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The Fingering Instability (Stern, 1960)

Convection with two scalars:
Salinity (less-diffusing) is destabilizing.

Temperature (most-diffusing) is stabilizing.
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Density is transported up-gradient! (light fluid becomes
lighter, heavy fluid becomes heavier)



Boussinesq Equations

∂u
∂t

+ u · ∇u = −∇p + Pr Le

RS (RρT − S)︸ ︷︷ ︸
B

ẑ +∇2u


∂T

∂t
+ u · ∇T = Le∇2T

∂S

∂t
+ u · ∇S = ∇2S

∇ · u = 0

where

Pr =
ν

κT
, Le =

κT

κS
, RT =

gα∆T H3

νκS
, RS =

gβ∆S H3

νκS

Density Ratio: Rρ =
RT

RS

Necessary Condition for Fingering Instability: 1 < Rρ < Le



Linear Instability: Stern’s length
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I Small things lose T

and S too fast and
viscosity wins

I Big things don’t lose
T efficiently enough

I There’s an optimal
scale where T is lost,
S is retained, and
growth of
perturbations is
maximized.

Stern’s length scale:

l =

(
κTνH

gα∆T

)1/4



A Look Inside the Box: From Fingers to Blobs

Salinity, RS = 109
Buoyancy, RS = 1011



Non-Gaussian Statistics
J. von Hardenberg, F.P., Phys. Lett. A, 2010. Owes to V. Yakhot, PRL, 63, (1989).

3D simulation at RS = 1011,
Rρ = 1.2. 2D is the same.

Using a technique due to Yakhot, one may
give the following exact expression for the
PDF of the buoyancy fluctuations around
the horizontal average.

P(X ) =
E(χB |0)P(0)

E(χB |X )
exp

[
−
ˆ X

0

E(FB |y)

y E(χB |y)
dy

]

Where:

X :=
B′

〈B′2〉
1
2

F :=
wB′

〈wB′〉
; χB :=

∇B′ ·
(

(Le − 1)Rρ∇T ′ +∇B′)〈
∇B′ ·

(
(Le − 1)Rρ∇T ′ +∇B′)〉



Finger Reynolds Number from Low-RS Simulations

The Reynolds number of a typical blob increases with RS !

Sooner or later it will become non-Stokesian.

What will happen then?



Salinity Fluctuations at Three Successive Times
(RS = 1013; Rρ = 1.025)
F.P., J. von Hardenberg, Phys. Rev. Lett., 2012.



Growth of Horizontal Scales with Time
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An example of ocean staircases
Data taken during the Salt Fingers Tracer Release Experiment
(2001). Courtesy of R. Schmitt, W.H.O.I.



Stirring a Stable Gradient
No D-D, just salinity plus a slowly moving rod

Experiments: Park et al. JFM (1994); Ruddick et al. Deep-Sea Res. (1989); Thorpe,

JFM (1982).

Theory: Balmforth et al. JFM (1998); Postmentier, JPO (1977); Phillips, Deep-Sea

Res. (1972)



Postmentier’s Explanation

Bz

Negative
Diffusion

Bz
F(     )

Positive Diffusion

Conservation Law:

∂B

∂t
= −∂F (Bz)

∂z

⇓

∂B

∂t
= −∂F (Bz)

∂Bz︸ ︷︷ ︸
DiffusionCoefficient

∂2B

∂z2

(Yes, this is the same idea as
the Perona-Malik’s anisotropic dif-
fusion for image denoising!)



Clusters Produce Non-Monotonic Fluxes
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I B̃z < 0: top-heavy
overturning.

I Small B̃z > 0: clusters
flux downgradient,
fingers upgradient.

I Intermediate B̃z > 0:
fingers dominate.

I Large B̃z > 0: thin layer
cut-off.

...beautiful but not good enough.
Postmentier’s equation has an ultraviolet catastrophe. Ouch!



A Theory for Staircase Formation
F.P., J. von Hardenberg, Acta Appl. Math. (2014). Owes to Balmforth et al. JFM (1998)

Energy equation

ēt =
(
l ē1/2 ēz

)
z

+ C︸︷︷︸
Potential
Energy

Conversion

− D︸︷︷︸
Kinetic
Energy

Dissipation

Buoyancy equation

T̄t = − (FT )z
S̄t = − (FS )z

}
⇒ b̄t = − [(γRρ − 1)FS ]z , γ =

FT

FS

But the fluxes are unknown! ...so I make a minimal recipe:

b̄t = −

(
F︸︷︷︸

Constant,
up− gradient,
fingers flux

−l ē1/2b̄z︸ ︷︷ ︸
Down-gradient
mechanical
stirring

)
z



C is the buoyancy flux. D is a recipe.

