaluation of a function, but as an average over a
spatial region having an extension comparable with the size of a computational
mesh.

Early studies already showed that changing the strength of the diffusive
fluxes representing the unresolved scales may have a dramatic impact on the
reaction terms [2, 6] and warned that a “mean field” approach might be inappro-
priate for modeling plankton dynamics. Later studies, conducted using realistic
ocean models, showed strong fluctuations in plankton productivity depending
on the advection scheme used and, most importantly, on the resolution [7, 8, 9].
The most recent assessment of the importance of the unresolved structures is
found in [10].

As a first step to understand these results we need to observe that, for the
full set of equations (1), one faces the overwhelming difficulty that an averaging
operator does not commute with nonlinear reaction terms: fi(e1,...,¢,) #
fi(er,...,cn). Because reactions terms are formally evaluated pointwise one
would need to compute fi(c1,...,c,), but all that current grid—based codes can
do is to compute fi(c1,...,¢,). The wide chasm of unresolved scales means
that the mesh-averaged values ¢7,...,¢, may be substantially different from
their pointwise counterpart ci,...,c,. As we shall see in the following, the bias
produced by this effect may have either sign, depending, among other things,
on the initial conditions.

In the absence of any diffusive effect, that is, setting Dy ., = 0 in (1), it
is arguably better to avoid any discretization involving an Eulerian grid, and
use a straightforward implementation of the method of characteristics. This
leads to the following conceptually simple Lagrangian numerical scheme (for an
overview on Lagrangian dynamics the interested reader is referred to [11, 12]):
we uniformly seed the domain  with M particles, having position x;, i =
1,..., M, and then numerically solve

i = fi(Ciy - Cngi)

o
S
S

|

(2)
én;i = fn(cl;i,”'ycn;i)

with one among many viable ODE solvers. Here and in the following we use
the shorthand notation ¢;; = ¢;(x;,t) for the scalars sampled at the location
of each particle (the notation is fully described in sec. 2). It is important to
appreciate that, even when the number of particles is too small to fully sample
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the small-scale structures present in the full solution of the PDEs, the values
ci;; remain unaffected by the sparsity of the sampling, and are only affected by
inaccuracies in the solution of the ODEs (2), due, e.g., to an imperfect knowledge
of the velocity field w. This scheme is thus immune from the averaging problem
discussed above. If, as is the case in oceanographic applications, the velocity
field w is divergenceless, or nearly so, then an initially uniform sampling will
remain uniform, or nearly so, at all future times. In this context the lack of a
structured grid is just a nuisance: diagnostic and data analysis tasks may be
performed after resampling the numerical solutions of (2) on a regular grid of
choice, using, e.g., the methods discussed in [13, §5.3, p.128].

Unfortunately, the method of characteristics is not directly applicable to
biogeochemical problems: the complete absence of diffusive effects in (2) would
lead to paradoxical effects. For instance, if a water mass containing some phy-
toplankton but poor of nutrients were brought close to water masses devoid of
phytoplankton but nutrient—rich, fluxes associated to small-scale motions would
seed some plankton in the nutrient—rich water masses, leading, if the conditions
are right, to a bloom. With the scheme (2) a particle full of phytoplankton
could be brought arbitrarily close to a particle full of nutrients and yet there
would be no exchanges between the two: the plankton would wither, and the
nutrients would remain unused.

In this paper we show how to augment the Lagrangian scheme (2) with
couplings among nearby particles designed to mimic diffusive effects or, more
generally, fluxes due to small-scale, unresolved transport processes. In order to
be acceptable, such a coupling must possess the following three properties

1. respect mass conservation;
2. obey the maximum principle;
3. allow to recover the scheme (2) in the limit D; — 0.

The importance of mass conservation is fairly obvious. Even for models using
non—conserving reaction terms, there is no reason to introduce uncontrollable
numerical sources and sinks of scalars. Schemes that do not obey the max-
imum principle may create maxima and minima unbounded by the maxima
and minima of the initial conditions. In particular, scalar fields that should be
non-negative (e.g. the concentration of a chemical species) may locally develop
negative values, which, in turn, yield meaningless results with most reaction
models. Being able to recover the scheme (2) means that one is free to tune the
strength of the diffusive effects on the basis of modeling considerations alone,
and not because of numerical requirements. We propose two distinct couplers
that satisfy all these three properties. Of the two methods that we propose, the
first is based on an integral formulation, the second is an heuristic recipe based
on physical considerations. The two methods are distinct in the way used to
enforce mass conservation. In both cases, however, the maximum principle is a
direct consequence of the fact that the concentration of each particle after a dif-
fusive step is determined as an average involving the concentrations of nearby



particles. Free parameters, appearing in both methods, can be used to tune
the strength of the diffusive effects to extremely low values, or to zero, thereby
maintaining the particles uncoupled.

Particle-based methods are not a novelty. Smoothed particle hydrodynam-
ics (SPH) has proved to be very suitable for highly compressible astrophysical
problems, but flexible enough to be applied in many other settings [14], includ-
ing heat conduction [15]. However, we felt that achieving all three of the above
properties might be not straightforward with an SPH—inspired approach, there-
fore our methods are not based upon the differentiation of a smooth kernel.
Other particle-based methods, closer to the spirit of the present work, have
been proposed for diffusion and advection—diffusion equations [16, 17|, but did
not gain a large popularity.

Few are the instances in which Lagrangian methods have been applied to
geophysical problems. Nearly all numerical ocean models use grid—based meth-
ods, with the notable exception of the so—called “slippery sack” model [18]. This
was initially a purely adiabatic, Lagrangian scheme, which was later augmented
with a diffusive coupling between nearby particles [19]. More recently, embed-
ding Lagrangian “blobs” within an Eulerian Ocean Circulation Model has been
proposed as an effective way to parameterize sub—grid-scale processes [20], much
in the same spirit as in the present work. The Lagrangian scheme (2) has been
successfully applied to explain some incongruences between ecological models
and observations [21]. When augmented with a diffusive coupling it has been
used to explain the Fourier spectrum of a plankton concentration field [22].
We are not aware of other applications of Lagrangian schemes to ocean biogeo-
chemistry. There exists more work on Lagrangian methods for modeling the
atmosphere. In particular, a method based on contour advection and surgery
has been highly successful in reproducing the observed distribution of strato-
spheric ozone [23, 24]. Lagrangian methods have shown to have advantages with
respect to the Eulerian ones for simulating cloud microphysics [25]. They have
also been profitably employed for studying atmospheric convection [26, 27]. For
a recent survey on Lagrangian methods in atmospheric sciences see [28].

