
Financial Contagion Revisited

Franklin Allen

Imperial College London

SW7 2AZ

Douglas Gale

New York University

New York, NY 10003

June 2017



1 Introduction

The financial crisis of 2007-9 has demonstrated the importance of dislocation

in the financial sector as a cause of economic fluctutations. The prevalence

of financial crises has led many to conclude that the financial sector is unusu-

ally susceptible to shocks. One theory is that small shocks, which initially

only affect a few institutions or a particular region of the economy, spread

by contagion to the rest of the financial sector and then infect the larger

economy. There is a growing literature on this phenomenon. Excellent sur-

veys are provided by Glasserman and Young (2016) and Benoit et al. (2017).

In this paper we focus on contagion through interbank markets. Allen and

Gale (2000) developed a stylized model with simple networks of four banks

to consider the trade-off between risk sharing through interbank markets and

the possibility of contagion originating from small shocks. They show that

complete networks where every bank is connected with every other bank are

more robust than incomplete markets where not all banks are connected.

Recent literature has focused on more general models and a range of sizes

of shocks. Elliott, Golub and Jackson (2014) consider the role of integra-

tion and diversification. The former is concerned with how much banks rely

on other banks while the latter is the number of banks a particular bank’s

liabilities are spread over. In the context of different models, Gai and Ka-

padia (2010) and Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015) show that

connected networks where all banks are connected to each other, at least

indirectly, are more robust to shocks because of risk sharing than networks

where they are not all connected. However, large shock are more likely to

make all institutions fail in in connected networks.

This work is related to Joseph Stiglitz’s career-long interest in finance

and banking (see, e.g., Stiglitz (1969), (1972a,b), Cass and Stiglitz (1972),

Stiglitz (1973), Grossman and Stiglitz (1980), Stiglitz and Weiss (1981), and

Hellmann, Murdoch and Stiglitz (2000)). In particular, it is related to his

recent work on contagion and financial networks (Battiston et al. (2007,

2012a, b) and Battiston et al. (2016)).

In this paper, we again focus on the role of small shocks in bringing down

the financial system through interbank market connections. We are able

to show that general complete networks are more robust than incomplete

networks. As before, we take as our starting point the model presented in

Allen and Gale (1998). The assumptions about technology and preferences

have become standard in the literature since the appearance of the Diamond
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and Dybvig (1983) model. There are three dates  = 0 1 2 and at the first

date there is a large number of identical consumers, each of whom is endowed

with one unit of a homogeneous consumption good. At the beginning of the

second date, the consumers learn whether they are early consumers, who only

value consumption at date 1, or late consumers, who only value consumption

at date 2. Uncertainty about their preferences creates a demand for liquidity.

In order to provide for future consumption, consumers have to save their

endowment. Two assets are available for this purpose, a safe, short-term

asset and a risky, long-term asset. We refer to these as the short and long

assets, respectively. Uncertainty about their preferences creates a demand

for liquidity. The long asset has a higher return, but it pays off only in the

last period and is therefore not useful for providing consumption to early

consumers.

Banks have a comparative advantage in providing liquidity. At the first

date, consumers deposit their endowments in the banks, which invest them

in the long and short asset. In exchange, depositors are promised a fixed

amount of consumption at each subsequent date, depending on when they

choose to withdraw. Early consumers withdraw at the second date while

late consumers withdraw at the third date. The banking sector is perfectly

competitive, so banks offer risk-sharing contracts that maximize depositors’

ex ante expected utility, subject to a zero-profit constraint.

Bank runs occur in some states because the returns to the risky asset are

so low that the banks cannot make the payments promised to their depositors.

Depositors also have access to the short asset. If late consumers anticipate

that their payout at date 2 will be less than depositors will receive at date

1 they will withdraw early, pretending to be early consumers, and save the

proceeds using the short asset until the final date.

In Allen and Gale (1998), the returns to the risky asset are perfectly cor-

related across banks, so a low return causes insolvency in all banks simulta-

neously. A bad shock is thus tantamount to an economy-wide financial crisis.

In the present paper, by contrast, we are explicitly interested in constructing

a model in which small shocks lead to large effects by means of contagion.

The question we address is whether and under what circumstances a shock

within a single (small) sector can spread to other sectors and lead to an

economy-wide financial crisis by contagion.

The economy consists of a number of sectors or regions. For simplicity,

it is assumed that the long asset can be liquidated at date 1 or at date 2.

The risk-free returns are   1 and   1, respectively. The number of early

2



and late consumers in each region is assumed to be random. These liquidity

shocks are imperfectly correlated across regions, thus providing the potential

for insurance against the liquidity shocks. Regions with high liquidity shocks

can obtain liquidity from low consumers. One way to provide this liquid-

ity insurance is by exchanging deposits. Suppose that region  has a large

number of early consumers when region  has a low number of early con-

sumers, and vice versa. Since regions  and  are otherwise identical, their

deposits are perfect substitutes and the banks can exchange deposits at the

first date without affecting their net wealth. After the liquidity shocks are

observed, one region will have a high demand for liquidity and one will have

a low demand. Suppose region  has a higher than average number of early

consumers. Then banks in region  can meet their obligations by liquidating

some of their deposits in the banks of region . Region  is happy to oblige,

because it has an excess supply of liquidity in the form of the short asset.

Later, banks in region  will want to liquidate the deposits they hold in the

banks of region  to meet the above-average demand from late consumers in

region . The banks in region  can meet this demand because they have

a below-average number of late consumers, that is, an excess supply of the

long asset.

In general, whenever the liquidity shocks in different regions are less than

perfectly correlated, banks can improve the risk sharing they offer to depos-

itors through cross holdings of deposits. In certain circumstances, it can be

shown that complete risk sharing can be achieved in this way: as long as all

the regions are connected in a particular way and there is no aggregate un-

certainty across all regions, then the first-best allocation can be decentralized

through a competitive banking sector.

Inter-regional cross holdings have another role: they create an interdepen-

dency among the regions that is one of the ingredients needed for financial

contagion. Financial contagion is a complicated phenomenon and it requires

several pre-conditions. The first one has already been mentioned, the finan-

cial interconnectedness that arises from cross holdings of deposits or other

financial claims. The second element is that there must be an aggregate

shortage of liquidity. To understand what this means, we need to be more

precise about the conditions of individual banks. We distinguish three condi-

tions in which banks can find themselves at the second date, after uncertainty

has been resolved. A bank is solvent if the demand for withdrawals is less

than the value of liquid assets (the short asset plus net holdings of deposits in

other banks). A bank is insolvent if it can meet the demand for withdrawals,
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but only by liquidating the long asset at date 1. It can reduce the payout to

late consumers as long as it pays them as much as the early consumers (oth-

erwise there will be a run). The value of the long asset that can be liquidated

at the second date, consistently with the incentive constraint, is called the

bank’s buffer. This buffer, added to the value of liquid assets, is the maxi-

mum that the bank can provide in the second period, without provoking a

run. Bankruptcy occurs when the demand for withdrawals is greater than

the sum of the liquid assets and the buffer. Then the late consumers run and

all the creditors cash in their claims. The bank is forced to liquidate all its

assets and still cannot meet its promised payments.

Banks try to avoid insolvency, because liquidating the long asset reduces

the value of the bank. Instead of getting a return of  per unit at date 2,

they get a return of  per unit at date 1. As long as the bank has more of

the short asset than it needs, it is happy to redeem its deposits by paying

out the short asset. When the bank does not have an excess supply of

the short asset, it tries to meet any shortfall by liquidating deposits in other

banks. The problem arises when there is a global excess demand for the short

asset. Cross holdings of deposits can be used to redistribute excess supplies

of the short asset among regions but they cannot they cannot increase the

total amount of the short asset in existence at date 1. So, when there is

an economy-wide excess demand for the short asset, it can only be met by

liquidating the long asset, but banks will only do this if they are forced to

do so, that is, if the demand for withdrawals is greater than the liquid assets

the bank holds.

