Sequencing and Scheduling: 45-865 – Spring 2000
Agenda for Week 7:

Workforce Scheduling:
· Days-off scheduling

· Shift scheduling, Cyclic staffing

Workforce Scheduling:

1. Assign personnel to jobs

2. Assign personnel to shifts or workdays to cover demand

Examples

· Assign supervisors to audit jobs at a public accounting firm

· Assign PAT bus drivers to routes and shifts

· Assign employees to shifts at Taco Bell

Days-Off Schedule Development
	Sunday
	Monday
	Tuesday
	Wed.
	Thurs.
	Friday
	Saturday

	Bob
	Bob
	Bob
	Don
	Bob
	Bob
	Sam

	Mike
	Ann
	Ann
	Ann
	Ann
	Ann
	Don

	Don
	Sam
	Sam
	Mike
	Mike
	Mike
	Mike

	
	Don
	Don
	
	Sam
	Sam
	

	3
	4
	4
	3
	4
	4
	3

Given daily requirements (same for every week),

Find the minimum number of employees to cover a 7-day-week
Constraints:

1) Number of employees working on day j must be nj, j=1,...,7

2) Each employee must have k1 out of every k2 weekends off

3) Each employee works exactly 5 days in a week (Sun to Sat)

4) An employee can work at most 6 consecutive days

Let W be the minimum number of employees

What lower bounds can you find?

1. Total number of employees must be at least maximum daily demand

[image: image1.wmf])

n

,...,

max(n

W

7

1

³

daily demand lower bound

2. Total employee days per week must be at least total weekly demand

[image: image2.wmf]j

n

5W

7

1

j

å

=

³

Then,

[image: image3.wmf]ú

ú

ù

ê

ê

é

³

å

=

j

n

5

1

W

7

1

j

total demand lower bound

3. Average number of employees available each weekend must be at least maximum weekend demand

Over k2 weekends:

[image: image4.wmf])

n

,

max(n

k

)W

k

-

(k

7

1

2

1

2

³

Then,

[image: image5.wmf]ú

ú

ù

ê

ê

é

³

)

k

-

(k

)

n

,

max(n

k

W

1

2

7

1

2

weekend lower bound

Let W* be the maximum of these three bounds, then W>=W*
Example:

	Day j
	1
	2
	3
	4
	5
	6
	7

	
	Sun
	Mon
	Tue
	Wed
	Thurs
	Fri
	Sat

	Requirement nj
	1
	0
	3
	3
	3
	3
	2

Each employee is given one out of three weekends off

1) max(n1,...,n7) = 3,
then W>=3

2)
[image: image6.wmf]3

5

15

n

5

1

7

1

j

=

ú

ú

ù

ê

ê

é

=

ú

ú

ù

ê

ê

é

å

=

j

, so W>=3

3) max(n1, n7) = 2, k1 = 1 and k2 = 3, so

[image: image7.wmf]3

2

2

 x

3

W

=

ú

ú

ù

ê

ê

é

³

As a result of the three bounds W* = 3, so W>=3

· There is an algorithm (outlined below) that finds a feasible schedule with workforce equal to maximum of the three lower bounds above

This implies that

Notation:

maximum weekend demand:
 n = max(n1, n7)

surplus of employees on day j:

uj = W - nj, for j=2,...,6
and

uj = n - nj, for j=1,7

Note that

[image: image8.wmf]n

n

j

j

2

n

2

5W

u

7

1

j

7

1

j

³

-

+

=

å

å

=

=

due to total demand bound

· Calculate the three lower bounds and find W, their maximum

· Number employees from 1 to W

· W - n employees can have a weekend off

· Start the schedule on a Saturday (weekend 1)

· Generate a schedule for each week sequentially

Algorithm Overview:

Step 1: Schedule the weekends off

Assign the first weekend off to the first W-n employees

Assign the 2nd weekend off to the 2nd W-n employees

Continue cyclically

Example (continued):
W=3, n=2, W-n =1, assign a weekend off to one employee each week

Daily Surplus:

	Day j
	1
	2
	3
	4
	5
	6
	7

	
	Sun
	Mon
	Tue
	Wed
	Thurs
	Fri
	Sat

	Uj
	1
	3
	0
	0
	0
	0
	0

Step 2: Find additional off day pairs
Build a list of n pairs of off days:

Pick a day with max surplus

Pick another day with positive surplus (if none exists, pick the first day)

Add the pair to the list and update the surplus values

Example (continued):
Pair 1: Sunday -Monday

Pair 1: Monday -Monday

Set i=1 for Step 3

Step 3: Categorize employees in week i
Based on off days needed, employees are categorized into 4