It is worth briefly mentioning that using stochastic processes for simulat-
ing diffusion in reaction—diffusion systems, albeit possible, is highly non—trivial.
In the absence of reaction, adding a Brownian component to the deterministic
trajectory of an advected particle is an effective way to simulate an advected—
diffused passive scalar. But in the presence of reactions, random walkers must
be coupled in some way (otherwise, once again, we'd fall in the paradox that
arbitrarily close particles won’t affect each other’s concentrations). In a micro-
scopic, stochastic description of diffusion and reaction the coupling is obtained
by branching processes (see e.g. [29, §4.7 p.82] for an example applied to the
FKPP equation). Unfortunately, devising the correct form of the branching
process corresponding to a given set of reaction terms is a daunting task, in
particular if one wishes to retain the freedom to tune the parameters or modify
those terms. Thus our couplers are purely deterministic. They assume that
particles, although being so small with respect to the size of the computational
domain as to be considered punctiform, nevertheless encompass a large enough



mass of water to justify a deterministic description based on the notion of con-
centration of the scalars.

The enormous potential of diffusively—coupled Lagrangian methods in bio-
geochemistry is illustrated by a simple example, inspired by the results ob-
tained with a much more realistic model in [30]. In (1) we set n = 2 and
choose a two—dimensional, incompressible velocity field u = (—1y, 1) defined
through the streamfunction ¢ (z,y) = sin(x)sin(y) on the doubly—periodic do-
main (z,y) € [0,27) x [0,27). The reaction terms are

filei,c2) = —reica,  falcr,c2) = +reica, (3)

with 7 = 0.2. We may see the scalar field ¢, as the spatial density of a consumer
that grows at the expense of a resource whose density is ¢;. The initial conditions
are:

c1(x,y,0) = cos?(x/2), ca(x,y,0) = 1074 (4)

We compute six solutions of this problem for progressively smaller diffusivities
and correspondingly higher resolutions. The six meshes have 128 - 2¥ points in
each direction, and the diffusivities are D; = Dy = 1073 -272% k = 0,...,5.
At each resolution, using substantially lower diffusivities would lead to severe
oscillations and numerical instabilities. The solid lines in Figure 1A show the
time evolution of the spatial average of ¢y (that is, the mean consumer density).
The dots show the same quantity computed by using the Lagrangian scheme
(2), solved with the standard fourth-order Runge-Kutta integrator, augmented
with one of the two diffusive couplers that will be presented in the following
(namely, that of section 2.2). The six Lagrangian solutions all use just 1282
particles, and they differ only in the strength of the diffusive coupling.

In this particular example, because of the quadratic nonlinearity, the same
amount of resource ¢y is consumed faster if it is spatially concentrated than if
it is spread out on a larger surface but at lower concentrations. Thus smaller
diffusivities, which better preserve the concentration peaks of the resource, yield
a faster growth of the spatially averaged field c¢y. In other words, they yield a
higher productivity of the consumer.

One might then be lead to hope that, just as unresolved turbulence can
be usefully approximated by effective diffusion terms, in the same way effective
reaction terms should be sought, representing the large—scale effects of the small—
scale chemistry, with parameters tuned as a function of the resolution of the
model. Here we give an example showing that this hope is unlikely to be fulfilled:
we just change the initial conditions (4) with

c1(z,y,0) = (sin <g) sin (%))4, ca(x,y,0) = (cos (g) cos (%)) 2 (5)

and repeat the same calculations described above. Because the resource and the
consumer are now initially segregated into two nearly non—overlapping blobs,
larger diffusivities bring in contact the resource and the consumer more quickly.
As a result, we obtain the opposite effect as before: the growth of the spa-
tially averaged consumer is fastest at the lowest resolution, and declines as the
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Figure 1: Spatial average of the field ¢y as a function of time. The solid lines
are results obtained with a pseudo—spectral code, with progressively higher res-
olution and correspondingly lower diffusivity (see text). The dots are results
obtained with a Lagrangian code using the coupler of sec. 2.2 with 1282 parti-
cles, where the strength of the diffusive coupling between particles is set as to
match that of the pseudo—spectral computations. Panel A: calculations starting
from the initial condition (4). Panel B: calculations starting from the initial
condition (5).

resolution is increased (Figure 1B). Thus, hypothetical effective reaction terms
intended to reproduce at low resolution the results obtained at highest resolution
with the chemistry (3) should achieve the no small feat of adjusting the pro-
ductivity that they yield not just to the resolution, but to the initial conditions,
too.

The diffusively—coupled Lagrangian scheme, having a diffusivity tunable in-
dependently of the resolution, is not affected by these problems, and reproduces
fairly well with just 1282 particles the results of the pseudo-spectral code using
the same strengths of the diffusive coupler as those used for Figure 1A.

The four panels of Figure 2 show the field ¢y at time t = 100 as computed by
the pseudo-spectral scheme with 128 and 4096 grid points (panels A, B), and
by the Lagrangian scheme (panels C, D) with diffusivities matching those of the
pseudo—spectral calculations. The Lagrangian solutions are visualized by plot-
ting partially overlapping colored squares centered at the particles’ positions,
rather than by resampling the solution on a regular grid. This choice makes
evident that the Lagrangian solution in panel D), reproduces the same range
of fluctuations as the solution in the panel B), even though it obviously cannot
resolve the fine structures created by the advective dynamics.

The rest of the paper is organized as follows: in the following section we
describe the diffusive couplers; in section 3 we compare the results obtained
through our Lagrangian methods against known exact solutions or numerical
solutions obtained with a pseudo—spectral code at much higher resolution; in
section 4 we briefly discuss how to efficiently implement the methods; finally
some concluding remarks are offered in section 5.