Suppose that the global excess demand for liquidity is attributable to

an extremely high demand for liquidity (number of early consumers) in one

region. While the excess demand for liquidity may be small by comparison

to the entire economy, it may be very large in relation to the region’s assets,

large enough to cause bankruptcy in that region. If the banks in this region

were able to call upon the other regions, by withdrawing the deposits held

in those regions, then it could possibly avoid bankruptcy. But the banks

in other regions do not want to provide liquidity and they can avoid doing

so by using their extra-regional deposits strategically. For example, suppose

that region  has a high demand for liquidity and region  has an average

demand for liquidity. Region  has just enough of the short asset to meet the

demands of its own depositors, without giving anything to banks in region .

The two regions have the same number of extra regional deposits. If region

 tries to liquidate its deposits in region  to get more liquidity, then region
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 will avoid liquidating the long asset by liquidating its claims on banks in

region  instead. These two transactions cancel out, leaving region  no

better off. Even if there are many regions and the pattern of cross holdings

is complicated, the same principle applies. As long as region  is merely

insolvent, it cannot force the other regions to provide liquidity.

Things are different once banks in region  become bankrupt, because

then a deposit in region  is worth less than a deposit in region . If the

banks in various regions simultaneously try to liquidate their cross holdings,

there will be a transfer of value to the bankrupt regions. This spillover is

what allows for the possibility of contagion, but whether contagion occurs or

not depends crucially on the form of connectedness between regions as well

as the other parameters of the model.

If every region is connected to every other region, then there may be no

contagion at all. Suppose that markets are complete, in the sense that a

bank in one region can hold deposits in all other regions. Then bankruptcy

in one region will put pressure on all of the banks. However, if there are

many regions, so that the number of bankrupt banks is small relative to the

total number of banks, the transfer that each region has to make will be small

and that region’s buffer will be big enough to cover the transfer demanded.

As a result, there may be insolvency but no bankruptcy outside the troubled

region.

The impact of insolvency in one region is quite different if markets are

incomplete, in the sense that the banks in one region are able to hold deposits

in only a few of the other regions. In this case, the transfer occasioned by

bank runs in one region fall initially on a few regions outside the initially

troubled region. The total size of the buffer held by these regions may not

be enough to sustain the demands made on it and those regions directly con-

nected to the initially troubled region may be driven into bankruptcy. Once

this happens, it is easier for the contagion to spread. There is now a group

of bankrupt regions, in which the run by depositors has forced the banks

to liquidate all their assets, with a consequent loss in value. Furthermore,

their claims on the remaining solvent regions may be smaller in proportion to

their liabilities than in the original region where the contagion began. This

is because their claims on each other are now of less value. And so it may

be easier, under certain conditions, for the contagion to spread. We provide

conditions under which insolvency will spread to all the regions by contagion

when markets are incomplete, and there would be no contagion if markets

were complete.
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It is important to note the importance of the free rider problem in explain-

ing the difference between complete and incomplete markets. With complete

markets, every bank in every region suffers a loss from the troubled region.

There is no way to avoid paying one’s share. With incomplete markets, the

banks in the troubled region have a direct claim only on the banks in a small

number of regions. The banks in those regions have claims on banks in other

regions and indirectly on all the regions. But as long as the regions are sol-

vent, they can decline to offer liquidity if it means liquidating the long asset.

They do this by liquidating their deposits in other regions instead. The effect

of this policy is to make things worse for the regions that are directly con-

nected to the troubled region, to the point where they too become insolvent.

At that point, some of the regions that refused to provide liquidity find them-

selves on the front line, holding claims on insolvent regions. The attempt to

protect oneself by hoarding liquidity and refusing to liquidate costly assets

proves ultimately self-defeating and makes the situation worse.

The rest of the paper is organized as follows.

2 Liquidity Preference

In this section we describe a simple model in which liquidity preference leads

to a demand for risk-sharing contracts. The framework borrows from the

models in Diamond and Dybvig (1983) and Allen and Gale (1998), with

some significant differences.

Dates. There are three dates  = 0 1 2.

Goods At each date there is a single consumption good, which serves as a

numeraire. This good can also be invested to provide for future consumption.

Each consumer is endowed with one unit of the good at date 0 and nothing

at the subsequent dates.

Assets. There are two types of assets, a liquid asset (the short asset) and an

illiquid asset (the long asset).

• — The short asset is represented by a storage technology. An invest-

ment of one unit of the good at date  = 0 1 yields one unit of

the good at date + 1.
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— Investment in the long asset can only be made at date 0. One

unit of the good invested in the long asset at date 0 produces 

units of the good at date 2. The long asset can be prematurely

liquidated at date 1, in which case it yields a liquidation value of

 per unit. We assume that 0    1  . The decision whether

to liquidate the asset at date 1 or to let it mature at date 2 is

made at the beginning of date 1.

Regions. There are  (ex ante) identical regions  = 1  . In each region

there is a continuum of (ex ante) identical consumers. Let 0    1 be

the random fraction of early consumers in region  and 1− be the random

fraction of late consumers.

Uncertainty. The (finite) set of states of nature is denoted by Ω with generic

element  = (1  ) and probability density ()  0. The random vari-

ables {} are exchangeable: for any permutation  : {1  } → {1  }
and any state  = (1  ), the state 0 defined by putting

0 = ((1)  ())

also belongs Ω and satisfies () = (0). In particular, this implies that the
random variables {} have the same marginal distributions.
Information. All uncertainty is resolved at date 1 when each consumer ob-

serves the state of nature  and learns whether he is an early or late consumer.

A consumer’s type is not observable, so late consumers can always imitate

early consumers.

Preferences. A typical consumer’s utility function in region  can be written

as

 (1 2) =

½
(1) with probability 

(2) with probability 1− 
(1)

where  denotes consumption at date  = 1 2. The period utility func-

tions (·) are assumed to be twice continuously differentiable, increasing and
strictly concave.

Since  is also the probability of being an early consumer at date 1, the

welfare of a consumer at date 0 is given by the expected utilityX
∈Ω

(){(1()) + (1− )(2())}
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The role of banks is to make investments on behalf of consumers. We

assume that only banks can distinguish the genuine long assets from assets

that have no value. Any consumer who tries to purchase the long asset faces

an extreme adverse selection problem, so in practice only banks will hold the

long asset. This gives the bank an advantage over consumers in two respects.

First, the banks can hold a portfolio consisting of both types of assets, which

will typically be preferred to a portfolio consisting of the short asset alone.

Secondly, by pooling the assets of a large number of consumers, the bank

can offer insurance to consumers against their uncertain liquidity demands,

giving the early consumers some of the benefits of the high-yielding risky

asset without subjecting them to the volatility of the asset market.

Free entry into the banking industry forces banks to compete by offering

deposit contracts that maximize the expected utility of the consumers. Thus,

the behavior of the banking industry in each region can be represented by

an optimal risk-sharing problem. The behavior of banks will be discussed

in more detail later, when we describe an equilibrium with decentralized

banking. First, however, we look at a benchmark case where a central planner

makes optimal decisions on behalf of the consumers in all regions.

3 Optimal Risk-Sharing

The planner is assumed to maximize the sum of consumer’s expected utilities.

The planner holds a portfolio ( ) at the end of date  = 0 1, where 
is the total amount of the long asset and  is the total amount of the short

asset. Consumption in region  at date  = 1 2 is denoted by () and

depends on the state, which is revealed at the beginning of date 1. The

general problem can be written as follows:

(P1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max

P

=1

P
∈Ω (){(1()) + (1− )(2())}

s.t. (i) 0 + 0 ≤ ;

(ii)
P

=1 
1() ≤ 0 − 1() + (0 − 1());

(iii)
P

=1(1− )2() ≤ 1() +1();

(iv) 1() ≤ 2()

The objective function is the sum of expected utilities. Conditions (i), (ii)

and (iii) are the budget constraints at dates 0 1 and 2, respectively. The last

constraint, condition (iv), is the incentive constraint, which says that late
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consumers do not wish to imitate early consumers in any region and in any

state.