Step 4: Assign off day pairs to employees in different categories in week i
Remarks:

· Days-off scheduling problem has an optimal solution that is cyclic, i.e. the same pattern repeats itself

Shift Scheduling:

· A cycle consisting of m periods is given

· During period i, bi employees are required

· There are n shift patterns

· Each employee is assigned to exactly one shift pattern

· Cost of assigning a person to shift j is cj

Minimize total cost of assigning employees to shift patterns such that the required number of employees is present every period

IP Formulation

Define a constraint matrix A:

· Let aij = 1, if period i is a work period in pattern j and

 0, otherwise

This defines a matrix A = [aij], where row i corresponds to period i and column j corresponds to pattern j

· Define decision variables xj ({0,1,2,...} such that

xj = number of employees assigned to shift pattern j

· Constraints: for i=1,...,m

[image: image9.wmf]i

j

ij

n

j

b

x

a

³

å

· Objective: Min
[image: image10.wmf]j

j

n

j

x

c

å

The integer programming formulation:

Min
[image: image11.wmf]n

n

x

c

x

c

x

c

+

+

+

...

2

2

1

1

st

[image: image12.wmf]1

1

2

2

1

1

1

1

...

b

x

a

x

a

x

a

n

n

³

+

+

+

[image: image13.wmf]2

2

2

2

2

1

1

2

...

b

x

a

x

a

x

a

n

n

³

+

+

+

.

.

.

[image: image14.wmf]m

n

n

m

m

m

b

x

a

x

a

x

a

³

+

+

+

...

2

2

1

1

[image: image15.wmf],...}

2

,

1

,

0

{

Î

j

x

for
[image: image16.wmf]n

j

,...,

1

=

In matrix form:

Min cx

st

Ax >= b

x >= 0

x integer

· In general this problem is NP-hard

· If the A matrix has a special structure, the problem may become solvable in polynomial time

· For example, if every column of A contains a contiguous set of ones (no zeros in between ones), then the problem becomes easy

Example: Shift scheduling at a retail store
Consider GAP on Walnut St. and assume it is open from 10 am to 9 pm every day.

The following 5 shift patterns have been set by the management for a daily cycle.

	Pattern j
	Hours of Work
	Total Hours
	Cost cj

	1
	10 am - 6 pm
	8
	$50

	2
	1 pm - 9 pm
	8
	$60

	3
	12 pm - 6 pm
	6
	$30

	4
	10 am - 1 pm
	3
	$15

	5
	6 pm - 9 pm
	3
	$16

Staffing requirements over the 11 hours in the cycle:

	Hour i
	Requirement bi

	10 am - 11 am
	3

	11 am - 12 am
	4

	12 am - 1 pm
	6

	1 pm - 2 pm
	4

	2 pm - 3 pm
	7

	3 pm - 4 pm
	8

	4 pm - 5 pm
	7

	5 pm - 6 pm
	6

	6 pm - 7 pm
	4

	7 pm - 8 pm
	7

	2 pm - 9 pm
	8

IP formulation:

Rows correspond to hours, columns to patterns

Constraint Matrix A:

	Pattern :
	1
	2
	3
	4
	5

	Hour 1
	1
	
	
	1
	

	Hour 2
	1
	
	
	1
	

	Hour 3
	1
	
	1
	1
	

	Hour 4
	1
	1
	1
	
	

	Hour 5
	1
	1
	1
	
	

	Hour 6
	1
	1
	1
	
	

	Hour 7
	1
	1
	1
	
	

	Hour 8
	1
	1
	1
	
	

	Hour 9
	
	1
	
	
	1

	Hour 10
	
	1
	
	
	1

	Hour 11
	
	1
	
	
	1

Min 50x1 + 60x2 + 30x3 + 15x4 + 16x5

s.t.

x1 + x4 >= 3

x1 + x4 >= 4

x1 + x3 + x4 >= 6

x1 + x2 + x3 >= 4

x1 + x2 + x3 >= 7

x1 + x2 + x3 >= 8

x1 + x2 + x3 >= 7

x1 + x2 + x3 >= 6

x2 + x5 >= 4

x2 + x5 >= 7

x2 + x5 >= 8

x1,...,x7 ({0,1,2,...}

Clearly, we can eliminate some of the constraints

Min 50x1 + 60x2 + 30x3 + 15x4 + 16x5

s.t.

x1 + x4 >= 4

x1 + x3 + x4 >= 6

x1 + x2 + x3 >= 8

x2 + x5 >= 8

x1,...,x7 ({0,1,2,...}

If the LP relaxation is solved, an integer solution is obtained: x1 = 0, x2 = 0, x3 = 8, x4 = 4, x5 = 8

This solution is optimal for the IP, too.