Figure 2: Field ¢y at time ¢ = 100. One quarter of the whole domain is shown.
A) pseudo-spectral scheme on a 128 x 128 points grid. B) pseudo-spectral
scheme on a 4096 x 4096 points grid. C) Lagrangian scheme with 1282 particles
and a diffusion matching that of A). D) Lagrangian scheme with 1282 particles
and a diffusion matching that of D). All cases use the initial conditions (5).
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2 Diffusive couplers

We are not going to attempt a discretization of the Laplacian operator: evaluat-
ing the second derivatives of a field on a set of randomly distributed points and
then devising a numerical scheme that satisfies mass conservation and the maxi-
mum principle would be quite challenging. Of the two methods that we propose,
the first is the discrete counterpart of a convolution with the heat kernel; the
second represents diffusive processes as exchanges of mass among nearby parti-
cles. Both methods have free parameters, which determine the strength of the
diffusive effects. More precisely, they determine the rate at which the variance
of a scalar field is dissipated. In section 3.1 we give an objective, quantitative
way to attach an effective diffusivity to a given set of parameters.

We feel that the first coupler has a more mathematically elegant formulation.
However, it requires an iterative procedure to converge, which may make it
slow. The second coupler is little more than a recipe to destroy variance, but
its computational cost scales linearly with the number of particles.

In order to make precise the notation that we shall use, let us recall that,
given the smooth and bounded velocity field u which appears in equations (1),
the system of ordinary differential equations

(1) = u(x(l),t) (6)

defines a flow (e.g. [11, §2.1, p.18]) that links in a unique, smooth and invertible
way the position a of a fluid particle at the initial time ¢( to the position x(t; a)
of the same particle at time ¢. By seeding the domain of interest with M
particles initially at the positions a;, (i = 1,..., M), and using the shorthand
xz; = z(t;a;), and ¢;; = ¢;(x(¢; a;),t), we may numerically solve the system of
ordinary differential equations (2) in order to evaluate the solution at time ¢
and positions @; of the equations (1), when the diffusivities D, ..., D, are all
zZero.

The problem of introducing diffusive effects in this Lagrangian framework
is greatly simplified if one takes a fractional step approach (e.g. [31, §17.1,
p-377]). The reaction and advection terms are solved by integrating the ODEs
(2) from time ¢ to time ¢ 4 7, then a separate diffusive step, which solves the
heat equation, is performed. During this diffusive substep the particles don’t
move. Therefore, our methods for performing this step are more easily described
in terms of the Eulerian coordinates x; of the particles, rather than in terms
of their Lagrangian coordinates a; (which would be much harder). Even with
this simplification, standard methods for solving the diffusion equation would be
ill-suited for our purpose, because we cannot assume, in general, any regularity
in the distribution of the particles.

Here, for notational simplicity, we illustrate the methods for the case of
a single scalar field ¢. Thus, we shall use the shorthands ¢; = ¢(x;,t) and
ci(t+7) = c(x;,t + 7). The generalization of the methods to the n scalar fields
of the full PDEs (1) is straightforward.
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2.1 First coupler

In place of a discretized form of the heat equation, we seek a discretized form of
its solution; the latter, for a scalar field ¢, is given by the following convolution
integral

c(m,t—l—T):/Qk(a:,y,T)c(y,t) dy (7)

where the kernel k£ is the fundamental solution of the heat equation in the
domain Q subject to the desired boundary conditions. In R? the kernel is

ol
M) = () oo (—'4Dy> ®

where D is the diffusion coefficient of the heat equation.

Given M points x1,...,xy in Q, let Wj;.. be the elements of a matrix
representing a discrete counterpart of the convolution (7) evaluated at the points
x;, =; and across a time interval 7. By analogy with the properties of the kernel
(8), we shall assume W to be a non-negative, symmetric matrix. The simplest
discretization of the convolution (7) is given by

M
Ci(t + 7') = Z Wij;TCj (9)
j=1
where we use the shorthands defined above. If
M
ZWij;T =1, (10)
j=1

that is, each column of W sums to 1, then the expression (9) is just a weighted
average of all the concentration values {c¢;}. Therefore, it satisfies the maximum
principle in the form:

iy led Sat+m) < pa ted (1)

If each row of W sums to 1, i.e.

M
> Wijir =1 (12)
=1

then the expression (9) satisfies the conservation of mass in the form

M M M M
Zci(t+T):Z <ZWU;T> CjZZCj. (13)

i=1 Jj=1 =1

Thus, if the discrete kernel W is a doubly—stochastic matrix [32], i.e. it satis-
fies both (10) and (12), then the discrete model (9) obeys both the maximum
principle and the conservation of mass.

10
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Let us now describe how to construct such a discrete kernel W. Initially we
define a crude discretization of the exact kernel (8) as follows

{exp (_ Hmlpmgl\ ) e — ]| <m /5D
Kijir =

T

(14)
0, llx; — ;|| > mv2Dr

where the nominal diffusivity D must be intended as a free parameter. The
kernel K has a cut—off determined by m, also a free parameter, to avoid com-
puting the negligible contribution of pairs of particles too far away from each
other. Because K is not, in general, a doubly—stochastic matrix, we need to find
a doubly—stochastic surrogate of K.

The problem of rescaling a given matrix into a doubly—stochastic one is
named balancing, and dates back to the 1930s. Since then, a large number of
applications has been solved by resorting to the balance of matrices (see, e.g.,
[33] for a rich list of examples).

We say that a matrix K can be balanced if there exist two diagonal matrices,
diag(a) and diag(b), such that

W = diag(a) K diag(b) (15)

is doubly-stochastic. The fundamental theorem addressing this problem for
non-negative matrices is due to Sinkhorn and Knopp [32]. Starting from any
vector ag with positive elements, they propose the following iteration:

-1 —
bk+1 = (KTak) sy Q41 = (Kbk> ! (16)

where the reciprocal is intended to be applied element—wise. Their theorem then
states that the process converges to a doubly—stochastic matrix of the form (15)
with @ = limg_, o ag, b = limy_, o, by, if K has total support. A matrix K is said
to have total support if every positive entry in K can be permuted into a positive
diagonal with a column permutation. Under the conditions of the theorem the
balancing is unique: K can be turned into one and only one doubly—stochastic
matrix by means of multiplication by diagonal matrices (which are themselves
unique up to a scalar factor).

Our crude discretization of the Gaussian kernel, the matrix (14), has total
support, because it is symmetric and has a positive main diagonal. Therefore,
if K;; is a non—zero element, then the column permutation that swaps column :
with column j brings to the main diagonal K;;, K;;, and no other element; the
main diagonal thus remains positive. We can then define the discrete convolu-
tion kernel W that appears in (9) as the balancing of K. For our purposes it is
important to note that K and W have the same pattern of zeros, therefore the
particle pairs coupled by W are all and only those coupled by K.