We begin by studying a modified problem in which the incentive con-

straint (iv) is omitted. The set of attainable consumption allocations {(1 2)}
in the modified problem is convex and the utility function (·) is concave.
It follows from general risk-sharing principles that consumption will be uni-

form across regions and that aggregate consumption depends only on the

aggregate shock ̂ ≡P

=1 
. Then we can write the planner’s problem in a

simpler form, treating consumption (1(̂) 2(̂)) as a function of ̂ and the

date only. With a slight abuse of notation we write (̂) for the probability

of ̂. Then the planner has to choose a total investment 0 in the long asset,

a total investment 0 in the short asset, an amount of the long asset 1(̂) to

carry through to date 2, an amount 1(̂) of the short asset to carry through

to date 2, the consumption 1(̂) of an early consumer, and the consump-

tion 2(̂) of a late consumer in order to maximize the typical consumer’s

expected utility. Note that the initial investment portfolio (0 0) does not

depend on ̂ because the planner does not yet know the value of ̂. However,

all the decisions made at date 1 and date 2 depend on ̂, which is revealed

at the beginning of date 1.

The modified risk-sharing problem can be written in per capita terms as

follows:

(P2)

⎧⎪⎪⎨⎪⎪⎩
max

P
̂ (̂){̂(1(̂)) + (1− ̂)(2(̂))}

s.t. (i) 0 + 0 ≤ ;

(ii) ̂1(̂) ≤ 0 − 1(̂) + (0 − 1(̂));

(iii) (1− ̂)2(̂) ≤ 1(̂) +1(̂)

This problem is easy to solve and it turns out that it satisfies the first-order

condition

0(1(̂)) ≥ 0(2(̂))

If this condition were not satisfied for some aggregate shock ̂, the objective

function could be increased by using the short asset to shift some consump-

tion from early to late consumers. Thus, a solution to (P2) satisfies the

incentive constraints of (P1) and hence must be a solution to (P1). In par-

ticular, this means that a solution to (P1) achieves the first best because the

incentive constraints are non-binding.
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Theorem 1 The planner’s risk-sharing problem (P1) is equivalent to the

modified problem (P2). From this it follows that the solution to the planner’s

problem is first-best efficient, that is, the incentive constraints do not bind.

It is worth noting the special case in which there is no aggregate uncer-

tainty, that is, ̂ is a constant across all states of nature. In that case, the

optimum consumption profile (1 2) is non-stochastic. This case is of par-

ticular interest in the sequel because, when there is no aggregate uncertainty,

the first best can be decentralized using standard (non-contingent) deposit

contracts.

4 Equilibrium

In this section we describe the working of a decentralized banking system.

But first we need to specify the banks’ investments.

The central planner in Section 3 can insure consumers against liquidity

shocks by re-allocating goods across regions. Unlike the central planner,

the banks cannot directly allocate goods across regions. Instead they must

operate through an interbank market in financial claims. The kinds of claims

allowed in this model are deposits, that is, banks can trade bank deposits in

different regions in order to provide insurance against liquidity shocks. Since

deposits are homogenous within a region, we can assume that a bank in

region  is only interested in holding deposits in a representative bank in any

other region . To allow for the possibility that markets are not complete,

we introduce the notion of a market structure.

Market structure: For any region  there is a set of neighboring or adjacent

regions   ⊂ {1   − 1  + 1 }. A bank in region  is allowed to hold

deposits in a representative bank in the regions  ∈   and is not allowed to

hold deposits in banks in regions  ∈  . Consumers can only hold deposits

in a bank in their own region.

The interbank deposit markets is said to be complete if banks are allowed

to hold deposits in all other regions, that is,

  = {1  − 1 + 1 }
for each region . Otherwise the interbank market is said to be incomplete.

Whether the interbank market is complete or incomplete, we always assume

10



that all the regions are connected in an intuitive sense. Region  is directly

connected to region  if  ∈  . Region  is indirectly connected to region  if

there exists a sequence {1  } such that 1 = ,  = , and  is directly

connected to region +1 for  = 1  − 1. Finally, the deposit market is
said to be connected if, for every ordered pair of regions ( ) with  6= ,

region  is (indirectly) connected to region .

In each region  there is a continuum of identical banks. All banks in

a given region are assumed to behave in the same way and all consumers

in a given region are assumed to behave in the same way. Thus, we can

describe an equilibrium in terms of the behavior of a representative bank

and representative consumer (or one early and one late consumer at dates

 = 1 2) in each region.

At the first date, consumers in region  can deposit their endowment of

the consumption good with a bank in exchange for a deposit contract that

promises them either 1 units of the good at date 1 or 

2 units of the good at

date 2. The bank will not necessarily keep this promise and a lot of attention

will be paid in what follows to the rules governing the bank when it is unable

to meet its commitments.

Each bank in region  takes the resources deposited by the consumers and

invests them in a portfolio (0 

0 


0) consisting of 


0 ≥ 0 units of the short

asset, 0 ≥ 0 units of the short asset and an admissible portfolio of deposits
0 ≥ 0 held in other regions. A deposit portfolio for region  is an ( − 1)-
tuple 0 = (1  


−1 


+1  


), where 0 is the number of deposits in

region  held by the bank in region . The portfolio 0 is admissible if 

0 = 0

for any region  that is not adjacent to , that is,  ∈  . Let  denote the

admissible set of portfolios for region .

At the beginning of the second period the state of nature  is observed

and individual consumers learn whether they are early consumers or late

consumers. Late consumers can calculate whether they are better off with-

drawing their deposits immediately or waiting to withdraw their deposits in

the last period. If it is weakly optimal to wait we assume that they do so in

equilibrium; otherwise they withdraw immediately. In the latter case, there

is a run and the bank is forced to liquidate all its assets in order to meet the

demands of the depositors. The banks choose a portfolio (1() 

1() 


1())

of assets to carry forward into the next period.

In the final period, there are no decisions to make. The banks liquidate

all their assets and distribute the proceeds to the depositors who consume

them.
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The equilibrium is defined recursively, beginning with the last period.

4.1 Equilibrium in the Final Period

In the final period, banks liquidate all of their assets and distribute the

proceeds to their depositors. The typical bank in region  has a portfolio

(1() 

1() 


1()) at the beginning of date 2 in state of nature . There

are two cases to be considered, depending on whether or not the banks were

bankrupt at date 2.

When banks go bankrupt, they have to liquidate all of their assets imme-

diately. Thus, if the banks in region  were bankrupt at date 1 then

(1() 

1() 


1()) = 0

The value of the banks’ deposits in that case is 2() = 0.

In the other case, the banks in region  are not bankrupt at date 1, so

they have assets to dispose of at date 2. Since these assets include deposits in

other regions’ banks, we have to take account of the value of deposits in other

regions when calculating the value of deposits in region . In other words,

we have to determine the value of deposits in all regions simultaneously.

Without loss of generality, we can assume that all banks are bankrupt at

date 2. At date 0 each bank will choose a value of 2 high enough so that

2() ≤ 2

in every state . This is a zero-profit condition resulting from perfect com-

petition among the banks in each region. If it were violated, it would mean

that some assets were left over in some state of nature and that would violate

the assumption that banks choose deposit contracts to maximize consumer

welfare.

The assets of the typical bank in region  are valued atX
 6=



2()


1() + 1() +1()

which is equal to the bank’s claims on banks in regions −1 and +1 plus the
bank’s holding of the short asset plus the bank’s holding of the long asset.

The bank’s liabilities are the number of deposits outstanding, each valued at

12



the market price 2()ÃX
 6=



1() + (1− )

!
2()

The equilibrium value of 2() is determined by the condition that the bank’s

assets just equal its liabilities, thus,ÃX
 6=



1() + (1− )

!
2() =

X
 6=



2()


1() + 1()) +1()) (2)

The equilibrium values of the deposits are determined simultaneously by the

 equations (2), one for each region, involving  unknowns, one price 2()

for each region.

