
The Mutual Interplay of
Stirring, Mixing, Growing

(and what it means for biogeochemical modeling)

Francesco Paparella1

1Division of Sciences, NYUAD.

MIT/WHOI Joint Program Summer Reading Group
The Internet, August 14th, 2020



Chlorophyll from Space

NASA - Modis



Zooming In...

Rudnick & Ferrari - Science (1999)



More Zooming...

Nash, Caldwell, Zelman & Moum - J. Atmos Ocean. Tech. (1999)

Assuming a perpetual Moore’s law...
...when you’ll be able to explicitly resolve all those scales in your

computer model?



Microstructure of Chlorophyll

Mandal et al. - Frontiers in Marine Sciences (2019)

Yamazaki’s high–resolution fluorescence profilers show amazing
microscale fluctuations.



Does it matter?

Not so much for a passive scalar.

∂c

∂t
+ u · ∇c = D∇2c

under the low–pass filter ` the equation becomes

∂c`

∂t
+ u` · ∇c` = D(c`)︸ ︷︷ ︸

diffusion−like

operator

that represents the

unresolved dynamics



Biogeochemical models

∂c1
∂t

+ u · ∇c1 = f1(c1, c2, · · · , cn)+D1∇2c1

...
∂cn

∂t
+ u · ∇cn︸ ︷︷ ︸

advection

= fn(c1, c2, · · · , cn)︸ ︷︷ ︸
reaction

+Dn∇2cn︸ ︷︷ ︸
diffusion

But the trouble is ....

f (c1, c2, · · · , cn)
`︸ ︷︷ ︸

what we would

like to know

6= f (c1
`, c2

`, · · · , cn
`)︸ ︷︷ ︸

what we can

compute with an

Eulerian code



A simple example
From Paparella, Popolizio - J. Comp. Phys. (2018)

u = (−∂yψ, ∂xψ); ψ = sin(x) sin(y)

∂c1
∂t

+ u · ∇c1 = −1
5
c1c2 + D∇2c1

∂c2
∂t

+ u · ∇c2 = +
1
5
c1c2 + D∇2c2



Two distinct initial conditions

Resource Consumer

Initial Condition A
————————————————————————————

Initial Condition B



Average consumer as a function of time

Pseudo–spectral simulations on grids:(
128 · 2k

)
×

(
128 · 2k

)
, k = 0, 1, · · · , 5

Diffusivities:

D = 10−3 · 2−2k
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Let’s talk about iron...



A Trivially Simple Iron Model

{
Ċ = rC

Ḟ = −ΦrC

C - carbon concentration (mg/m3)
F - iron concentration (µmol/m3)
r - growth rate
φ - iron quota

Initial concentrations C0 and F0.
Model applies until F = 0.
At that point you have the follow-
ing carbon concentration:

Cend = C0 +
F0

Φ

Trivially, the initial F0 amount of iron has turned into a F0/Φ

amount of carbon.



Let’s add some mortality/respiration losses

{
Ċ = rC −mC

Ḟ = −ΦrC

C - carbon concentration (mg/m3)
F - iron concentration (µmol/m3)
r - growth rate
m - mortality / respiration rate
φ - iron quota

Initial concentrations C0 and F0.
Model applies until F = 0.
At that point you have the follow-
ing carbon concentration:

Cend = C0 +
(r −m)

r︸ ︷︷ ︸
efficiency

F0

Φ

Ah! Now the efficiency of the conversion of F into C depends on
the growth and mortality rates...



What happens if the efficiency depends on the iron concentration?



Three fish tanks
(But no fish, just phytoplankton and iron)

I Let’s say that the growth rate is r1 if F > Ft , and r2
otherwise. Take 0 < m < r2 < r1.

I Tank A starts with F
(A)
0 = 3/2FT

I Tank B starts with F
(B)
0 = 1/2FT

I Tank C starts with F
(C)
0 = FT =

(
F

(A)
0 + F

(B)
0

)
/2

I In all tanks the initial carbon is C0



End carbon of the three tanks
Average end carbon of tank A and tank B:

1
2

(
C

(A)
end + C

(B)
end

)
= C0 +

1
4

r1 −m

r1︸ ︷︷ ︸
high efficiency

+
3
4

r2 −m

r2︸ ︷︷ ︸
low efficiency

 FT

Φ

End carbon of tank C:

C
(M)
end = C0 +

r2 −m

r2︸ ︷︷ ︸
low efficiency

FT

Φ

Difference:

1
2

(
C

(A)
end + C

(B)
end

)
− C

(M)
end =

1
4

(r1 − r2)m

r1r2

FT

Φ

Taking r2,m really small, and r1really big, this can be made as big as you wish!



