Sequencing and Scheduling: 45-865 – Spring 2000 
Agenda for Week 2:

· Computational Complexity

· Basic Dispatching Rules

· Minimizing Total Completion Time (SPT rule)

· Minimizing Maximum Lateness (EDD rule)

Computational Complexity

· Algorithm

· Input data size 

· Time complexity function

Polynomial vs. Exponential Computing Time

	Size (n) :

Function
	10
	20
	30
	40
	50

	n
	0.00001 sec
	0.00002 sec
	0.00003 sec
	0.00004 sec
	0.00005 sec

	n2
	0.0001 sec
	0.0004

sec
	0.0009 sec
	0.0016 sec
	0.0025 sec

	n3
	0.001

 sec
	0.008

 sec
	0.027

 sec
	0.064

 sec
	0.125

 sec

	2n
	0.001

 sec
	1.0

 sec
	17.9

 min
	12.7

 days
	35.7

 years


Effects of Improved Computer Technology - 

Size of Largest Problem Solvable in 1 Hour:
	Function
	With Present Computer
	With Computer 100 Times Faster
	With Computer 1000 Times Faster

	n
	N1
	100N1
	1000N1

	n2
	N2
	10N2
	31.6N2

	n3
	N3
	4.64N3
	10N3

	2n
	N4
	N4 + 6.64
	N4 + 9.97


· Polynomial time algorithm vs. Exponential time algorithm

· Exact (Optimal) Solution  Algorithm vs. Heuristic Algorithm

· Hard Problem vs. Easy Problem

· NP-hard Problems

It is very unlikely that a polynomial time algorithm exists for an  NP-hard problem

Basic Dispatching Rules
· Which job to pick next?

· A dispatching rule assigns a priority on jobs based on

Job Attributes

Machine Attributes

Current Time

· Static vs. Dynamic Rules

· Local vs. Global Rules

	
	Rule
	Data
	Objectives

	Rules dependent

  on release dates
	ERD
	rj
	Minimize variation in waiting times

	  and due dates
	EDD
	dj
	Maximum lateness

	   
	MS
	dj
	Maximum lateness

	[image: image30.wmf]k

k

j

j

p

w

p

w

<


	
	
	

	Rules dependent

   on processing
	LPT
	pj
	Load balancing over parallel machines

	   times 
	SPT
	pj
	Sum of completion times, WIP

	   
	WSPT
	pj, wj
	Weighted sum of completion times, WIP

	
	CP
	pj, precedences
	Makespan

	
	LNS
	pj, precedences
	Makespan

	[image: image31.wmf]k

k

j

j

p

w

p

w

<


	
	
	

	Others
	SST
	sjk
	Makespan and throughput

	
	LFJ
	Mj
	Makespan and throughput

	
	SQNO
	-
	Machine utilization

	
	SIRO
	-
	Ease of implementation


Example 1:  

Single-machine problem with 4 jobs with the following input data:

	Jobs
	1
	2
	3
	4

	pj
	6
	8
	5
	3

	rj
	2
	0
	0
	6

	dj
	16
	18
	15
	21

	wj
	3
	4
	5
	2


a.  Minimize sum of completion times, apply SPT

[image: image32.wmf]k

k

j

j

p

w

p

w

<


Sequence:

Total Completion time:

b.  Minimize sum of weighted completion times, apply WSPT

[image: image33.wmf]k

k

j

j

p

w

p

w

<


Sequence:

Total Weighted Completion time:

c.  Minimize maximum lateness, apply EDD


Sequence:

Maximum lateness:

d.  Minimize maximum lateness, apply MS


Sequence:

Maximum lateness:

e.  Minimize variation in waiting times, apply ERD


Sequence:

Waiting time1:


Waiting time2:

Waiting time3:


Waiting time4:

Example 2:  Consider the single-machine problem of Example 1 with the following sequence-dependent setup times:

	Jobs
	1
	2
	3
	4

	S0j
	1
	3
	2
	3

	S1j
	-
	4
	2
	3

	S2j
	3
	-
	6
	4

	S3j
	2
	3
	-
	2

	S4j
	3
	1
	5
	-


Minimize average setup time, apply SST


Sequence:

Total setup time:

Composite Dispatching Rules
· More complex and/or multiple objectives

· Scaling parameters determine the contribution of each basic rule to the final priority

Apparent Tardiness Cost (ATC) Heuristic:

· Problem: Single-machine, n jobs available at time 0,

minimize sum of the weighted tardiness (
[image: image1.wmf]å

j

wjTj

)  (NP-hard) 

· Combine WSPT and MS

· Every time the machine becomes free, a ranking index (priority) is computed for each remaining job


[image: image2.wmf]÷

÷

÷

ø

ö

ç

ç

ç

è

æ

-

-

-

=

p

K

t

p

d

p

w

t

I

j

j

j

j

j

)}

(

,

0

max{

exp

)

(



[image: image3.wmf]K: scaling parameter (look-ahead parameter)

  p: average of processing times 
· ATC reduces to its basic rules in extreme cases:

	K
	Overdue Jobs
	Rule

	very large
	YES/NO
	WSPT

	very small
	NO
	MS

	very small
	YES
	WSPT 

(applied to overdue jobs only)


· Determining the value of K:
· Due date tightness factor:   
[image: image4.wmf]max

1

C

d

-

=

t








[image: image5.wmf]t


· Due date range factor:   
[image: image6.wmf]max

min

max

C

d

d

R

-

=


Example 3: Single-machine, total weighted tardiness problem with 4 jobs

	Jobs
	1
	2
	3
	4

	Pj
	13
	9
	13
	10

	Dj
	12
	37
	21
	22

	Wj
	2
	4
	2
	5


a. Calculate the due date tightness and due date range factors.

d= (12+37+21+22)/4 = 23

Cmax= 13+9+13+10 = 45


Due date tightness: 

[image: image7.wmf]49

.

0

45

23

1

=

-

=

t


Due date range: 
[image: image8.wmf]22

.

0

45

)

12

22

(

=

-

=

R


b. Apply the ATC rule with K= 5.

p= (13+9+13+10)/4=11.25

At t=0:      I1(0) = 
[image: image9.wmf]-

exp(

13

2



EMBED Equation.3[image: image10.wmf])

25

.

11

*

5

)

0

,

0

13

12

max(

-

-

=
[image: image11.wmf]1538

.

0

13

2

=


I2(0) = 
[image: image12.wmf]-

exp(

9

4



EMBED Equation.3[image: image13.wmf])

25

.

11

*

5

)

0

,

0

9

37

max(

-

-

=
[image: image14.wmf]

EMBED Equation.3[image: image15.wmf]2702

.

0

 

See the table for the rest of the calculations.

	Time
	Job (j)
	1
	2
	3
	4
	

	0 
	Ij(0)
	0.1538
	0.2702
	0.1335
	0.4039
	Pick 4

	10 
	Ij(10)
	0.1538
	0.3227
	0.1538
	 
	Pick 2

	19 
	Ij(19)
	0.1538
	 
	0.1538
	
	Pick 1

	32 
	
	
	
	
	
	Pick 3 


C4=10, C2=19, C1=32, C3=45  and  T4= 0, T2= 0, T1= 20, T3=24


Weighted tardiness = 2*20 + 2*24 = 88

c. Apply the ATC rule with K= 1.

p=11.25

At t=0:

I1(0) = 
[image: image16.wmf]-

exp(

13

2



EMBED Equation.3[image: image17.wmf])

25

.

11

*

1

)

0

,

0

13

12

max(

-

-

=
[image: image18.wmf]1538

.

0

13

2

=


I2(0) = 
[image: image19.wmf]-

exp(

9

4



EMBED Equation.3[image: image20.wmf])

25

.

11

*

1

)

0

,

0

9

37

max(

-

-

=
[image: image21.wmf]

EMBED Equation.3[image: image22.wmf]0369

.

0

 

I3(0) =

I4(0) =

Fill in the table with the rest of the calculations.

	Time
	Job (j)
	1
	2
	3
	4
	

	0 
	Ij(0)
	0.1538
	0.0369
	
	
	Pick

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	


    Weighted tardiness =

c.  Apply the ATC rule with K= 1.

p=11.25

At t=0:

I1(0) = 
[image: image23.wmf]-

exp(

13

2



EMBED Equation.3[image: image24.wmf])

25

.

11

*

1

)

0

,

0

13

12

max(

-

-

=
[image: image25.wmf]1538

.

0

13

2

=


I2(0) = 
[image: image26.wmf]-

exp(

9

4



EMBED Equation.3[image: image27.wmf])

25

.

11

*

1

)

0

,

0

9

37

max(

-

-

=
[image: image28.wmf]

EMBED Equation.3[image: image29.wmf]0369

.