[It is easy to see that there is a solution to this system of equations for

every non-negative specification of portfolios. For regions in which banks

were insolvent at date 1 put 2() = 0. For regions in which banks were

solvent at date 1 we can obtain a lower bound by assuming 

2() = 0 on the

right hand side of (2) and solving for 2(). Next substitute these values into

the right hand side of (2) and continue to perform this algorithm indefinitely.

The values of 2() obtained at each iteration are non-decreasing. They are

also bounded above, because denoting the left and right hand values by 02()
and 2 () respectively and summing (2) over  yields

X
=1

(1− )02 () =

X
=1

ÃX
 6=



2()


1()−

X
 6=

02 ()

1()

!

+

X
=1

¡
1()) +1())

¢
≤

X
=1

¡
1()) +1())

¢


since 02() ≥ 2 (). Thus, convergence is assured and by continuity the

limiting values will satisfy (2) for  = 1  .]

4.2 Equilibrium in the Intermediate Period

At the beginning of date 1 the banks in region  have the portfolio (0 

0 


0)

chosen at date 0. These are their assets. The liabilities of the bank are the

13



potential claims from depositors. The total deposits outstanding from de-

positors in region  are one unit and from banks in other regions are
P

 6= 

0.

The bank has promised each depositor 1 units of consumption on demand,

but not all depositors will demand this payment in period 1. Early consumers

have no choice but to withdraw their deposits at date 1. Late consumers can

withdraw at date 2 or withdraw at date 1 and store the goods until date 2.

It is optimal for the late consumers to wait and withdraw at the final date if

and only if

2() ≥ 1()

Otherwise they would be better off withdrawing at date 1 and storing the

deposit until date 2.

The next task is to determine the conditions under which the bank will be

able to meet the claims made by the depositors. Suppose that the bank is not

bankrupt. The bank needs to choose a new portfolio (1() 

1() 


1()) ≥ 0

that satisfies the following condition:X
 6=

1()(

0−1())−

X
 6=



1()(


0−1())+1() ≤ (0−1())+(0−1())

(3)

The left hand side represents the value of the deposits being redeemed at

date 1 (where it is implicitly assumed that 1() = 1 since the bank is

non-bankrupt).

The set of portfolios that satisfy the constraint (3) is compact and convex.

If it is non-empty, then the bank should choose the portfolio from the set of

portfolios that maximize the value of the deposits at date 2 (the bank cannot

pay out more than 1 at date 1 but has chosen 

2 large enough that additional

assets can always be distributed at date 2). Let 1(0  ) denote the set of

optimal portfolios at date 1. It depends on the action 0 = (

0 


0 


0 


1 


2)

chosen at date 0, on the prices , and on the state .

If the set of feasible portfolios at date 1 is empty, then we put  1(0  ) =

{0} and force the bank to liquidate at date 1. In this case, both the banks
in other regions and the late consumers in region  will withdraw their de-

posits in the current period and the value of the deposits is determined by

the equation ÃX
 6=



0 + 1

!
1() =

X
 6=

1()

0 + 0 + 0

14



The left hand side is the number of deposits outstanding multiplied by the

liquidation value; the right hand side is the liquidation value of the assets,

including the value of deposits in banks in other regions.

Where late consumers are indifferent between withdrawing their deposits

at date 1 and date 2, we assume that they withdraw at the final date. We

make this assumption because we want to avoid runs if at all possible. Under

this assumption, it turns out that there are only two possibilities: either

12() ≥ 1() = 1 or 0 = 2() ≤ 1()  1 and there is a run that forces

the bank to liquidate all its assets at the first date. To see this, suppose that

1() = 1. Then if 

2()  1 it must be optimal for all late consumers to

withdraw at the first period and get 1. But since consumption can be stored

from date 1 to date 2, there must exist a set of decisions by the bank that

provide 2() ≥ 1, that is 

1(0  ) 6= {0} contradicting the equilibrium

conditions. The other case that needs to be considered is 1()  1. In that

case, the bank is unable to meet its obligations and must liquidate all assets.

This implies that 2() = 0 as required.

4.3 Equilibrium in the Initial Period

At the first date, banks choose investment portfolios and deposit contracts

to maximize the expected utility of the typical depositor, taking as given

the behavior of the banks in other regions. So far we have described the

equilibrium behavior of the banks at dates 1 and 2, assuming that all the

banks in region  behave identically. But in order to describe the choice of the

bank’s optimal portfolio at the first date, we have to allow for the possibility

that the bank chooses a different portfolio from the others and consequently

will have a different liquidation value. In other words, we cannot take the

liquidation value () as given when the bank is changing its initial portfolio.

Similarly, we cannot assume that the bank can sell deposits to other banks;

if the portfolio chosen by the bank is unattractive to other banks, they may

not be willing to buy them at a price 0 = 1. Selling them at a price less than

1 means that depositors are subsidizing the banks, of course. We therefore

assume that it is illegal to sell deposits in this way; all depositors, both

consumers in region  or bank from other regions, must be treated in the same

way. Therefore, 0 ≡ 1 and bank deposits can be issued to banks in other
regions only if it is optimal for other banks to accept them. In equilibrium,

deposits held by banks from other regions are demand-determined.

To begin with, we consider a single bank in region , and assume that
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the bank does not issue any deposits to other banks. The choices of the

distinguished bank are marked by a ˆ and the usual notation is used for

the other banks, in region  and in other regions. Suppose then that the

bank has issued one unit of deposits and used the proceeds to invest in a

portfolio (̂0 ̂

0 ̂


0). It also chooses a deposit contract (̂


1 ̂


2). Let ̂


0 =

(̂0 ̂

0 ̂


0 ̂


1 ̂


2) denote the bank’s action at date 1. The other banks in

region  choose a portfolio (0 

0 


0) deposit contract (


1 


2) and banks

in regions  6=  choose the portfolio (

0 


0 


0) and deposit contract (


1 


2).

The liquidation values of the other banks are given by , which is determined

in the usual way.

Once  is realized at date 1, the bank learns whether it is insolvent or

not, that is, whether there is a feasible portfolio choice that allows it to pay

̂1 to withdrawers at date 1. In any case, there is a well defined liquidation

value of deposits ̂() at date  and the payoff to depositors is (̂

1()) if

the bank is insolvent at date 1 and

(̂1()) + (1− )(̂2())

if the bank is solvent at date 1. It is important to remember here that ̂ is

a function of the initial action ̂0 as well as the actions of the representative

banks in each region. Let  (̂0 ) denote the expected utility in state 

given the action ̂0 at date 0. Then the expected utility of the depositors is

(̂0) =
X
∈Ω

()(̂0 )

The bank is assumed to choose ̂0 to maximize (̂

0).

5 Decentralization of the Social Optimum

The optimal risk-sharing problem (P1) discussed in Section 3 maximizes the

unweighted sum of expected utilities. There are other efficient allocations

besides the solution to this problem but given the symmetry of the model–

regions are ex ante identical–makes this is a natural benchmark for the

efficiency of risk sharing. In this section, we show that under certain con-

ditions the first best can be decentralized by a competitive banking sector

issuing standard deposit contracts. The main assumption we need is that

there is no aggregate uncertainty.
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• The size of the aggregate shock ̂ =P

=1 
 is the same for every state

 ∈ Ω.

This assumption implies that the consumption allocation corresponding to

the solution of (P1) is a constant (1 2), independent of the state . This

is necessary to allow banks to implement the optimal risk sharing through

non-contingent deposit contracts.

5.1 Complete Markets

There are no bank runs in an equilibrium that decentralizes the solution of the

planner’s problem (P1). Each bank has enough assets to provide consumers

with the optimal consumption allocation (1 2). Deposits in different banks

are perfect substitutes and hence have the same value at date 0.