2.2 Second coupler

A way to represent small-scale irreversible mixing processes is suggested by
physical intuition, along the following heuristic argument, similar to those used

11
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in [19, 22]. When two fluid particles happen to be close enough, they will
exchange some portion of their mass, and, thus, of their advected scalars. Let
¢i; > 0 be the mass fraction exchanged between the i—th and the j—th particle,
which are assumed to have the same mass. This fraction may be a function
of the distance |x; — x;|| and may be assumed to be zero when the distance
exceeds some fixed threshold. Thus the concentration of the scalar c after a
diffusion step at the position of the i—th particle will be

M M
Ci(t+7') :Cifzqijci‘i’zqijcj (17)
j=1 j=1

where the first sum represents the losses to other particles, and the second
sum represents the gains from other particles. The above expression can be
re-arranged as

M M
ci(t+7)= 172(]@ c + ZQij C; (18)
j=1 j=1
where the overline denotes the weighted average ¢; = Z;‘il qijcj/ Zjbil gij- If

M
0< Z ¢ij <1 (19)
=1

equation (18) shows that ¢;(t + 7) is a linear interpolation between ¢; and ¢,
and therefore the maximum principle is satisfied.
In addition, it is straightforward to verify that >, ¢;(t + 7) = Z.¢;, and
therefore the expression (17) conserves mass.
As exchange fraction we shall use
2
g — m exp (7%) e — x| < mv2DT
0, lz; — ;|| > mv2DT

where p, D and m are free parameters and d is the dimensionality of the space.
This particular choice is loosely suggested by the fact that if the scalar field
carried by the ¢i—th particle at time t were represented by a delta function,
a diffusion process having diffusivity D, after a time 7 would spread out the
scalar over the whole domain with a resulting concentration proportional to

(20)

exp (— |z — a;jHQ / (4D7)). The cut—off for large distances is also physically

motivated: the small-scale, unresolved advective motions that this diffusion
process is supposed to represent, cannot occur at an arbitrarily large speed;
therefore, in a finite time 7 only particles closer than some threshold length
may exchange mass.

Special care must be taken in choosing p small enough as to enforce the
condition (19). A useful rule of thumb is:

p < 1
(4rD1)** " N(mv/2Dr)’

(21)

12
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where N (h) is the average number of particles that fall into a sphere of radius

h.

2.3 Boundary conditions

So far we have discussed the diffusive couplers as if the computational domain
were unbounded. When the domain is limited, any condition enforced along its
boundaries is reflected in the kernel & appearing in the convolution solution (7),
which ceases to be a simple Gaussian function.

In the case of periodic boundary conditions, the kernel is an infinite sum of
Gaussians, one for each of the periodic images. For example, on the segment
[0,27) the kernel is

B 1 (z —y + 2nm)?
k(x,y,7) = Z Wexp <W> ) (22)

neE”Z

If mv2D71 < 7, and we accept to approximate to zero the exponential when its
argument is larger than or equal to m (as we do in (14) and in (20)), then only
one term gives a non—zero contribution in the sum. This shows that the ex-
pressions (14) and (20) remain valid for periodic boundary conditions, provided
that the norms ||; — x;|| which appear in those expressions are considered as
the minimum distance in the periodic domain between the particle ¢ and the
particle j.

Another common boundary condition prescribes that the flux of tracers
across any portion of the boundary has to be zero. When no particle is seeded
outside of the domain, this condition is automatically enforced by both the dif-
fusive couplers presented here. There is, however, a pitfall that needs to be
brought to light. This is most easily illustrated in a one-dimensional domain.
Let us consider the half-line [0,00). If we impose no—flux (a.k.a Neumann)
boundary conditions at x = 0, then the heat kernel is

k(x,y,7) = ﬁ lexp <_(I4—Dfl')> + exp (—m)] . (23)

This can be deduced by imposing an even symmetry to the initial condition
which extends the problem to the whole line, and then restricting the solution
back to the half-line. The even symmetry enforces the boundary condition.
This implies that the points at > 0 do exchange fluxes across the boundary
with their mirror images at x < 0, but do so as to keep equal to zero the net flux
at x = 0. If these virtual fluxes across the boundary are not taken into account,
then, in proximity of the boundaries, the diffusivity of the scalar field is underes-
timated, even though the no—flux boundary condition is still correctly enforced.
A solution to this problem might consist in using ghost particles strategically
placed outside the domain so as to represent an even—symmetric field across it.
In more than one dimension, this would be relatively straightforward only for
straight boundaries, and would quickly escalate to a challenging problem for
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boundaries of arbitrary shape. However, the contribution of the mirror images
is important only within a distance of O(v2D7) from the boundary. In high—
Péclet number, under-resolved simulations, this distance would be comparable
to or smaller than the inter—particle distance. We thus feel that attempting to
fix this issue may not be worth the effort. In the following when we mention
“no—flux boundary condition” we refer to the straightforward case in which no
ghost particles are used.

In the test cases we have not used the Dirichlet boundary condition. However
we anticipate no difficulties in implementing this condition by distributing par-
ticles along the boundary and fixing their concentrations to a prescribed value.
The same considerations about mirror images and ghost particles, subject to
the appropriate symmetry, apply to this case as well.

3 Results

3.1 Advection and diffusion

A first test for the diffusive couplers introduced in the previous section is to
compare their performance for advection—diffusion problems in cases in which
small-scale structures are progressively formed and eventually become under—
resolved. An analytically—solvable, well-known, but non trivial test case is the
following [34]:

oc Oc

= —— = DV? 24

ot + y@x Vie (24)
with initial condition

c(z,y,0) = cos(x). (25)

In a domain vertically unbounded and horizontally periodic with period of 2,
the problem (24,25) has the exact solution

c(z,y,t) = e_D(H_?) cos (z — yt) (26)

which develops arbitrarily high wavenumbers in the y—direction as times pro-
gresses due to the tipping over of the tracer streaks operated by the shearing
flow (Figure 3). Multiplying (24) by ¢, averaging, and using (26) after an in-
tegration by parts, one finds the following explicit expression for the rate of
dissipation of scalar variance

(S = D(e) = F ). 27)

Where the angular brackets denote a spatial average over one horizontal period
and an arbitrary vertical length.

