Contents college 5 and 6

Branch and Bound; Beam Search (Chapter 3.4-3.5, book) \rightarrow general introduction

Job Shop Scheduling (Chapter 5.1-5.3, book)

- branch and bound (5.2)
- shifting bottleneck heuristic (5.3)

JOB SHOP

- multi-operational model
- several machines (workcenters)
- individual routes for the jobs
- with/without recirculation

JOB SHOP - cont.

Applications:

- wafer production
- patients in a hospital

Remark:

Job shop is a special case of the resource constraint project scheduling problem

We concentrate on

- machines (no workcenters)
- no recirculation
- makespan minimization

JOB SHOP - Definition

- \bullet n jobs to be processed on
- \bullet m machines
- operation (i, j) : processing of job i on machine i
- order of the operations of a job is given: $(i,\overline{j}) \rightarrow (k,j)$ specifies that job j has to be processed on machine *i* earlier than on machine k
- \bullet p_{ij} : duration of operation (i, j)
- Goal: Schedule the jobs on the machines
	- without overlapping on machines
	- without overlapping within a job
	- -minimizing the makespan (latest completion of a job)

JOB SHOP - Example

Data:

Machines: M1, M2, M3

Durations: $p31=4$, $p21=2$, $p11=1$ p12=3, p32=3 p23=2, p13=4, p33=1

JOB SHOP - Example (cont.) Schedule:

Makespan Cmax=12

Disjunctive Graph Representation

Graph $G = (N, A, B)$

- nodes correspond to operations $N = \{(i, j) | (i, j)$ is operation
- conjunctive arcs A represent order of the operations of jobs

$$
(i,j)\to (k,j)\in A
$$

operation (i, j) preceeds (k, j)

 $\mathcal{L}(\mathcal{$

· disjunctive arcs B represent conflicts on machines Two operations (i, j) and (i, l) are connected by two arcs going in opposite direction

Disjunctive Graph Rep. (cont.)

- \bullet Two dummy nodes U and V representing source and sink
- \bullet arcs from U to all first operations of jobs
- arcs from all last operations of jobs to ^V

Remark: The disjunctive arcs form m cliques of double arcs (one for each machine)

Disjunctive Graph - Example

\leftarrow Disjunctive arcs (double arcs)

Selection

A subset $D \subset B$ is called a selection if it contains from each pair of disjunctive arcs exactly one

A selection *D* is <u>feasible</u> if the resulting directed graph $G(D) = (N, A \cup D)$ (graph with conjunctive and selected disjunctive arcs) is acyclic

Remarks:

- 1. a feasible selection leads to a sequence in which operations have to be processed on machines
- 2. a feasible solution induces to a feasible selection
- 3. each feasible selection leads to a feasible schedule

Infeasible selection - Example

Conjunctive arcs

Makespan Cmax=20

Selection for given Schedule

Makespan Cmax=12

Corresponding selection

Conjunctive arcs \longrightarrow Selection

Calculate Schedule for Selection

Method: Calculated longest paths from U to all other nodes in $G(D)$

Technical description:

- weight nodes (i, j) by p_{ij} and node U by 0
- length of a path i_1, i_2, \ldots, i_r = sum of the weights of the nodes $i_1, i_2, \ldots, i_{r-1}$
- \bullet calculate length l_{ij} of the longest path from U to (i, j) and V (using e.g. Dijkstra)
- start operation (i, j) at time l_{ij}
- the length of a longest path from U to V (such paths are called critical paths) is equal to the makespan of the solution

Calculate Schedule for Selection - Example

 \leftarrow Conjunctive arcs \rightarrow Selection Calculation l_{ij} 's: $Node|(3,1)|(1,2)|(3,2)|(2,3)|(2,1)$ Length 0 0 4 0 4 $Node|(1,1)|(1,3)|(3,3)|V$ Length 6 7 11 12

Disjunctive Programming Formulation

 y_{ij} denotes starting time of operation (i, j)

minimize C_{max}

subject to

 $y_{kl} - y_{ij} \ge p_{ij}$ for all $(i, j) \rightarrow (k, j) \in A$

 $C_{max} - y_{ij} \ge p_{ij}$ for all $(i, j) \in N$

 $y_{ij} - y_{il} \ge p_{il}$ or $y_{il} - y_{ij} \ge p_{ij}$ for all $(i, l), (i, j);$ $i = 1, \ldots, m$

 $y_{ij} \geq 0$ for all $(i, j) \in N$

Active Schedules

A schedule is **active** if no operation can be scheduled earlier without delaying another operation