At date 0 an individual bank in region  chooses a portfolio (0 

0) subject

to the feasibility constraint 0 + 0 ≤ 1 and offers the depositors in his bank
a deposit contract (1 


2) = (1 2).

Let  denote the number of deposits held by the typical bank in region

 in banks in region  at the end of date  = 0 1. Suppose that each bank

chooses a symmetrical portfolio 0 at date 0, where

0 =

½
  6= 

0  = 


where   0 is a large number. Each bank in region  chooses the same

portfolios

( 

) = −1( )

at dates  = 0 1 where ( ) denotes the planner’s portfolio at date  in

the solution to (P1). Since there is no aggregate uncertainty in the planner’s

problem, we know that ̂1 = 0 and (1−̂)2 = 0, that is, consumption in

the intermediate period is financed through the short asset and consumption

in the final period is financed through the long asset. This implies that the

budget constraint at date 1 requires"X
 6=
(


0 − 


1())−

X
 6=
(0 − 1())

#
1 ≤ (0 − 1()) + (0 − 1())

= 0 (4)
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Let  ≡ −1̂ denote the average number of early consumers in each region
and note that 0 = 1, so the deficit in region  is  −  deposits. The

budget constraint (4) will be satisfied if and only if"X
 6=
(


0 − 


1())−

X
 6=
(0 − 1())

#
=  − 

In region  put 1() = 0 if 
− ≤ 0. For any region  such that −  0

let () denote the ratio of region ’s excess demand to total excess demand:

() =
 − P

max{ −  0} 

Then define region ’s portfolio 1() by putting

1() =

½
0 if  −   0

0 − ()( − ) if  −  ≤ 0
In words, if the banks in region  need extra liquidity, they do not draw down

deposits in banks in regions  that are liquidity-constrained ( −   0).

Instead, they proportionately draw down their deposits in regions that have

excess liquidity ( −  ≤ 0). It is clear that the portfolios defined satisfy
the budget constraint (4). Obviously, there are many other ways of defining

a portfolio 1() to satisfy the budget constraint.

Summing the budget constraints (4) and making use of the planners bud-

get constraint for date 1we end up with the interbank deposit market-clearing

condition at date 1X


"X
 6=
(


0 − 


1())−

X
 6=
(0 − 1())

#
= 0

At date 2 the budget constraint for a bank in region  will be"X
 6=



1()−

X
 6=

1() + (1− )

#
2 ≤ 1()) +1()) (5)

Summing (5) across  we obtain the planner’s budget constraint for date 2 if

and only if X


"X
 6=



1()−

X
 6=

1()

#
= 0.
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The market-clearing condition in deposits for date 2 is identically zero. It is

easy to check that if banks satisfy the budget constraint (4) then the bud-

get constraint (5) is automatically satisfied. Given a sequence of portfolios

(0 

1) satisfying the budget constraints (4) and (5) for each region , the

banks can achieve the same investment portfolios and consumption alloca-

tions for their depositors as the central planner. It remains to check that this

is an equilibrium.

At date 2 there are no decisions to be made. The value of deposits in

region  will be 2() = 2 = 2 in every state of nature .

At date 1 the value of deposits will be 1() = 1 = 1 in every state

of nature  and since 1 ≤ 2 it is optimal for early and late consumers to

withdraw at date 1 and date 2 respectively.

Once the state  is revealed at date 1, it is clear that each bank cannot do

better than to meet its obligations under the deposit contract (1 2). There

is no portfolio decision that allows the bank to meet its obligations and

achieve a surplus in either period. At date 0 things are more complicated.

We assume that each bank wants to maximize the expected utility of the

typical consumer subject to the budget constraints at dates  = 1 2. The

question then is whether it can do better than the choice of portfolios and

deposit contract described above.

For the case of an equilibrium with complete risk sharing, it is easy to

characterize the optimality of bank’s behavior. Suppose that all banks in

region  choose the deposit contract (1 

1) and the sequence of portfolios

{(  }=01 and a single bank in some region  deviates by choosing a

contract (01 
0
1) and a sequence of portfolios {(0 0 0)}=01. We can treat

the resulting re-allocation as the result of a trade between the deviating

bank and a fully-insured representative bank in each region . The effect of

the deviating bank choosing a different portfolio and deposit contract is to

effect a contingent transfer of consumption between the deviating bank and

the representative banks in each region. The equilibrium deposit contract

(1 2) solves the maximization problem

̂(1) + (1− ̂)(2) = sup
̂1+(1−̂)−12≤1

{̂(1) + (1− ̂)(2)}

= sup
1()+(1−)−12()≤1

X


(){(1()) + (1− )(2()}

The representative bank in region  will not accept deposits in the deviating

bank unless they leave depositor welfare at least as high as before. This
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means thatX


(){0(1)
∆
1()


+(1−)0(2)

∆
2()

1− 
} = 0(1)

X


(){∆
1()+

−1∆
2()} ≥ 0

where∆
() is the net transfer to region  at date  as a result of the deviating

bank’s trade. But this means thatX


(){0(1)
∆1()


+(1−)0(2)

∆2()

1− 
} = 0(1)

X


(){∆1()+
−1∆2()} ≤ 0

where

∆() = −
X
=1

∆
()

for  = 1 2. In other words, the depositors of the deviating bank cannot be

made better off by any feasible state-contingent transfers that are acceptable

to the other banks. The fact that the deviating bank cannot make arbitrary

state-contingent re-allocations, but has to use deposit contracts, simply re-

stricts its ability to increase welfare. The Pareto-optimality of (1 2) makes

it clear that it is impossible for a deviating bank to make itself better off

through trade with the representative bank.

Theorem 2 Let (0 0 1() 1() 1 2) be the solution to the planner’s

problem (P1) and suppose that the representative bank in each region  chooses

a deposit contract (1 

2) = (1 2), a sequence of portfolios (


0 


0 


0 


1() 


1() 


1())

satisfying

(0 

0 


1() 


1()) = −1(0 0 1() 1())

and the budget constraints (4) and (5). Then the equilibrium of the decen-

tralized banking system described above implements the first-best allocation.

5.2 Incomplete Markets

In constructing an equilibrium in which the social optimum could be decen-

tralized, it was assumed that each bank can hold a complete portfolio of

deposits. In practice this is unlikely to be true, because of the complexity

of such a strategy or because of the informational requirements. However,

complete markets are not necessary in order to decentralize the first best as

long as the regions are connected in an appropriate sense. As an illustration,
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consider the case where regions are arranged clockwise in a circular network.

Each region  is directly connected to the next region + 1 in the clockwise

direction, that is, for each region  the neighboring set is   = {+1} where
region  + 1 is identified with region 1. With this restriction, the overall

structure of equilibrium is similar to that described in the previous section.

To show that social optimum can be decentralized with this market struc-

ture, it is sufficient to show that the banks can satisfy their budget con-

straints. At date 0 each bank chooses an admissible portfolio

0 =

½
 if  = 1 + 1;

0 otherwise.

At date 1 the bank has to choose an admissible portfolio 1() such that"X
=±1

(

0 − 


1())−

X
=±1

(0 − 1()) + 

#
1 ≤ 0

If this constraint is satisfied then the constraint at date 2 is automatically

satisfied. The aggregate budget constraint at date 1 ̂1 = 0 ensures that

we can find portfolios {1} satisfying the regional budget constraints if  is
chosen large enough. This is all one needs to decentralize the social optimum.

