The Mutual Interplay of Stirring, Mixing, Growing (and what it means for biogeochemical modeling)

Francesco Paparella¹

¹Division of Sciences, NYUAD.

MIT/WHOI Joint Program Summer Reading Group The Internet, August 14th, 2020

KORKA BRADE KORA

Chlorophyll from Space

NASA - Modis

メロト 大部分 メミト メミト

 \Rightarrow

 $2Q$

Zooming In...

Rudnick & Ferrari - Science (1999)

イロメ イ部メ イ君メ イ君メ

 \equiv 940

More Zooming...

Nash, Caldwell, Zelman & Moum - J. Atmos Ocean. Tech. (1999)

Assuming a perpetual Moore's law... ...when you'll be able to explicitly resolve all those scales in your computer model?

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z})

 \Rightarrow

Microstructure of Chlorophyll

Mandal et al. - Frontiers in Marine Sciences (2019)

Yamazaki's high–resolution fluorescence profilers show amazing microscale fluctuations.

Does it matter?

Not so much for a passive scalar.

$$
\frac{\partial c}{\partial t} + \boldsymbol{u} \cdot \nabla c = D \nabla^2 c
$$

under the low–pass filter $^{-\ell}$ the equation becomes

$$
\frac{\partial \overline{c}^{\ell}}{\partial t} + \overline{\boldsymbol{u}}^{\ell} \cdot \nabla \overline{c}^{\ell} =
$$

| {z } diffusion−like

operator

that represents the

unresolved dynamics

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

Biogeochemical models

$$
\frac{\partial c_1}{\partial t} + \mathbf{u} \cdot \nabla c_1 = f_1(c_1, c_2, \cdots, c_n) + D_1 \nabla^2 c_1
$$

\n
$$
\vdots
$$

\n
$$
\frac{\partial c_n}{\partial t} + \underbrace{\mathbf{u} \cdot \nabla c_n}_{\text{advection}} = \underbrace{f_n(c_1, c_2, \cdots, c_n)}_{\text{reaction}} + \underbrace{D_n \nabla^2 c_n}_{\text{diffusion}}
$$

But the trouble is

KORKA BRADE KORA

A simple example From Paparella, Popolizio - J. Comp. Phys. (2018)

 $\mathbf{u} = (-\partial_{\mathbf{v}}\psi, \partial_{\mathbf{x}}\psi); \psi = \sin(x)\sin(y)$

$$
\frac{\partial c_1}{\partial t} + \mathbf{u} \cdot \nabla c_1 = -\frac{1}{5}c_1c_2 + D\nabla^2 c_1
$$

$$
\frac{\partial c_2}{\partial t} + \mathbf{u} \cdot \nabla c_2 = +\frac{1}{5}c_1c_2 + D\nabla^2 c_2
$$

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

Two distinct initial conditions

Average consumer as a function of time

Pseudo–spectral simulations on grids:

$$
\left(128\cdot 2^k\right)\times \left(128\cdot 2^k\right),\quad k=0,1,\cdots,5
$$

Diffusivities:

$$
D=10^{-3}\cdot 2^{-2k}
$$

 $2Q$

Þ

Let's talk about iron...

K ロ X K 個 X X R X X X R X X R B

A Trivially Simple Iron Model

 $\int \dot{C} = rC$ \dot{F} = $-\Phi rC$

 C - carbon concentration (mg/m³) F - iron concentration (μ mol/m³) r - growth rate ϕ - iron quota

Initial concentrations C_0 and F_0 . Model applies until $F = 0$. At that point you have the following carbon concentration:

KORKA BRADE KORA

$$
C_{end} = C_0 + \frac{F_0}{\Phi}
$$

Trivially, the initial F_0 amount of iron has turned into a F_0/ϕ amount of carbon.