In Figure 4 this expression is compared with the results obtained using the
two couplers discussed in sec. 2. The numerical computations use the domain
[0,27) X [—, 37], periodic in 2 and with no—-flux boundary conditions in y. The
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Figure 3: Numerical solution of (24,25) using the first coupler (§2.1). The
parameters of the discretized kernel (14) are d = 2, m = 8, V2D7r = /512,
7 = 0.1. The second coupler, with the parameters of Figure 4, produces visually
indistinguishable results.
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Figure 4: Rate of dissipation of scalar variance for the problem (24,25). Blue
curve: results from the numerical simulation of Figure 3. Green curve: results
using the second coupler (§2.2), with parameters p = 1.38:1075, m = 4, V2D7 =
/256, 7 = 0.1 for the exchange fraction (20). Red curve: expression (27) with
D =3.23-1075. Cyan curve: expression (27) with D = 1073; the curve peaks
off-scale at = 0.0254.

number of particles is 128 x 256. The averages are computed in the central part
of the domain, shown in Figure 3. The left-hand side of (27) is then computed
from the particles’ concentrations. The value of the diffusivity D in the right—
hand side of (27) is least—squares fitted to the numerical results. The fit extends
from the beginning of the simulation up to the time of maximum dissipation.
The value of the parameter p in the second coupler is tuned in order to match
the fitted value of D = 3.23...- 1075 obtained with the first coupler with at
least two significant digits.

The match with the exact dissipation rate becomes inaccurate at later times,
because when the stripes become under-resolved the tracer variance is aliased
to lower wave numbers, and thus it is not damped as quickly as it should have
been: obviously, an under—resolved computation does not perfectly reproduce
the exact result. But the advantage of the Lagrangian approach should become
clear by contrasting its results with those that could be attained by Eulerian
methods. For example, with a pseudo—spectral code at a comparable resolution,
the lowest diffusivity must be D ~ 1073 in order to avoid significant spurious
oscillations. With that diffusivity one obtains the cyan curve in Figure 4: the
dissipation rate peaks at time ¢ ~ 10 instead than ¢t = 70, by which time
the streaks have all but disappeared. Thus, for a given resolution, when the
diffusivity is as small as to make the computation under-resolved, with the
Lagrangian approach we can obtain a dissipation curve that, albeit inaccurate,
however peaks roughly at the right time and has roughly the correct dissipation
strength; with pseudo—spectral or similar Eulerian methods we could obtain
much more accurate shapes of the dissipation curves, but they would inevitably
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Figure 5: Effective diffusivity D as a function of nominal diffusivity D for the
first coupler (§2.1). Different symbols correspond to different values of the cut—
off radius h. Different points with the same symbol correspond to different
values of m. The nominal diffusivity is then given by (28). The black dashed
line is the identity D = D.

correspond to diffusivity values determined by the resolution of the grid, which
may be orders of magnitude larger than the physically relevant one.

In fact, for each choice of the parameters, we can define the effective diffu-
sivity of the method as the value D in the right-hand side of (27) that best fits
the growing part of the numerical dissipation curve. This value, in general, does
not coincide with the nominal diffusivity D, which appears in (14) and (20) and
depends on the parameters as we shall discuss below.

Using the first coupler, in the discrete kernel (14) we set the cut—off radius
my\2DT = h to be h = 7/8, 7/16, 7/32, 7/64. For each of these values we consider
m = 3,4,6,8,12,16. Fixing the value of the time step (we use 7 = 0.1) the
nominal diffusivity is then determined as

2
D= h .
27m2

(28)

Figure 5 shows the effective diffusivity as a function of the nominal diffusivity
for the above values of h and m. Points that have the same "/m ratio yield
nearly the same effective diffusivity. In other words, for fixed D, the effective
diffusivity is fairly insensitive to the cut-off radius h, even when this is so small
that only very few particles are involved: when h = 7/64 only 7 particles, on
average, fall within a disc of radius h.

At high nominal diffusivities, the effective diffusivity nearly coincides with
the nominal one: D(D) = D. At low nominal diffusivities the effective diffusivity
appears to be proportional to the square of the nominal one: D(D) o D2.
Further tests suggest that the constant of proportionality scales as the square
root of the particle density, and that the switch between the two regimes occurs
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Figure 6: Effective diffusivity D as a function of nominal diffusivity D for the sec-
ond coupler (§2.2). Symbols have the same meaning as in Figure 5. Blue markers
refer to computations with p = 1074, red to p = 107°, green to p = 10-%. The
black dashed lines are the functions D = 10"D, with n = —5,—4,...,0.

when the standard deviation v2D7 of the discrete kernel (14) is of the same
order of magnitude as the average distance between nearest particles. We did
not further investigate the reasons of this change of slope and postpone an
in-depth examination of the issue to a further work.

Figure 6 shows the effective diffusivity obtained with the second coupler as
a function of the coupler’s parameters appearing in the exchange fraction (20).
The markers relative to h = 7/64, m = 12,16 are absent, because with those
parameters the condition (19) does not hold: thus, the method violates mass
conservation and blows up.

The cut-off radius is determined as specified above for the first coupler, and
the expression (28) for the nominal diffusivity still holds. As in that case, the
effective diffusivity is fairly insensitive to the cut-off radius h when the ratio
h/m is kept fixed. In contrast with the first coupler, the effective diffusivity
appears to be roughly proportional to the nominal one across the whole range
of diffusivities that we have tested. The effective diffusivity also appears to be
roughly proportional to the parameter p.

The effective diffusivity of the second coupler also depends on the density of
the particles. If, keeping all other parameters the same, we double the average
number of particles that fall within a disk of radius h, we find, from (17) and
(20), that the average mass exchanged on a time step by each particle with its
neighbors doubles. Thus the effective diffusivity is proportional to the particle
density.

18



3.2 Reaction and diffusion

The methods described in the present work are designed for cases in which the
Péclet numbers are extremely high. However, it cannot be excluded that some
geophysical flows may, occasionally, be characterized by less extreme Péclet
numbers. It is thus of interest to verify what may be the performance of the
methods when the advection terms are not dominant over the diffusion ones. In
the limit of zero Péclet numbers, the equations (1) reduce to reaction—diffusion
equations. Even though we are not proposing our methods for this class of
problems, we found informative to use one of them as a test case.
Here we will consider the well-known Fisher—Kolmogorov—Petrovskii—Piskunov

equation, namely

dc 9
5= DV=c+c(1—c). (29)

For non-negative ¢, this equation describes the propagation of fronts joining a
stable (¢ = 1) and an unstable (¢ = 0) region (e.g. [35] §13.2, p.439). There
exist solutions with fronts propagating at any speed V > 2v/D. However, for
a very large class of initial conditions, in particular those whose derivative has
compact support, the propagation speed is the minimal one [36]: V = 2v/D.