For the general case of an arbitrary, connected collection of neighborhoods

{ }, we can show that it is possible to decentralize the the social optimum
by constructing a set of deposit portfolios {} that will satisfy the budget
constraints above. The easiest way to do this is to begin with the equilibrium

portfolios for the economy with complete markets and then construct an

equivalent profile of portfolios for the economy with neighborhoods { }.
Let {} denote the portfolios for the complete-markets economy and let {̂}
denote the corresponding portfolios for the incomplete-markets economy. To

construct {̂} we proceed as follows. Take  = 1 and some  = 0 and consider
the smallest index  6=  such that 0 6= 0 and region  cannot hold deposits

in region . Then the connectedness assumption implies that there exists a

chain {1  } such that  is directly connected to +1 and 1 =  and

 = . Then let ̂0 = 0 and put ̂

+10

= +10+

0 for every  = 1 −1.

Replace 0 with ̂0 and apply the same procedure again until the portfolio

for region  is admissible. Then move on to the next index  = 2 and so on

until all the regions have admissible portfolios at date 0. Then go through

the same procedure at date  = 1 for each state  and region .
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This procedure clearly results in a set of admissible profiles {} for all
regions and dates  = 0 1. Also, it is easy to see that these portfolios are

equivalent to the original portfolios, in the sense that each region has the

same number of deposits as before in every state and at every date. For

this reason, the new portfolios must satisfy the budget constraints at each

date. Another way to see that the budget constraints must be satisfied is to

note that the changes we have made simply create a series of “pass throughs”,

where region  = 1 holds a deposit in region  indirectly by holding a deposit

in region 2 which holds an offsetting deposit in region 3 ... which holds an

offsetting deposit in region  = .

Thus, the decentralization argument given in the first part of this section

extends easily to any connected family of neighborhoods { }.

6 Contagion

To illustrate the possibility of contagion, we use the decentralization theorems

from Section 5 to show the existence of an equilibrium with complete risk

sharing. Then we perturb the model to show that for some states a small ex-

cess demand for liquidity can lead to an economy-wide crisis. In other words,

the equilibrium with complete risk sharing suffers from financial fragility.

In Section 5 we showed that complete risk sharing could be decentralized

using standard deposit contracts if (a) there is no aggregate risk, that is,

if ̂ was constant and (b) the economy is connected, that is, the family

of neighborhoods { } is connected. As an illustration of the contagion
problem, we take a particular structure of the admissible deposit portfolio

sets, namely, the case in which each region  can hold deposits only in region

+1, where we identify region +1 with region 1. This would be the case if

the regions were arranged clockwise in a circle, with banks in region  being

able to hold deposits in the neighboring region in the clockwise direction.

Let (1 2) denote the optimal consumption profile chosen by a central

planner when there is no aggregate uncertainty. Let ( ) denote the per

capita investments in the long and short assets, respectively, chosen by the

planner. The symmetry of the model implies that there will be an equilib-

rium, in which every region behaves symmetrically in the first period. The

optimal deposit contract in region  will be

(1 

2) = (1 2)
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The initial portfolio will be

(0 

0 


0) = (  


0)

where

0 =

½
  = + 1

0  6= + 1

and  is an appropriately chosen constant. We choose  to be as small as

possible, but assuming that there is non-degenerate uncertainty  must be

positive in equilibrium.

At date 1 the state  is observed and all the early consumers (and only

the early consumers) withdraw their deposits worth 1 each. In order to

satisfy the budget constraint, banks in region  choose (1 

1 


1) so that

(1() 

1()) = (


0 0)

(there is no need to liquidate the long asset and it is never optimal to carry

the short asset over to the last period) and

1 = 0 + (

+10 − +11())1 − (−10 − −11 ())1

In the last period, the budget constraint is

(1− )2 = 0 + +11()2 − −11 ()2

The budget constraint at date 2 is satisfied if the budget constraint at date 1

is satisfied, so it is enough to show that there exists a choice of 1 for each 

that satisfies the budget constraint at date 1. The existence of these portfolios

{1} follows from arguments provided in Section 5. Here we note that there

is a an essentially unique way of defining the portfolios. Suppose that 121()

is given for some state . Then the second-period budget constraint for  = 2

determines 231(). Continuing in this way we can show that if 

+11 is given

then the second-period budget constraint for  + 1 determines +1+21. When

we get back to region  = 1, the value of 121() determined by the budget

constraint must agree with the value initially given, because summing the

budget constraints from  = 2   gives

X
=2

1 = (− 1)0 + (10 − 11())1 − (120 − 121())1
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which implies, on substituting ̂ =
P

=1 
,

(̂ − 1)1 = (− 1)0 + (10 − 11())1 − (120 − 121())1

or equivalently

11 = 0 + (
1
20 − 121())1 − (10 − 11())1

This shows that the originally given value of 12() satisfies the budget con-

straint for region  = 1.

We have not shown that the portfolios defined in this way satisfy the

non-negativity constraint. However, by choosing 121 sufficiently large, all of

the other values will be non-negative. So choose 121 to be the smallest value

that is consistent with the non-negativity constraint.

It is straightforward to check that the portfolio defined in this way is

the (essentially) unique portfolio that satisfies the budget constraint in both

periods.

Note that there is an indeterminacy in the definition of the portfolio in

the initial period because we have not specified . Clearly,  has to be big

enough to allow for the definition of a non-negative 1 at date 1. Let  be

chosen to be the smallest value of  that is consistent with a non-negative 1.

With this convention, the equilibrium is uniquely defined. Theorem 2 shows

that this is in fact an equilibrium.

Now, let us take the equilibrium as given and consider what happens

when we “perturb” the model. By a perturbation I mean the realization of

a state ̄ that was assigned zero probability at date 0 and has a demand for

liquidity that is very close to that of the states that do occur with positive

probability. Specifically, define the state ̄ by putting

̄ =

½
  6= 

 +   = 


Thus, at date 0 the choices of deposit contract (1 

2) and initial portfolio

(0 

0 


0) are the same as in the equilibrium with complete risk sharing.

Furthermore, for any of the states  that occur with positive probability, the

equilibrium proceeds at dates 1 and 2 in the way described above. For the

distinguished state ̄ things are different, as we show in a number of steps.

Step 1. In state ̄ there must be at least one region in which the banks are

insolvent. The proof is by contradiction. Suppose, contrary to what we want
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to prove, that banks in all regions are solvent. Then (̄) = 1 for all .

However, the demand for deposits from early consumers is  in each region

and the stock of the short asset is 0 = 1, so there is an excess demand for

liquidity that can only be met by liquidating the long asset in some region.

Any bank that liquidates the long asset will lose value. More precisely, the

bank has just enough of the short asset to meet the demands of its local

depositors (early consumers), so it has to liquidate some of the long assets

if it allows other banks to withdraw more from it than it withdraws from

then. For every unit of the long asset it liquidates it gives up  future units

of the good and gets  present units of the good. For every unit of deposits

it retains it gets 2 future units of the good and gives up 1 present units of

the good. So it is costly to liquidate the long asset if






2

1
 (6)

This inequality will hold, for example, if 0() is decreasing because that
implies that

0(1)1
0(2)2

 1 (7)

and the optimal deposit satisfies

0(1) = 0(2) (8)

so using the inequalities (7) and (8) we have

2

1


0(1)
0(2)

=  




as required. The assumption (6) is maintained in what follows, so no bank

will willingly liquidate the long asset.

To avoid liquidating the long asset, banks must redeem at least as many

deposits as are withdrawn by banks from other regions. But this implies

that no region is able to get extra liquidity from other regions. The only

equilibrium is one in which all banks simultaneously withdraw their deposits

in banks in other regions at date 1 and these mutual withdrawals offset each

other and so have no effect. The result is that banks in region  are forced

to be self-sufficient. Then solvency in region  requires

( + )1 ≥ 0 + (0 − 1(̄)) (9)

(1−  − )1 ≥ 1(̄)
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The demand for deposits is + and solvency requires that each agent should

get 1. The short asset 

0 will be used first and then some of the long asset

will be liquidated to yield an additional (0 − 1(̄)). At the last date, the

late consumers must be given at least 1 to prevent a run, so the amount

paid out will be at least (1−−)1, and the liquidation value of the bank’s

portfolio will be 1(̄). The conditions in equation (9) are necessary and

sufficient for solvency at date 1, so if these conditions are violated then banks

in region  must be insolvent and a bank run (crisis) occurs. In what follows

we assume that equation (9) is violated.

