Sequencing and Scheduling: 45-865 – Spring 2000
Agenda for Week 4:

· Local Search Algorithms
· Simulated Annealing

· Tabu Search

· Genetic Algorithms

Local Search

· Local search algorithms try to improve a given solution by modifying it

· Constructive Algorithms

· Improvement Algorithms

· Need to specify:

1. How to modify a solution (neighborhood of a solution)
2. How to search the neighborhood

3. Which solutions to select

· Given

· A solution x

· Modification rule R

(y=R(x))

Neighborhood of x: Set of all solutions that can be obtained by modifying x with respect to R

N(x) ={y: y=R(x)}

Example 1: Single machine, minimize total weighted tardiness

	Jobs
	1
	2
	3
	4

	wj
	4
	5
	3
	5

	pj
	12
	8
	15
	9

	dj
	16
	26
	25
	27

· Construct a solution by EDD heuristic:

	Jobs
	Cj
	dj
	Tj
	wj
	wj Tj

	1
	12
	16
	
	4
	

	2
	35
	26
	
	5
	

	3
	27
	25
	
	3
	

	4
	44
	27
	
	5
	

(j wj Tj=

· How do you modify this solution to decrease weighted tardiness?

1) Pairwise adjacent interchange:
 interchange 2 and 4 in the sequence

	Jobs
	Cj
	dj
	Tj
	wj
	wj Tj

	1
	12
	16
	
	4
	

	2
	44
	26
	
	5
	

	3
	27
	25
	
	3
	

	4
	36
	27
	
	5
	

(j wj Tj=

2) Change position of a job in the sequence:
Let job 4 be the 2nd job in the sequence

	Jobs
	Cj
	dj
	Tj
	wj
	wj Tj

	1
	12
	16
	
	4
	

	2
	44
	26
	
	5
	

	3
	36
	25
	
	3
	

	4
	21
	27
	
	5
	

(j wj Tj=

· Neighborhood of solution 1-3-2-4 with respect to Rule 1)

Size:

· Neighborhood of solution 1-3-2-4 with respect to Rule 2)

Size:

Neighborhood of a Job Shop Schedule:

· Job shop problem, minimize makespan
· Operation (i,j) : Operation of job j on machine i

· Critical path in a schedule consists of operations O1,O2, …,Ok such that:

· Completion time of an operation Oi = Start time of the next operation Oi+1 on the path

· The first operation on the path, O1, starts at t=0

· The last operation on the path, O1, ends at t=Cmax
Rule 1) Interchange a pair of adjacent operations on the critical path

Note: Operations must be on the same machine and belong to different jobs

Rule 2) One step look-back interchange:

1. Let (i,j) and (i,k) be adjacent operations on the critical path
2. Interchange (i,j) and (i,k) on machine i

3. Let (h,k) be the immediate predecessor of (i,k) for job k

4. Let (h,l) be the immediate predecessor operation of (h,k) on machine h

5. Interchange (h,k) and (h,l) on machine h

Example 2: Job shop, 3 machines, 3 jobs, minimize makespan

	Jobs
	Machine Sequence
	Processing Times

	1
	1,2,3
	 p11=5, p21=10, p31=4

	2
	3,1,2
	 p12=5, p22=8, p32=4

	3
	3,2,1
	 p13=7, p23=3, p33=5

Makespan = 37

Apply Rule 1: Interchange (2,2) and (2,1)

Makespan = 28

Apply Rule 2:

1. Interchange (1,1) and (1,2)

Makespan = 36
2. Interchange (3,3) and (3,2)

Makespan = 34
Local Search Algorithm

Notation:

At iteration k,

Sk : Current schedule
S0 : Best schedule so far

G(Sk): Objective function value of schedule Sk

G(S0): Aspiration criterion
Initialize: Pick a starting schedule S1,
 set S0 = S1
Iteration k:

Select a candidate schedule from the neighborhood of Sk

[Specify a Rule]

If G(Sc) < G(Sk), set Sk+1 = Sc

If G(Sc) < G(S0), set S0 = Sc

If G(Sc) >= G(Sk), decide to move to Sc or not

Repeat until Stopping Criteria

Simulated Annealing

· Accepting or rejecting a move is decided probabilistically
· At the first iterations, “bad” moves are likely to be accepted
· In later iterations, “bad” moves are less likely to be accepted
If G(Sc) >= G(Sk), move to Sc with probability

[image: image1.wmf]þ

ý

ü

î

í

ì

-

=

k

c

k

c

k

S

G

S

G

S

S

P

b

)

(

)

(

exp

)

,

(

and with probability 1-P(Sk,Sc), reject Sc
where (1 >= (2 >= (3 >= … > 0 are cooling parameters

(usually (k =ak for some a, 0 < a < 1)
note:

1. As (decreases, probability of acceptance also decreases

2. If G(Sc) is much larger than G(Sk), the acceptance probability is small
Stopping Criteria:

1. Stop at a give number of iterations OR

2. Stop when no improvement is obtained for a given number of iterations

Tabu Search

· Decision to accept/reject a move is deterministic

· At each iteration a tabu-list of fixed size is kept

· Every time a move is made,

the reverse move is entered to the top of the tabu-list and the bottom entry is deleted