If tank A and tank B were connected, the difference with tank C
would be smaller...

The largest the fluxes between A and B the closest their average
end carbon would be to that of tank C



Something a little more realistic

Ċ = r
F

F + Fh
f EC︸ ︷︷ ︸

growth

− bC︸︷︷︸
respiration

− aC 2

Ch + C︸ ︷︷ ︸
crowding

Ḟ = −Φr
F

F + Fh
f EC︸ ︷︷ ︸

growth

+ Λf R︸︷︷︸
remineralization

Ṙ = Φ
aC 2

Ch + C︸ ︷︷ ︸
crowding

− Λf R︸︷︷︸
remineralization

R is detritus iron

f E = 1 − e
− Epar

E0(t) light availability, E0(t) depends on season and ml depth.



Measured Michaelis-Menten iron–limited growth

From Timmermans et al., Limnol. Oceanogr. (2004)

The parameters r , Fh of the
growth term

r
F

F + Fh

are taken from laboratory mea-
surements of different diatom
genera.



Fragilariopsis kerguelensis
Ooops... not much of a difference! Fh = 0.19µmol/m3



Actinocyclus sp.
Staggering! Fh = 0.34µmol/m3



Actinocyclus sp.
Look at the colorbar scale



Conclusions

For strongly limited critters, the productivity obtained with the
average nutrient will be horribly different than the average
productivity of a patchy nutrient distribution.



Lagrangians for Advection-Reaction-Diffusion Equations

∂c1
∂t

+ u · ∇c1 = f1(c1, c2, · · · , cn)+D1∇2c1

...
∂cn

∂t
+ u · ∇cn︸ ︷︷ ︸

advection

= fn(c1, c2, · · · , cn)︸ ︷︷ ︸
reaction

+Dn∇2cn︸ ︷︷ ︸
diffusion

If there where only advection and reaction, a Lagrangian method
would be very appropriate



A Lagrangian Method Is Perfect for Advection + Reaction

Method of characteristics! Uniformly sample the domain with
particles having position {x i (t)} and concentration {c i (t)},
i = 1, · · · ,N. 

ẋ i = u(x i , t)

ċ1;i = f1(c1;i , . . . , cn;i )
...

ċn;i = fn(c1;i , . . . , cn;i )

...how do I add diffusion?



Split-Step Approach: Characteristics + Diffusive Coupler

Evolve from t to t + ∆t the o.d.e.:

ẋ i = u(x(t), t)

ċ i = f (c i )

then express the concentration of the i − th particle as a function
D (the diffusive coupler) of the concentrations of all the other
particles

c̃ i = D(c1, · · · , cN)

Repeat using {c̃i} as initial conditions for integrating the o.d.e.s
from t + ∆t to t + 2∆t, etc.



What Do I Wish From My Diffusive Coupler?

I Conservation of mass.
I Respect the maximum principle (or at least positivity).
I Destroy variance at a tunable rate.

Please note: Accuracy is NOT in the list. The Laplacian is a (bad)
parameterization, anyway.



A particle coupler
An attempt to discretize derivatives on an unstructured and
time-changing mesh:

ci (t + ∆t) = ci (t)−
∑

j

qjici (t) +
∑

j

qijcj (t)

Properties satisfied if qij = qij ≥ 0 and 0 <
∑

j qij < 1.



A recipe for qij

d = 1, 2, 3 is the dimensionality of the space

qij =


p

(4πD∆t)
d
2

exp
(
−d2(x i ,x j )

4D∆t

)
, d(x i , x j ) < m

√
2D∆t

0, d(x i , x j ) ≥ m
√
2D∆t

p, D are free parameters that determine the diffusivity of the
method.



First test: dissipation of scalar variance in Rhines-Young flow

∂c

∂t
+ y

∂c

∂x
= D∇2c

Initial condition

c(x , y , 0) = cos(x)

Has a simple analytical solution!



First test: dissipation of scalar variance in Rhines-Young flow



The Fitted Diffusion Coefficient



Back to Chemistry: 40962 pseudo–spectral vs 1282 particles



Back to Chemistry: 40962 pseudo–spectral vs 1282 particles

The dots are Lagrangian simulations with parameters tuned to
match the diffusivity of the corresponding Eulerian simulation, but
always using 1282 particles.
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