Mechanical energy balance of the fluid:

d
dt

ˆ 1

0

(
ē − zb̄

)︸ ︷︷ ︸
Kinetic +
Potential
Energy

dz = −
ˆ 1

0
D dz

⇓

C = Buoyancy Flux

On dimensional grounds:

D = Aēb̄
1/2
z

(but there could have been a dependence on l , too)



Mixing length: the key ingredient for staircase formation

The (non–constant) diffusivity of both kinetic energy and buoyancy is expressed
as the product of a mixing length and a scale of velocity as

l ē1/2

Mixing Length:

l(ē) = ls +
(lb − ls)

1 + exp(−η(ē1/2 − µ))

is assumed small at low energies (pure fingering) and large at high energies
(clusters and well-mixed zones).



The model’s equations
See Coclite et al. (submitted, 2018) for existence of global weak solutions

{
b̄t = −

(
F − l ē1/2b̄z

)
z

ēt =
(
l ē1/2 ēz

)
z

+ F − l ē1/2b̄z − Aēb̄
1/2
z

Here F is a positive constant!
Too simplistic for a real-life model, but this is just a
proof-of-concept.



Steady Solutions
...and guess when they’re stable and when they’re not!

We seek solutions of the form(
b̄, ē

)
=
(
(Rρ − 1)z , U2)

and we obtain
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Linear stability analysis of the staircase model
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Fully Non-Linear Solutions
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Conclusions

I A two–equation embodiment of Postmentier’s non–monotonic
fluxes idea produces staircase–like profiles.

I Well-posedness of the model is under study (but can be
achieved with additional restrictions on diffusive
parameterization).

I Much remains to be done, in particular on the long–time
evolution of steps.



A Yakhot-Like Theory I
J. von Hardenberg, F.P., Phys. Lett. A, 2010. Owes to V. Yakhot, PRL, 63, (1989).

Split fluctuations-averages

T (x , y , z , t) = T ′(x , y , z , t) + GT z

S(x , y , z , t) = S ′(x , y , z , t) + GSz

B(x , y , z , t) = B ′(x , y , z , t) + GBz

Equation for buoyancy fluctuations (not closed: contains T ′)

DB ′

Dt
= (Le − 1)Rρ∇2T ′ +∇2B ′ − wGB



A Yakhot-Like Theory II

Multiply by B ′2n−1, time-volume average 〈·〉, integrating by parts
and obtain

(2n − 1)
〈
X 2n−2χB

〉
=
〈
X 2n−2FB

〉
where

X :=
B ′

〈B ′2〉
1
2

; FB :=
wB ′

〈wB ′〉 ; χB :=
∇B ′ · ((Le − 1)Rρ∇T ′ +∇B ′)
〈∇B ′ · ((Le − 1)Rρ∇T ′ +∇B ′)〉

Important: maximum principle for T , S =⇒ X is bounded
(no worries about convergence).



The PDF of Buoyancy Fluctuations

Assume space-time averages are the same as ensemble averages.
P p.d.f. of X
E(·|X ) expected value of a quantity, given X .

Then
(2n − 1)

〈
X 2n−2χB

〉
=
〈
X 2n−2FB

〉
⇓

P(X ) =
E (χB |0)P(0)

E (χB |X )
exp
[
−
ˆ X

0

E (FB |y)

y E (χB |y)
dy

]



Symmetries of E (χB |X ) and E (FB |X )

P(X ) =
E (χB |0)PX (0)

E (χB |X )
exp
[
−
ˆ X

0

E (FB |y)

y E (χB |y)
dy

]

E (χB |X ) is even, and E (χB |0) 6= 0. Expanding around X = 0:

E (χB |X ) = c + · · ·

E (FB |X ) is even, and E (FB |0) = 0. Expanding around X = 0:

E (FB |X )

X
= X + · · ·

N.B. if the · · · are negligible for large X we get a gaussian
distribution!



Conditional Fluxes of Buoyancy Fluctuations
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B ′ ∝ w

But the flux is

FB ∝ B ′w

For homogeneous blobs:

E (FB |X ) ∝ X 2
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Conditional Dissipation of Buoyancy Fluctuations
see also: F.P. J. von Hardenberg proc. 15th WASCOM conference.
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Empirical fit:

E (χB |X ) = k +
aX 2

1 + b|X |

Linear tails at high RS !



Pdf of Buoyancy Fluctuations
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