· Tradeoff: small list => cycling may occur

 large list => search is restricted

Example 3: Single machine, minimize total weighted tardiness

	Jobs
	1
	2
	3
	4

	pj
	10
	10
	13
	4

	dj
	4
	2
	1
	12

	wj
	14
	12
	1
	12

Move: adjacent pairwise interchanges

Tabu-list: pairs swapped within last two moves

Initialize: S1= 2-1-4-3, G(S1) = 500, S0= S1, Tabu-list is empty

k=2: Neighbors of S1:

	Sequence
	1-2-4-3
	2-4-1-3
	2-1-3-4

	(wjTj
	480
	436
	652

	Tabu
	No
	no
	no

Pick S2 = 2-4-1-3,
S0= S2,
G(S0)=436,
Tabu={(1,4)}

k=3: Neighbors of S2:

	Sequence
	4-2-1-3
	2-1-4-3
	2-4-3-1

	(wjTj
	460
	500
	608

	Tabu
	No
	yes
	no

Pick S3 = 4-2-1-3,
S0= S2,
G(S0)=436,
Tabu={(2,4),(1,4)}

k=4: Neighbors of S3=4-2-1-3:

	Sequence
	2-4-1-3
	4-1-2-3
	4-2-3-1

	(wjTj
	436
	440
	632

	Tabu
	Yes
	No
	No

Pick S4 = 4-1-2-3,
S0= S2,
G(S0)=436,
Tabu={(1,2),(2,4)}

k=5: Neighbors of S4 = 4-1-2-3:

	Sequence
	1-4-2-3
	4-2-1-3
	4-1-3-2

	(wjTj
	408
	460
	586

	Tabu
	No
	yes
	no

Pick S5 = 1-4-2-3,
S0= S4,
G(S0)=408,
Tabu={(1,4),(1,2)}

The iterations continue until the stopping criteria: no more moves are available or a preset maximum iterations is reached

For more on tabu search:

1. “Tabu Search” by F. Glover and M. Laguna, Kluwer Academic Publishers, 1997

2. “An Overview of Tabu Search Approaches to Production Scheduling Problems”, J.W. Barnes, M. Laguna and F. Glover, in Intelligent Scheduling Systems, D.E. Brown and W.T. Scherer (Eds.), Kluwer Academic Publishers, 1995

Genetic Algorithms

What is different?

· Keeps a population of solutions:

At each iteration, a number of schedules are generated and carried to the next step

Why Use Genetic Algorithms?

· Traditional search methods

· require detailed knowledge of the problem being solved

· It is difficult to search ill-behaved solution spaces
· Genetic algorithms
· require less domain knowledge
· deal with codings instead of variables
How Genetic Algorithms Work

· Simulates the natural evolutionary process

· Every individual (solution) in the population has a fitness (based on objective value)

· In each generation (iteration), the most fit individuals (best solutions) are allowed to produce children (new solutions)

· Takes the best features of each parent (crossover) or mutates features of a single parent (to create the neighborhood of the population)

· The most fit individuals reproduce; the least fit die

Basic Elements:

· Representation

· Genetic Operators

· Selection and Evolution

· Termination

· Parameters Settings

Genetic Operators

Reproduction:

· Duplicates complete strings from the individuals already in the population

· Based on fitness (evaluating functions), the ones with higher values have higher probability to be duplicated

Crossover:

· Chooses two parents and exchanges the sub-string within them

· There are many variations of this operator, such as one point,

n-points and uniform crossover

Selection and Evolution

· Decides which individuals survive to make up the next generation, based mostly on fitness function

Parameter Settings

Population size, crossover rate, and mutation rate (For example, high mutation rate will result in almost random search behavior)

Example 4: Single machine, minimize total weighted tardiness, data of Example 3

Rules:

· Fitness = total weighted tardiness

population size = 4

· At a generation, get 2 children from the two best schedules by pairwise adjacent interchange

· Two worst schedules die

Initial population:

	Sequence
	2-1-4-3
	4-1-3-2
	3-1-4-2
	4-2-1-3

	(wjTj
	500
	586
	878
	460

Keep 2-1-4-3 and 4-2-1-3, obtain 1-2-4-3 and 2-4-1-3 by interchanges

Population at iteration 2:

	Sequence
	2-1-4-3
	1-2-4-3
	2-4-1-3
	4-2-1-3

	(wjTj
	500
	480
	436
	460

Keep 2-4-1-3 and 4-2-1-3, obtain 2-1-4-3 and 4-1-2-3 by interchanges

Population at iteration 3:

	Sequence
	2-1-4-3
	4-1-2-3
	2-4-1-3
	4-2-1-3

	(wjTj
	500
	440
	436
	460

For more on local search:

1. “Local Search in Combinatorial optimization: Applications in Machine Scheduling ”, E.J. Anderson, C.A. Glass and C.N. Potts, in Local Search in Combinatorial optimization, Aarts and Lenstra (Eds.), Wiley, 1997

Other General Purpose Methods:

· Dynamic programming

· Constraint-based Methods

· Constraint Satisfaction

· Learning Methods

· Neural Networks

1

4

2

3

44

35

270

12

1

2

4

3

36

44

270

12

1

2

3

4

36

44

21

12

MC 3

MC 1

MC 2

100

200

300

370

1

3

3

3

2

2

2

1

1

100

200

300

280

1

3

3

3

2

2

2

1

1

MC 1

MC 2

MC 3

MC 3

MC 1

MC 2

100

200

300

360

1

3

3

3

2

2

2

1

1

MC 3

MC 1

MC 2

100

200

300

340

1

3

3

3

2

2

2

1

1

12

_1751877315.unknown