Note that we have not yet shown that region  must be insolvent; only

that some region must be insolvent. However, it is easy to see that in any re-

gion other than region  the banks can protect themselves against insolvency

by liquidating all their deposits in other regions’ banks at date 1, on the

assumption that the late consumers do not run unless there is no equilibrium

in their region in which it is optimal for them to withdraw late. Hence the

only equilibrium will be one in which banks in region  (and possibly other

regions) are insolvent.

Step 2. Having established that banks in region  must be insolvent, we next

show that the financial crisis must be extend to other regions. We assume to

the contrary that all regions  6=  are solvent. Since the banks in region 

are insolvent, they must liquidate all their holdings of deposits in region +1

and the banks in region  − 1 will find it optimal to liquidate their deposits
in banks of region . The value of the deposits in region  are determined

by the condition that the value of liabilities equals the value of assets:

(1 + )1(̄) = 0 + 0 + 1

since the value of deposits in region +1 equals 1 as long as they are solvent.

Then

1(̄) =
0 + 0 + 1

1 + 

and the transfer from banks in region  + 1 to banks in region  is

(1 − 1(̄)) =
(1 + )

1 + 
1 − 

1 + 
(0 + 0 + 1)

=
(1 − 0 − 0)

1 + 


By a previous argument, the banks in regions  6=   − 1 will not want to
liquidate the long asset, so without loss of generality, we can assume that
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they all liquidate their holdings of deposits in other regions in the current

period. This means that banks in region − 1 have to remain self-sufficient.
Solvency in this region is only possible if there is a solution to

1 ≤ 

0 + (


0 − 


1(̄))−

(1 − 0 − 0)

1 + 

(1− )1 ≤ 

1(̄)

for  =  − 1. Since 1 = 

0 and (1− )2 = 


0, these conditions can be

satisfied if and only if

(1 − 0 − 0)

1 + 
≤ (


0 − 


1(̄)) ≤

(1− )(2 − 1)




The last expression on the right is the amount of liquidity that we can get at

date 1 without violating the incentive constraint at date 2. Making similar

substitutions, the first expression on the left can be rewritten as

((1− )1 − (1− )2)

1 + 

so the inequality becomes

(1 − 2)

1 + 
≤ (2 − 1)



or
(1 − 2)

1 + 
≤ (2 − 1)

which is certainly violated for  small enough, for example.

Step 3. The preceding step has shown that under certain conditions we must

have bank runs in equilibrium in region  − 1. To ensure that the process
continues to infect the other regions we only need to show that the value

of the bank deposits in region  − 1 will be even lower than we assumed in
region . To see this, note that once a run has occurred, the banks in region

 − 1 have even less assets than the banks in region  in the previous step.

Whereas the banks in region  could call upon the solvent banks in region

+1, whose deposits are worth 1, the banks in region −1 can only call on
the insolvent banks in region , whose deposits are worth 1(̄)  1. Their

demand for liquidity is the same, so they are in a worse position than the

27



banks in region . As a result, −1(̄)  (̄)  1, so region  + 2 must

be insolvent. As we continue to argue by induction, at each step the value of

deposits in the marginal insolvent regions gets lower and it is easier to prove

that the marginal solvent regions cannot satisfy the conditions for solvency.

We conclude that all regions must be insolvent. Note that this implies that

the values of deposits in all regions are the same: (̄) = 0 + 0.

7 Robustness of Complete Markets

The incompleteness of markets is essential to the contagion result in the

following sense. There exist parameter values for which any equilibrium with

incomplete markets involves runs in state ̄ (this is the set of parameter

values characterized in Section 6). For the same parameter values, we can

find an equilibrium with complete markets that does not involve runs in state

̄.

To see this, we go back to the complete markets equilibrium in Section 5

under the assumption that ̂ is a constant. In that case, the non-contingent

deposit contract (1 2) is the first best and we have seen that there is a

sequence of portfolios {(0 0 0) (1 1 1)} that implements this contract
as an equilibrium. Now suppose that we introduce the small probability

state ̄ that led to contagion in Section 6. Of course, several restrictions

on the parameter values were required in order to generate runs and those

restrictions are assumed to be satisfied here. The question is whether there

exists an equilibrium for state ̄ in which runs do not occur, even though

those conditions are satisfied? To answer this question in the affirmative, we

have to show that it is possible to liquidate deposits without violating the

conditions

1(̄) = 1 ≤ 2(̄) (10)

for  6= . As long as these conditions are satisfied, there will not be any runs

in the regions  6= .

Without loss of generality, we consider the case in which 1(̄)  1.

Otherwise, there is no difficulty in showing that every region is solvent. Then

banks in region  will liquidate all of their claims against banks in regions

 6=  and banks in regions  6=  will liquidate all their deposits in region .

In order to satisfy the conditions 10, banks in regions  6=  must be able to
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find a portfolio (1(̄) 

1(̄) 


1(̄)) such that

( + )1 ≤ 0 + (0 − 1(̄)) + 1(̄)

and

(1− )1 ≤ 1(̄)

We have already seen that these inequalities cannot be satisfied for the value

 required in the equilibrium with incomplete markets. But the value of 

required here is different. With incomplete markets, the typical bank holds

deposits in two regions; with complete markets it holds deposits in  − 1
regions. Therefore the value of  in equilibrium with complete markets is

2(− 1) times the value required in equilibrium with incomplete markets.

Since there is no constraint on how large  can be, we can certainly find para-

meter values for which the solvency conditions (10) are satisfied for complete

markets but not for incomplete markets.

Another way of stating this is that for any definition of ̄ (any feasible

choice of   0), the complete markets equilibrium is robust for  large

enough, whereas for some parameter values the incomplete markets equilib-

rium will not be.

8 Containment

The critical ingredient in the example of contagion analysed in Section 6 is

that any two regions are connected by a chain of overlapping bank liabilities.

Banks in region  have claims on banks in regions − 1 and  + 1, which in

turn have claims on banks in regions  − 2 and  + 2, respectively, and so

on. If we could cut this chain at some point, the contagion that begins with

a small shock in region  would be contained in some connected component

of the set of regions. The structure of claims is endogenous, however, so we

cannot simply assume that the whole economy is not enmeshed in a single

web of claims. Some restrictions on the structure of the model are required in

order to ensure that the economy can be broken down into small independent

clumps of regions. One way to do this is to assume a special structure of

liquidity shocks, which does not require much interconnectedness of claims

in order to achieve complete risk sharing.

As an illustration, consider the special case in which adjacent pairs of

regions can achieve complete risk sharing. More precisely, assume that for
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some constant 

 + +1 = 2 (11)

for every region  and almost every state . Equation (11) implies that the

number of regions  is an even number, of course. An equilibrium is defined

by analogy with the equilibrium in Section 6 except that claims are exchanged

between pairs of regions only. Let (0 0) be the initial portfolio and (1 2)

be the deposit contract chosen by the central planner as the solution to (P1).

This allocation can be decentralized with incomplete markets as follows. At

date 0, the representative bank in each region  chooses a portfolio (0 

0 


0)

and a deposit contract (1 

0), where

(0 

0) = −1(0 0)

and

(1 

0) = (1 2)

The main difference from the equilibrium described in Section 6 is that the

deposits are exchanged between pairs of regions: if  is an even number, then

regions  and + 1 exchange claims, but regions  and − 1 do not. Thus,

0 =

⎧⎨⎩   is even and  = + 1;

 if  is odd and  = − 1;
0 otherwise.

At date 1 the state  is observed and each pair of regions ( +1), where

 is an even number, adjust their holdings of deposits so that the optimal

consumption allocation can be achieved. Specifically, 1() = 1 for every

region  and any state  and

(1() 

1() 


1()) = (


0 0 


1())

where 1() is chosen so that

1() =

⎧⎨⎩ 0 − ( − ) if  is even and  = 1 + 1;

0 − ( − ) if  is odd and  = − 1;
0 otherwise.