Let's add some mortality/respiration losses

$$
\begin{cases}\n\dot{C} = rC - mC \\
\dot{F} = -\Phi rC\n\end{cases}
$$

- C carbon concentration (mg/m³)
- F iron concentration (μ mol/m³)
- r growth rate
- m mortality / respiration rate
- ϕ iron quota

Initial concentrations C_0 and F_0 . Model applies until $F = 0$. At that point you have the following carbon concentration:

KORKA BRADE KORA

$$
C_{end} = C_0 + \underbrace{\frac{(r-m)}{r}}_{\text{efficiency}} \frac{F_0}{\Phi}
$$

Ah! Now the efficiency of the conversion of \overline{F} into C depends on the growth and mortality rates...

What happens if the efficiency depends on the iron concentration?

Three fish tanks

(But no fish, just phytoplankton and iron)

- In Let's say that the growth rate is r_1 if $F > F_t$, and r_2 otherwise. Take $0 < m < r_2 < r_1$.
- \blacktriangleright Tank A starts with $F_0^{(A)} = 3/2F_T$
- \blacktriangleright Tank B starts with $F_0^{(B)} = 1/2F_T$
- \blacktriangleright Tank C starts with $F_0^{(C)} = F_T = \left(F_0^{(A)} + F_0^{(B)} \right)$ $\binom{B}{0}$ /2

KORKA BRADE KORA

In all tanks the initial carbon is C_0

End carbon of the three tanks

Average end carbon of tank A and tank B:

$$
\frac{1}{2}\left(C_{end}^{(A)}+C_{end}^{(B)}\right)=C_0+\left(\frac{1}{4}\underbrace{\frac{r_1-m}{r_1}}_{high\text{ efficiency}}+\frac{3}{4}\underbrace{\frac{r_2-m}{r_2}}_{low\text{ efficiency}}\right)\frac{F_T}{\Phi}
$$

End carbon of tank C:

$$
C_{end}^{(M)} = C_0 + \underbrace{\frac{r_2 - m}{r_2}}_{\text{low efficiency}} \underbrace{\frac{F_T}{\Phi}}
$$

Difference:

$$
\frac{1}{2}\left(C_{end}^{(A)} + C_{end}^{(B)}\right) - C_{end}^{(M)} = \frac{1}{4}\frac{(r_1 - r_2)m}{r_1r_2}\frac{F_T}{\Phi}
$$

Taking r_2 , *m* r[e](#page-14-0)ally small, and r_1 really big, this can b[e m](#page-14-0)[ad](#page-16-0)e [as](#page-33-0) [big](#page-0-0) as [yo](#page-0-0)[u](#page-33-0) [wis](#page-0-0)[h!](#page-33-0) 2990 If tank A and tank B were connected, the difference with tank C would be smaller...

The largest the fluxes between A and B the closest their average end carbon would be to that of tank C

K ロ ▶ K 레 ▶ K 호 ▶ K 호 ▶ 『 호 │ ⊙ ٩. ①

Something a little more realistic

 R is detritus iron $f^E=1-e^{-{E_{par}}\over{E_{\bf 0}(t)}}$ light availability, $E_{\bf 0}(t)$ depends on season and ml depth.

Measured Michaelis-Menten iron–limited growth

Fig. 1. Growth rates (d-1) and nonlinear Monod fit (line) in cultures of (A) Actinocyclus sp., (B) Thalassiosira sp., (C) F. kerguelensis, and (D) C. pennatum in relation to Fe_{nn} concentrations (nmol L⁻¹). For cultures of C. pennatum, results of duplicate incubations are given with different symbols.

From Timmermans et al., Limnol. Oceanogr. (2004)

The parameters r , F_h of the growth term

> $r \frac{F}{F}$ $F + F_h$

are taken from laboratory measurements of different diatom genera.

モニー・モン イヨン イヨー

 Ω

Fragilariopsis kerguelensis Ooops... not much of a difference! $F_h = 0.19 \mu$ mol/m³

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

Actinocyclus sp. Staggering! $F_h = 0.34 \mu$ mol/m³

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q

Actinocyclus sp. Look at the colorbar scale

Conclusions

For strongly limited critters, the productivity obtained with the average nutrient will be horribly different than the average productivity of a patchy nutrient distribution.