When the function ¢ assumes negative values the solution generally blows—
up to minus infinity in a finite time. It is thus important to avoid numerical
solution methods that generate spurious oscillations. In particular, this may be
a problem when the diffusion coefficient is small, because the thickness of the
front is also proportional to v/D. Thus, low diffusivities imply high gradients in
the traveling front.

We produce a numerical approximation of (29) by uniformly random seeding
1282 particles in the square [0, 27] x [0, 27]. We use no—flux boundary condition.
Initially, all particles have a concentration of zero, except those having a coor-
dinate x < 0.2, whose concentration is set to one. We then advance the solution
with time steps of length 7 = 0.1 by alternating one of the diffusive couplers of
sec. 2 and the evaluation of the exact solution of the equation ¢ = ¢(1 — ¢).

In Figure 7 we plot the propagation speed of the front as a function of
the effective diffusivity of the method, evaluated as detailed in the previous
subsection. The first coupler gives the best results, while the second coupler
overestimates the speeds by about a factor 2.5. With both couplers the front
propagation speed appears to be proportional to the square root of the diffu-
sivity, as in the exact solution, except at very low diffusivities, where the front
speed declines somewhat faster than the exact scaling. This excessive slow—
down is in qualitative agreement with what was found in a stochastically forced
version of equation (29). The primary effect of the random forcing was that of
damping the leading tail of the propagating front, thus slowing it down [37].
We speculate that the random arrangement of the particles may play the role
of the stochastic forcing.

The front is well-resolved only at the lowest diffusivities. When D ~ 1073
the thickness of the front becomes comparable with the interparticle distance.
Thus, most of the results of Figure 7 refer to runs in which the front is poorly
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Figure 7: Speed of propagation of the front in the solution of equation (29) as a
function of the effective diffusivity. Symbols have the same meaning as in Figure
5. Blue markers refer to computations using the first coupler (sec.2.1) and the
the green ones to computations using the second coupler (2.2) with p = 107°.
The black dashed line is the theoretical speed V = 2v/D.

resolved or not resolved at all. When the front is not resolved, the separation
between the region where ¢ = 1 and ¢ = 0 appears as a jagged line, with
meanders of characteristic size determined by the interparticle distance.

We could not run this test case with a cut—off radius h = 7/64, because this
length results to be smaller than the percolation threshold: due to the random
inhomogeneities in the distribution of the particles, after a short transient, no
particle with concentration zero is found at a distance less than h from a particle
with concentration higher than zero, thus the front stops propagating. In figure
7, we used h = 7/48, instead. This elucidates the disadvantage of not having
a velocity field stirring the particles: although Poissonian random gaps in the
distribution of particles exist even in the presence of a stirring velocity field,
they open and close as time progresses, rather than remaining static, and are
thus far less damaging, as the results of the other tests should clearly illustrate.

While we consider fitting the dissipation curve (27) as the best way to es-
timate the diffusivity of our proposed couplers when they are used for under—
resolved flows at high Péclet number (that is, for their intended usage), it is nev-
ertheless interesting to assess the performance of the couplers for approximating
well-resolved diffusive processes. To this end, we seed the doubly—periodic do-
main [0, 27) X [0, w/8) with 2500 particles, placed at uniformly random positions.
We initially set the concentration of the i—th particle to ¢; = cos(kx;), with in-
teger k. We perform one step with each of the two couplers. For the coupler of
section 2.1 we use h = 7/8, m = 4.7, 7 = 0.1; for the coupler of section 2.2 we
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Figure 8: Diffusivity Dy, (see eq. 30) for the exact solution of the heat equation
(black horizontal line); for the BTCS finite difference discretization (red line);
for the coupler of section 2.1 (blue squares); and for the coupler of section 2.2
(green circles). See text for parameters.

use h = 7/16, m =1, p = 1073, 7 = 0.1. Then we compute

log Z(S)
D= —37 (30)

where (0), o(7) are, respectively the standard deviation of the concentration
field at time ¢t = 0 and ¢t = 7. Using in the above expression the exact solution of
the diffusion equation, 9;c = DV?¢, with initial condition ¢(x,0) = cos(kx), one
finds Dy = D for all k. However, for most numerical approximations of the heat
equation Dj is a non—constant function of k. Figure 8 shows a comparison of
the exact result, and of the approximations obtained by using our two couplers
and one step of the BTCS (backward time, centered space) finite difference
approximation with 200 equally—spaced nodes in [0, 27), and a time step 7 = 0.1.

At low wavenumber, the above parameters are consistent with a diffusion
coefficient D ~ 0.035, although the random sampling of the domain produces
a noticeable scatter between each wavenumber and the next. As a further test,
we then use our couplers to produce numerical approximations of the solution
of the following Turing instability problem [38]:

0 1\ 1 -3 c1 D1V2e;

& < C2 ) - q( 2 =5 ) ( Co T D2V202 ’ (31)
A linear stability analysis of these equations is readily performed, and it shows
that, with D; = Dy/23 and Dy = 0.035, for ¢ = 5 - 1073, only the wavenumber
k = 1 is unstable, with a growth rate A ~ 0.0010---; for ¢ = 5- 1072, the