REMARKS:
· In general for the shift scheduling problem, it is not always true that the LP relaxation solution is integer

· If every column in A has contiguous ones, then the LP relaxation is always integer

· There are other special cases that can be solved in polynomial time such as the cyclic staffing problem

Cyclic Staffing

Problem:

· Assign people to an m-period cyclic schedule

such that

· Number of employees during period i is at least bi
· Each person works a shift of k consecutive periods

and is free the other m-k periods

Minimize

· Assignment cost
Example:
Cycle=7days,

A person works 5 consecutive days and takes 2 days off

IP formulation: Shift scheduling formulation

[image: image17.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

0011111

0111110

1111100

1111001

1110011

1100111

1001111

A

· The A matrix does not have contiguous 1's in all the columns

· It is not guaranteed that the LP relaxation has an inegral solution

BUT,

· If the LP relaxation solution is fractional, an optimal integer solution can be obtained easily by rounding

Rounding Algorithm

Step 1.

Solve the LP relaxation, let x1*, ..., xn* be a solution

If x1*, ..., xn* are all integers, then

x* is optimal to the IP, STOP

Otherwise, go to Step 2.

Step 2.

Form two LPs, LP1 and LP2 by adding the constraints

[image: image18.wmf]ë

û

*

*

1

1

n

n

x

x

x

x

+

+

=

+

+

L

L

to LP1 and

[image: image19.wmf]é

ù

*

*

1

1

n

n

x

x

x

x

+

+

=

+

+

L

L

to LP2

LP2 has an integer solution x2

If LP1 does not have a feasible solution, then

LP2 solution x2 is optimal to the IP

If LP1 has a feasible solution, say x1, then

LP1 solution x1 is integer and

Better solution among x1 and x2 is optimal to the IP

Example: n=5, k=3

[image: image20.wmf]ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

=

00111

01110

11100

11001

10011

A

[image: image21.wmf]ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

=

7

4

6

4

3

b

c= (3.6,4.8,5.5,3.7,5.2)

Step 1. LP relaxation solution x*= (1.5,0,4.5,0,2.5), cost = 43.15

Step 2. Add x1 + x2 + x3 + x4 + x5 = 8 to LP
(LP1)

 LP1 has no feasible solution

 Add x1 + x2 + x3 + x4 + x5 = 9 to LP
(LP2)

 LP2 has integer solution x2= (2,0,4,0,2), cost = 43.3

 This solution is optimal to the IP

Cyclic Staffing: Applications and Extensions
1) Days-off Scheduling:

This special case is a cyclic staffing problem:

· Each employee is guaranteed 2 days off per week, including every other weekend

· Each employee can not work more than 6 consecutive days

IP formulation:

[image: image22.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

M

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

000000

111111

111111

111111

111111

111111

111110

111110

110111

110001

011011

001111

101101

000000

111111

000000

A

2) Cyclic Staffing with Overtime

Example: Hospitals

· 3 shift of 8 hours each: 8am - 4pm, 4pm - 12pm, 12pm - 8am

· Overtime of upto 8 hrs possible for each shift

O\1 : triangular matrix with 1's to the right of the diagonal

3) Cyclic Staffing with Linear Penalties for Understaffing and Overstaffing

· Demand in each period is not fixed

· Penalty ui for understaffing and oi for overstaffing in period i

(oi may be negative due to benefits of overstaffing)

· Let si be a variable representing understaffing amount in period i

· Then overstaffing amount in period i will be

bi = ai1x1 + ... + ai1xn - si
The formulation:

Min cx + us + o(b-Ax -s)

st

Ax + Is >= b

x,s >= 0 and integer

Can be solved by the algorithm for cyclic staffing

No. of employees required

1 0 0\1

0\1 1 0

0 0\1 1

1

_1751877431.unknown

_1751877435.unknown

_1751877437.unknown

_1751877438.unknown

_1751877436.unknown

_1751877433.unknown

_1751877434.unknown

_1751877432.unknown

_1751877427.unknown

_1751877429.unknown

_1751877430.unknown

_1751877428.unknown

_1751877423.unknown

_1751877425.unknown

_1751877426.unknown

_1751877424.unknown

_1751877421.unknown

_1751877422.unknown

_1751877419.unknown

_1751877420.unknown

_1751877418.unknown

_1751877417.unknown