0

 

See the table for the rest of the calculations.

	Time
	Job (j)
	1
	2
	3
	4
	

	0 
	Ij(0)
	0.1538
	  0.0369
	0.0755
	0.1720
	Pick 4

	10
	Ij(10)
	0.1538
	0.0897
	0.1538
	
	Pick 1

	23
	Ij(23)
	
	0.2849
	0.1538
	
	Pick 2

	32
	
	
	
	
	
	Pick 3


Sequence: 4-1-2-3







C4=10,
C1=23,
 
C2=32,
 C3=45   

T4= 0, 
T1= 23-12=11,   T2= 0, 
 T3=45-21=24

Weighted tardiness = 2*11 + 2*24 = 70

OPTIMAL DISPATCHING RULES

Minimizing Total Weighted Completion Time - WSPT:

Problem: Single-machine,  Min (j wjCj

WSPT: Order jobs in decreasing order of wj/pj

WSPT Rule is optimal for minimizing total weighted completion time

· Why?

1. Suppose a schedule S, which is not sequenced by WSPT, is optimal

2. In this schedule, there must be at least 2 adjacent jobs j and k such that  

3. Construct S' by interchanging jobs j and k


4. Completion time of other jobs are not affected

5. Total weighted completion time of jobs j and k is

In S:  A(S)  = (t + pj) wj + ( t + pj  + pk ) wk


In S': A(S') = (t + pk) wk + ( t + pj  + pk ) wj

6.   A(S) - A(S') = pj wk -  pk wj  > 0 since 

7. S can not be optimal

Note on Generalizations:

Hardness of variations of the single-machine, total weighted completion time problem

	jobs have different release times
	Scheduler is allowed to preempt
	Precedence constraints exist
	jobs have equal weights
	NP-hard

	NO
	NO
	YES
	NO
	YES

	YES
	YES
	NO
	NO
	YES

	YES
	NO
	NO
	YES
	YES

	YES
	YES
	NO
	YES
	NO

	NO
	NO
	NO
	NO
	NO


Minimizing Maximum Lateness:

Problem: Single-machine,  Min Lmax=max(L1,...,Ln)

EDD: Order jobs in increasing order of due dates

EDD Rule is optimal for minimizing maximum lateness

· Why?

1. Suppose a schedule S, which is not sequenced by EDD, is optimal

2. In this schedule, there must be at least 2 adjacent jobs j and k such that dj > dk 
3. Construct S' by interchanging jobs j and k


4. Completion time of other jobs are not affected

5.  In S: 
Lj(S)  = t + pj - dj 



 
Lk(S)  = t + pj  + pk  - dk

    In S': 
Lk(S')  = t + pk  - dk
Lj(S')  = t + pj  + pk  - dj
6.  Lk(S) > Lk(S') and Lk(S) > Lj(S') since dj > dk 

    Thus, Lk(S) > max{Lk(S'), Lj(S')} 



Lmax(S) >= Lmax(S')

7. Starting with S, you can obtain an EDD schedule by pairwise  interchanges such that maximum lateness is not increased

Note on Generalizations:

· If jobs are released at different points in time, the problem is  NP-hard
5



15



10



25



20



30



5



15



10



25



20



30



5



15



10



25



20



30



5



15



10



25



20



30



5



15



10



25



20



30



5



15



10



25



20



30



5



15



10



25



20



30



0



1



tight



loose



2



3



4



1



30



40



50



20



10



�EMBED Equation.3���



t



j



k



t+pj+pk



t



k



j



t+pj+pk



S



S'



�EMBED Equation.3���



t



j



k



t+pj+pk



t



k



j



t+pj+pk



S



S'





_1751877003.unknown

_1751877007.unknown

_1751877009.unknown

_1751877010.unknown

_1751877008.unknown

_1751877005.unknown

_1751877006.unknown

_1751877004.unknown

_1751876995.unknown

_1751876999.unknown

_1751877001.unknown

_1751877002.unknown

_1751877000.unknown

_1751876997.unknown

_1751876998.unknown

_1751876996.unknown

_1751876991.unknown

_1751876993.unknown

_1751876994.unknown

_1751876992.unknown

_1751876987.unknown

_1751876989.unknown

_1751876990.unknown

_1751876988.unknown

_1751876985.unknown

_1751876986.unknown

_1751876983.unknown

_1751876984.unknown

_1751876956.unknown

_1751876982.unknown

_1751876954.unknown