wavenumbers k = 2,3,4 are unstable, and the fastest growing one is k = 3
with a growth rate A =~ 0.010---; for ¢ = 5- 107!, the wavenumbers k =
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Figure 9: Panel A: standard deviation of the numerical solution of equations (31)
as a function of time; dashed lines refer to the coupler of section 2.1 and dotted
lines to the coupler of section 2.2; solid lines are plotted for reference and have a
slope corresponding to the growth rate of the maximally unstable wavenumber;
red, green, blue lines refer, respectively, to ¢ = 5-107%, 5-1072, 5-10~3. Panel
B: concentration field ¢; at time ¢ = 1000 in the calculation with ¢ = 5-1073.
Panel C: concentration field ¢; at time ¢ = 500 in the calculation with ¢ =
5.1072. Panel D: concentration field ¢; at time ¢ = 100 in the calculation with
g =5-10"1. The calculations of panels B, C, D refer to the coupler of section
2.2. For the other coupler the results are analogous.
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5,...,15 are unstable, and the fastest growing one is £ = 10 with a growth
rate A = 0.10---. Perturbations along the y—direction are always damped
when using these parameters in the domain of the previous test. The couplers
use the same domain, number of particles and parameters as for the previous
test, except that for the field ¢; we set m = 17.5 when using the coupler of
section 2.1, and p = 1073 /23 when using the coupler of section 2.2. The initial
concentrations of each particle are independently and randomly chosen with
a Gaussian distribution with zero mean and unit variance. The results are
summarized in Figure 9. In all cases Turing patterns emerge from the random
initial conditions, and grow at a rate very close to that of the exact solution. The
wavenumber that emerges is the correct one for ¢ = 5-1072 and for ¢ = 5-1072.
For ¢ = 5-107! the pattern is a mixture of wavenumber k = 11 and k = 12.
There are no appreciable differences neither in the patterns nor in the growth
rate between the two couplers.

3.3 Advection, reaction and diffusion at different Damko6h-
ler numbers

We now return to the simple resource—consumer model (3) to test the perfor-
mance of the Lagrangian couplers when the Damkohler number is changed. Here
we do so by letting the reaction rate assume the values r = 0.04, 0.2, 1, 5, while
keeping in all cases the same velocity field, which is defined by the following
streamfunction

Y(z,y,t) = [(n mod 2) sin(x + ¢,,) — (1 — (n mod 2)) sin(y + ¢n,)] (32)

where n = |t] (the largest integer smaller than ¢), “ mod ” denotes the remainder
of the integer division, and ¢,, is a uniformly random phase chosen in [0, 27).
This is an example of a “random renewing flow” (see e.g. [39] §11.1, p.320)
which is very effective at mixing an advected scalar field. The characteristic
spatial scale of this laminar flow is constant, but an advected field is subject
to a continuous process of stretching and folding that produces a cascade of
progressively smaller scales.

Our benchmarks are numerical solutions of the problem (1) with the chem-
istry (3) and the velocity field induced by (32), solved on a uniform grid with
40962 nodes, on the doubly-periodic domain [0,27) x [0, 27), with a Fourier—
Galerkin pseudo-spectral code, and a diffusion coefficient D = 0.003/322 =
2.9 -1076. A slightly larger diffusivity was used than in the computations of
Figure 1 at the same resolution, because at higher reaction rates the solution
develops higher gradients in the concentration fields. We thus have tuned D so
as to obtain a solution free of spurious oscillations at r = 5, and we have kept
that value for all the reaction rates. We use both the uniform consumer initial
condition (4) and the non overlapping blobs initial condition (5).

Against the benchmark we compare the results obtained using the Lagrangian
method with the couplers of section 2. For the first coupler we use a cut—off
radius h = 7/64 and m = 5.8. For the second coupler we use h = 7/32, m = 4,
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Figure 10: Mean (panels A,B) and standard deviation (panels C,D) of the con-
sumer concentration field as a function of time using the chemistry (3) and the
stirring field (32). Panels A,C refer to the initial conditions (4); panels B,D
to the initial conditions (5). Different colors denote different reaction rates, as
specified in the legend of panel D. Solid lines refer to results obtained with a
pseudo-spectral code on a grid with 40962 nodes. Dotted and dashed lines refer
to the Lagrangian method with 1282 particles and respectively, the coupler of
section 2.1 and of section 2.2.
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Figure 11: Consumer concentration field at time ¢t = 50 for the numerical solu-
tions of Figure 10 with » = 0.04 (panels A, B, C) and r = 5 (panels D, E, F),
and initial conditions (5). Panels A, D are obtained with the pseudo—spectral
code; panels B, E are obtained with the coupler of section 2.1; panels C, F are
obtained with the coupler of section 2.2.

p = 1075, In both cases 1282 particles were used, the time step is 7 = 0.1 and
the ODEs (2) are solved with the standard fourth—order Runge-Kutta scheme.
The results are summarized in Figure 10.

Both Lagrangian methods reproduce very well the time evolution of the mean
of the chemical fields, and reasonably well their standard deviation, even though
the small-scale filaments produced by the stretching and folding dynamics of
the flow are not resolved in the Lagrangian calculations. This is illustrated in
Figure 11 which compares the consumer concentration field at time ¢ = 50 for six
of the numerical solutions summarized in Figure 10. Because the advecting flow
is the same for all cases, solutions corresponding to the same reaction rate show
the same large—scale pattern. Obviously, the delicate small-scale interleaving
of filaments which is very well captured by the high-resolution pseudo—spectral
calculations is missing in the low-resolution ones. The low-resolution computa-
tions severely undersample the filaments. However, owing to their Lagrangian
nature, they do not produce any spurious mixing between nearby low— and
high—concentration regions. Therefore they are able to reproduce almost ex-
actly the same average and range of fluctuations observed in the fully—resolved,
high-resolution calculations.

Of course, the inability to resolve small scales inevitably produces undesir-
able side effects, so that a perfect match of the scalar statistics between resolved
and unresolved calculations is impossible. In particular, if measured with the
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criterion of section 3.1, the parameters used for the Lagrangian calculations
yield an effective diffusivity slightly higher ( D ~ 1.1-107°) than the diffusivity
of the pseudo-spectral code (the criterion suggests m = 8 for the first coupler
and m =~ 7.5 for the second). When the effective diffusivity matches that of the
pseudo—spectral code, in the later stages of the simulation the standard devia-
tion remains too high and decays at a slower rate than in the pseudo—spectral
benchmark. This occurs because, as stirring cascades the chemical tracers to
unresolved small scales, the variance relative to those scales is aliased back to
larger scales, where it is damped at an incorrect, lower rate. Using an ad-hoc
higher effective diffusivity initially gives a slight underestimation of the standard
deviation and, later on, a slight overestimation, while producing what we con-
sider to be an acceptable approximation of a dynamics that requires a resolution
32 times higher to be fully resolved.