At date 2 the banks liquidate their remaining portfolios and it is easy

to see from the banks’ budget constraint that the value of deposits will be

2() = 2 in every region.
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It is straightforward to show, in the same way as in Section 6, that these

choices are optimal and feasible, in other words, that they constitute an

equilibrium.

Now suppose that we perturb the equilibrium by introducing a small

probability state ̄ in which there is an excess demand for liquidity in some

state :

̄ =

½
 +  if  = ;

 if  6= 

Without loss of generality we can assume that  is even; the other case is

exactly symmetric. Then regions  and +1 are linked by overlapping claims

to deposits, but there are no claims linking regions  − 1 and  or linking

regions  + 1 and  + 2. Thus, the component (  + 1) is independent of

the remainder of the regions. In fact, it is clear that whatever happens in

regions  and  + 1, we can define an equilibrium for regions  6=   + 1 in

which (̄) =  for  = 1 2. In words, in state ̄ there may be bank runs in

region  and they may spill over to region  + 1, but this will have no effect

on other regions. The effects of the disturbance associated with state ̄ will

be contained in the component (  + 1).

The same general result will hold whenever we can establish that a set of

regions  ⊂ {1  } is disconnected from its complement in equilibrium.

9 Conclusion

In this paper, we have considered a more general version of the model in

Allen and Gale (2000), which only considered networks of four banks. We

show that similar results hold in much more general contexts with an un-

limited number of banks. In particular shocks that are small relative to

the economy as a whole can cause a collapse of the financial system.There

are two main differences with the Diamond-Dybvig model. The first is the

assumption that the illiquid, long-term assets held by the banks are risky

and perfectly correlated across banks. Uncertainty about asset returns is

intended to capture the impact of the business cycle on the value of bank

assets. Information about returns becomes available before the returns are

realized and when the information is bad it has the power to precipitate a

crisis. The second is that we do not make the first-come, first-served assump-

tion. This assumption has been the subject of some debate in the literature

as it is not an optimal arrangement in the basic Diamond-Dybvig model (see
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Wallace (1988) and Calomiris and Kahn (1991)). In a number of countries

and historical time periods banks have had the right to delay payment for

some time period on certain types of account. This is rather different from

the first-come, first-served assumption. Sprague (1910) recounts how in the

U.S. in the late nineteenth century people could obtain liquidity once a panic

had started by using certified checks. These checks traded at a discount. We

model this type of situation by assuming the available liquidity is split on an

equal basis among those withdrawing early. In the context this arrangement

is optimal. We also assume that those who do not withdraw early have to

wait some time before they can obtain their funds and again what is available

is split between them on an equal basis.

A number of authors have developed models of banking panics caused by

aggregate risk. Wallace (1988; 1990), Chari (1989) and Champ, Smith, and

Williamson (1996) extend Diamond and Dybvig (1983) by assuming the frac-

tion of the population requiring liquidity is random. Chari and Jagannathan

(1988), Jacklin and Bhattacharya (1988), Hellwig (1994), and Alonso (1996)

introduce aggregate uncertainty which can be interpreted as business cycle

risk. Chari and Jagannathan (1988) focus on a signal extraction problem

where part of the population observes a signal about future returns. Others

must then try to deduce from observed withdrawals whether an unfavorable

signal was received by this group or whether liquidity needs happen to be

high. Chari and Jagannathan are able to show panics occur not only when

the outlook is poor but also when liquidity needs turn out to be high. Jacklin

and Bhattacharya (1988) also consider a model where some depositors receive

an interim signal about risk. They show that the optimality of bank deposits

compared to equities depends on the characteristics of the risky investment.

Hellwig (1994) considers a model where the reinvestment rate is random

and shows that the risk should be born both by early and late withdrawers.

Alonso (1996) demonstrates using numerical examples that contracts where

runs occur may be better than contracts which ensure runs do not occur

because they improve risk sharing.

Another important feature of the model is the fact that connections be-

tween regions take the form of interbank deposits rather than investments in

real assets. Of course, since the motive for investing in other regions is to

provide insurance against liquidity shocks, it is natural to assume that banks

have claims on each other. But there might also be a motive for spreading

investments across regions if the long asset were risky and the returns were

imperfectly correlated across regions. In this case, investing directly in real
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assets in other regions would be an alternative to investing in deposits in

the banks of other regions. The effects would be quite different, however.

When a bank becomes insolvent, it is forced to liquidate its assets, with a

consequent loss of value. Another bank which has a claim on the first suffers

from this loss of value too, even if the second bank is solvent. If the second

bank had invested in a real asset instead, it would have had another option.

It could have held the real asset until maturity and thus avoided the loss of

value that results from liquidation.

10 Proofs

Theorem 1: The planner’s risk-sharing problem (P1) is equivalent to the

modified problem (P2). From this it follows that the solution to the planner’s

problem is first-best efficient, that is, the incentive constraints do not bind.

Proof. Consider first the consumption of early consumers. For any state 

with ̂  0, concavity of the utility function (·) implies thatP

=1 
(1())P

=1 


≤ (̂1())

where

̂1() ≡
P

=1 
1()P

=1 




So there is no loss of generality in assuming that

1() = ̂1()

for every  and every . A similar argument shows that there is no loss of

generality in assuming that

2() = ̂2()

for every  and every . Finally, suppose that there exist two states  and

0 such that ̂ = ̂0. Then define

(1() 2()) = (1(
0) 2(

0)) =
1

2
[(̂1() ̂2()) + (̂1(

0) ̂2(
0))] 

It is easy to see that (1() 2()) and (1(
0) 2(0)) satisfy the feasibility

constraints and, because the objective function satisfies

̂(̂1()) + (1− ̂)(̂2()) = ̂0(̂1(
0)) + (1− ̂0)(̂2(

0))
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it follows from the concavity of (·) that

̂(1()) + (1− ̂)(2()) = ̂0(1(
0)) + (1− ̂0)(2(

0))

≥ ̂(̂1()) + (1− ̂)(̂2())

= ̂0(̂1(
0)) + (1− ̂0)(̂2(

0))

With a slight abuse of notation we write (̂) for the probability of ̂. Then

the planner has to choose a total investment 0 in the long asset, a total

investment 0 in the short asset, an amount of the long asset 1(̂) to carry

through to date 2, an amount 1(̂) of the short asset to carry through to

date 2, the consumption 1(̂) of an early consumer, and the consumption

2(̂) of a late consumer in order to maximize the typical consumer’s expected

utility. Note that the initial investment portfolio (0 0) does not depend on

̂ because the planner does not yet know the value of ̂. However, all the

decisions made at date 1 and date 2 depend on ̂, which is revealed at the

beginning of date 1.

The modified risk-sharing problem can be written in per capita terms as

follows:

(P2)

⎧⎪⎪⎨⎪⎪⎩
max

P
̂ (̂){̂(1(̂)) + (1− ̂)(2(̂))}

s.t. (i) 0 + 0 ≤ ;

(ii) ̂1(̂) ≤ 0 − 1(̂) + (0 − 1(̂));

(iii) (1− ̂)2(̂) ≤ 1(̂) +1(̂)

Suppose that we solve the problem for a particular state ̂, that is, we solve

the problem

max ̂(1(̂)) + (1− ̂)(2(̂))}
s.t. (ii) ̂1(̂) ≤ 0 − 1(̂) + (0 − 1(̂));

(iii) (1− ̂)2(̂) ≤ 1(̂) +1(̂)

A necessary condition for an optimum is that

0(1(̂)) ≥ 0(2(̂))

with strict equality if 1(̂)  0, which implies that

1(̂) ≤ 2(̂)

for every ̂. So the incentive constraint (iv) is automatically satisfied.
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