- reducing the makespan of an active schedule is only possible by increasing the starting time of at least one operation
- there exist an optimal schedule which is active

Base of Branch and Bound

Remark: The set of all active schedules contains an optimal schedule

Solution method: Generate all active schedules and take the best

Improvement: Use the generation scheme in a branch and bound setting

Consequence: We need a generation scheme to produce all active schedules for a job shop

Generation of all active schedules

Notations:

 Ω : set of all operations which pre-

- **.** decessors have already been scheduled
- r_{ij} : earliest possible starting time of operation $(i, j) \in \Omega$
- ⁰ : subset of Ω

Remark: r_{ij} can be calculated via longest path calculations

Generation of all active schedules - cont.

Step ¹ (Initial Conditions) $\Omega := \{\text{first operations for each job}\}$ $r_{ij} := 0$ for all $(i, j) \in \Omega$

Step ² (Machine selection) Compute for current partial schedule

> t() := min \blacksquare $\lceil \cdot \lceil \cdot \rceil \rceil$ for $\lceil \cdot \rceil$

 $i^* := \textsf{machine}$ on which minimum is achieved

Step ³ (Branching)

$$
\text{FOR ALL} (i^*, j) | r_{i^*j} < \iota(\Delta z) \\ \text{FOR ALL} (i^*, j) \in \Omega' \text{ DO}
$$

extend partial schedule by scheduling (i^*,j) next on machine i^* ;

delete (i^*, j) from Ω ;

add job-successor of (i^*, j) to Ω ; Return to Step 2

Generation of all active schedules - cont.

Remarks on the algorithm:

- the given algorithms is the base of the branching
- nodes of the branching tree correspond to partial schedules
- Step 3 branches from the node corresponding to the current partial schedule
- the number of branches is given by the cardinality of Ω
- a branch corresponds to the choice of an operation (i^*,j) to be schedules next on machine i^*
	- \rightarrow a branch fixes new disjunctions

Disjunctions fixed by a branching

 $(i, j) \rightarrow (i)$ for all unscheduled operations (i, K)

 \rightarrow (i K) \rightarrow (i K) for all unscheduled operations (i, K)

Consequence: Each node in the branch and bound tree is characterized by a set D' of fixed disjunctions

Lower bounds for nodes of the branch and bound tree

Consider node ^V with fixed disjunctions D^{\prime} :

Simple lower bound: Calculate critical path in $G(D')$ \rightarrow Lower bound $LB(V)$

Better lower bound:

- \bullet consider machine i
- allow parallel processing on all machines $\neq i$
- \bullet solve problem on machine i

Resulting 1-machine problem

- 1. calculate earliest starting times r_{ij} of all operations (i, j) on machine i (longest paths from source in $G(D')$
- 2. calculate minimum amount Δ_{ij} of time between start of (i, j) and end of schedule (longest path to sink in $G(D')$

 \rightarrow due date $d_{ij} = LB(V) - \Delta_{ij} + p_{ij}$

- 3. solve single machine problem on machine ⁱ:
	- respect release dates
	- no preemption
	- minimize maximum lateness (see Section 3.4)

Result: maximum lateness L_i

Better lower bound

- solve 1-machine problem for all machines
- this results in values L_1, \ldots, L_m

$$
LB^{new}(V) = LB(V) + \max_{i=1}^m L_i
$$

Remarks:

- 1-machine problem is NP-hard
- computational experiments have shown that it pays of to solve these m NP-hard problems per node of the search tree
- \bullet 20 \times 20 instances are already hard to solve by branch and bound

Better lower bound - example Partial Schedule:

Better lb - example - cont.

Graph $G(D')$ with processing times:

 $LB(V)=l(U, (1, 2), (1, 3), (3, 3), V) =8$ (unique)

Data for jobs on Machine 1:

Opt. solution: $L_{max} = 0$, $LB^{new}(V) = 8$

Better lb - example - cont.

Change p_{11} from 1 to 2!

Data for jobs on Machine 1: green blue red $r_{12} = 0$ $r_{13} = 3$ $r_{11} = 6$ $\Lambda_{12} = 8 |\Lambda_{12} = 5 |\Lambda_{11} = 2$

$$
\frac{d_{12}}{d_{12}} = 3 \left| \frac{d_{13}}{d_{13}} \right| = 7 \left| \frac{d_{11}}{d_{11}} \right| = 8
$$

Opt. solution: $L_{max} = 1$, $LB^{new}(V) = 9$ M1 3 79

Opgaven voor werkcollege