4 Implementation details

An efficient implementation of the diffusive couplers of section 2 requires a
fast algorithm for finding all the particles falling within a distance h from any
given particle. This fized—radius near neighbors search is a classic problem in
computational geometry. For arbitrary distribution of points, it can be solved
by arranging the points in tree data structures such as quad—trees or Kd—trees
(see e.g. [40] chap. 5, p.95). The use of trees leads to algorithms with a
computational cost of O (M log(M)), where M is the number of points. When,
as in our case, the particles are uniformly distributed, it is more convenient to
use a lattice and hashing method, which has a computational cost of O(M) [41].

The computational domain is overlaid with a regular lattice with square
meshes of size h. To each mesh is assigned a unique index. For simplicity we
use row—order indexing, although the Z—order indexing might improve cache
efficiency. The particles are kept in a list, sorted according to the index of the
mesh that contains each particle, which is easily computed from the particle’s
position. The sorting is performed by means of the counting algorithm (e.g. [42]
§8.2, p.194), which does not use pairwise comparisons, and has a complexity of
O(M). A hash table associates each mesh index with the first particle in the
sorted list having that index. Thus, accessing all particles within the same mesh
is an O(1) operation, because each mesh, on average, contains the same number
of particles, due to their uniform distribution. To find all the particles within
a distance h from a given one, one needs to compute the distance of the given
particle from all the particles in the same mesh and in some of the adjacent
meshes (three in 2D or four in 3D). After each time step, the particle list is
sorted again, and the hash table is updated. If the size of the mesh h is decreased
as the number of particles M increases in such a way as to maintain constant
the average number of particles in each mesh, then the fixed—radius neighbor
search problem is solved in O(M) time. We did not attempt yet to produce a
parallel version of our prototype code. However we don’t expect to face unusual
difficulties or harsh performance penalties by pursuing a straightforward domain
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partitioning strategy, in which each processor takes care of a contiguous block
of meshes.

In the case of the coupler of section 2.2, the computation of the exchange
fraction (20) only increases the prefactor in the asymptotic scaling of the fixed—
radius neighbor search. The overall algorithm is thus O(M).

In the case of the coupler of section 2.1, an analysis of the computational
cost is more complicated, because it needs to take into account the cost of
balancing the discrete kernel (14). The analysis of balancing algorithms is still an
open problem, and we settled for the venerable Sinkhorn-Knopp algorithm only
because it is extremely simple to implement. An assessment of the performances
and of the relative merits of balancing algorithms, in particular on distributed—
memory parallel architectures, is beyond the scope of this paper, and might
become the subject of a future work.

5 Discussion and conclusions

In this paper we have investigated the viability of Lagrangian numerical methods
to approximate the solution of advection-reaction—diffusion equations in cases
where it is impossible to resolve all the scales of motion, as is commonplace for
biogeochemical problems.

The methods consist in alternating a purely Lagrangian step that solves the
advection—reaction part of the equations with the method of characteristics,
with a diffusive step that couples the particles moving along the characteristic
lines of the advection-reaction problem. Two such couplers have been proposed.
One amounts to a discrete version of the convolution with a Gaussian kernel,
the other prescribes the exchanges between nearby particles of small portions
of the mass carried by each. In both cases the resulting scheme conserves mass,
respects the maximum principle and allows to tune the diffusivity down to zero,
where the couplers have no effect, and the method of characteristics is recovered.

We have carried several tests comparing the methods against exact solu-
tions of advection—diffusion and reaction—diffusion problems, and against fully
resolved numerical solutions of advection—reaction—diffusion problems obtained
using a pseudo—spectral method run at significantly higher resolution than that
of the Lagrangian code. In all cases the results have been fairly good, except in
the case of the reaction—diffusion test, where the lack of an advection term that
stirs the particles hampers the performance of the method. However, even in
this unfavorable case, the methods are able to recover in a roughly correct way
the main features of the solution and their scaling as a function of the diffusivity.

Of course, when it is impossible to resolve all the spatial scales present in the
solution, no method should be considered as completely satisfactory, and it is
very likely that special cases could be found where it would perform far from well.
For example, we don’t expect our Lagrangian method to perform brilliantly in
reproducing the propagation of chemical fronts stirred by steady cellular flows.
The speed of those fronts critically depends on an accurate description of the
tails of the tracer distribution in proximity of the hyperbolic stagnation points at
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the cell boundaries [43]. When the spatial structures are severely under resolved
those tails are not reproducible, and the resulting speed is then unlikely to be
correct. On the other hand, chemical fronts of that kind are not present in
the oceans, and stagnation points, albeit present, are not steady; typical ocean
mixing processes involve shearing, or stretching and folding dynamics, and in
those cases our approach seems to be satisfactory.

This paper does not suggest that our Lagrangian methods are competitive
with, or even comparable to, a fully resolved numerical solution obtained with
an Eulerian method, but rather that, by allowing to control the diffusivity in-
dependently of the resolution, the Lagrangian methods offer, when resolution
can’t be further increased, a much better compromise than equally unresolved
Eulerian methods. In this respect, diffusive couplers like those presented here
could be seen more as a subgrid—scale parameterization of sorts, rather than as
a discretization of a diffusion operator such as the Laplacian that appears in
(1).

While we believe that the present work is a successful proof—of—concept,
some additional steps will be required in order to incorporate it into a realistic
ocean circulation model. A first, necessary step is that of assessing the impact of
interpolation schemes: here we conceded ourselves the luxury of using explicit
expressions for the velocity fields and evaluate those at the position of each
particle. A Lagrangian biogeochemistry module based on the schemes proposed
here would need to acquire the velocity field from an Ocean Circulation Model.
With probably the sole exception of the Lagrangian “Slippery Sacks” Model, this
implies interpolating a velocity field known only on the nodes of an Eulerian
grid. In addition, the current prototype implementation needs to be extended to
three spatial dimensions and to distributed—memory parallel architectures. In
the present form the couplers only represent homogeneous and isotropic diffusive
processes. In ocean models, anisotropy is necessary, at least in the vertical
direction, and the possibility to allow for spatially-dependent diffusivities is
desirable. Finally, the existing Eulerian parameterizations for the sources and
sinks of tracers, due to interactions with the bottom, with the air, and through
river run—off must be adapted to the Lagrangian framework. These goals will
probably be easier to achieve by modifying the coupler of section 2.2 where
subgrid—scale fluxes are represented explicitly and locally as exchanges of mass
between particles. They may be more demanding with the coupler of section
2.1, which requires the balancing of a matrix, a process that involves all particles
simultaneously, even when the discretized kernel that couples them has a cut—off
at a finite distance.
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