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

Lagrangians for Advection-Reaction-Diffusion Equations

$$
\frac{\partial c_1}{\partial t} + \mathbf{u} \cdot \nabla c_1 = f_1(c_1, c_2, \cdots, c_n) + D_1 \nabla^2 c_1
$$

$$
\frac{\partial c_n}{\partial t} + \underbrace{\mathbf{u} \cdot \nabla c_n}_{advection} = \underbrace{f_n(c_1, c_2, \cdots, c_n)}_{reaction} + \underbrace{D_n \nabla^2 c_n}_{diffusion}
$$

If there where only advection and reaction, a Lagrangian method would be very appropriate

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

A Lagrangian Method Is Perfect for Advection $+$ Reaction

Method of characteristics! Uniformly sample the domain with particles having position $\{x_i(t)\}\$ and concentration $\{c_i(t)\}\$, $i=1,\cdots,N$.

$$
\begin{cases}\n\dot{\mathbf{x}}_i &= \mathbf{u}(\mathbf{x}_i, t) \\
\dot{c}_{1;i} &= f_1(c_{1;i}, \ldots, c_{n;i}) \\
\vdots \\
\dot{c}_{n;i} &= f_n(c_{1;i}, \ldots, c_{n;i})\n\end{cases}
$$

KORKA BRADE KORA

...how do I add diffusion?

Split-Step Approach: Characteristics + Diffusive Coupler

Evolve from t to $t + \Delta t$ the o.d.e.:

 $\dot{\mathbf{x}}_i = \mathbf{u}(\mathbf{x}(t), t)$ $\dot{\mathbf{c}}_i = \mathbf{f}(\mathbf{c}_i)$

then express the concentration of the $i - th$ particle as a function D (the diffusive coupler) of the concentrations of all the other particles

 $\tilde{c}_i = \mathcal{D}(\boldsymbol{c}_1, \cdots, \boldsymbol{c}_N)$

Repeat using $\{\tilde{c}_i\}$ as initial conditions for integrating the o.d.e.s from $t + \Delta t$ to $t + 2\Delta t$, etc.

What Do I Wish From My Diffusive Coupler?

- \blacktriangleright Conservation of mass
- \blacktriangleright Respect the maximum principle (or at least positivity).
- \blacktriangleright Destroy variance at a tunable rate.

Please note: Accuracy is NOT in the list. The Laplacian is a (bad) parameterization, anyway.

KORKA BRADE KORA

A particle coupler

An attempt to discretize derivatives on an unstructured and time-changing mesh:

$$
c_i(t + \Delta t) = c_i(t) - \sum_j q_{ji} c_i(t) + \sum_j q_{ij} c_j(t)
$$

Properties satisfied if $\overline{q_{ij}} = \overline{q_{ij}} \geq 0$ and $0 < \sum_{j} \overline{q_{ij}} < 1.$

A recipe for q_{ij}

 $d = 1, 2, 3$ is the dimensionality of the space

$$
q_{ij} = \begin{cases} \frac{p}{(4\pi D\Delta t)^{\frac{d}{2}}} \exp\left(-\frac{d^2(x_i,x_j)}{4D\Delta t}\right), & d(\mathbf{x}_i,\mathbf{x}_j) < m\sqrt{2D\Delta t} \\ 0, & d(\mathbf{x}_i,\mathbf{x}_j) \ge m\sqrt{2D\Delta t} \end{cases}
$$

KID KORK KERKER E KORCH

 p , D are free parameters that determine the diffusivity of the method.

First test: dissipation of scalar variance in Rhines-Young flow

$$
\frac{\partial c}{\partial t} + y \frac{\partial c}{\partial x} = D \nabla^2 c
$$

Initial condition

 $c(x, y, 0) = cos(x)$

Has a simple analytical solution!

First test: dissipation of scalar variance in Rhines-Young flow

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ \equiv 2990

The Fitted Diffusion Coefficient

 299 **K ロ ト K 御 ト K 君 ト K 君 ト** 准

Back to Chemistry: 4096² pseudo–spectral vs 128² particles

Back to Chemistry: 4096^2 pseudo–spectral vs 128^2 particles

The dots are Lagrangian simulations with parameters tuned to match the diffusivity of the corresponding Eulerian simulation, but always using $128²$ particles.

 2990

K ロ ≯ K 何 ≯ K ヨ ≯